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Abstract: Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy
storage and conversion systems. Several supports have been developed for stabilizing single-atom
catalytic sites, e.g., organic-, metal-, and carbonaceous matrices. Noticeably, the metal species and their
local atomic coordination environments have a strong influence on the electrocatalytic capabilities of
metal atom active centers. In particular, asymmetric atom electrocatalysts exhibit unique properties
and an unexpected carbon dioxide reduction reaction (CO2RR) performance different from those of
traditional metal-N4 sites. This review summarizes the recent development of asymmetric atom sites
for the CO2RR with emphasis on the coordination structure regulation strategies and their effects on
CO2RR performance. Ultimately, several scientific possibilities are proffered with the aim of further
expanding and deepening the advancement of asymmetric atom electrocatalysts for the CO2RR.

Keywords: asymmetric atom sites; coordination structure; carbon dioxide reduction reaction;
catalyst design

1. Introduction

Since the first industrial revolution, the massive consumption of fossil fuels has pro-
moted the innovation of modern science and technology and greatly raised the quality
of human lifestyles [1–5]. However, the challenges of energy scarcity and atmospheric
pollution are in irreversible progress, and it is imperative to formulate a clean and sustain-
able energy technology route [6–10]. In particular, one of the possible alternatives is to
employ electrocatalytic conversions reactions to manufacture clean energy from renewable
or sustainable green sources, e.g., the hydrogen evolution reaction (HER) [11,12], oxygen
evolution reaction (OER) [13,14], oxygen reduction reaction (ORR) [15,16], CO2 reduction
reaction (CO2RR) [17,18], nitrogen reduction reaction (NRR) [19,20], nitrate reduction reac-
tion (NO3RR), etc. [21–23]. In these proposed electrochemical reactions, the introduction of
catalysts significantly reduces the extra electric energy consumption [24–28]. For traditional
bulk and/or nanoparticles (NPs) electrocatalysts, only a few layers of the atoms on the
surfaces of the catalysts are involved in the reactions, resulting in a large percentage of the
metal atoms being ineffective and wasted. Consequently, next-generation electrocatalysts
need to meet the strict demands of higher atomic utilization efficiency compared with the
original ones [29–32].

In 2011, Zhang et al. prepared an atomically dispersed Pt1/FeOx, which was the first
time the concept of a “single-atom catalyst” (SAC) had ever been applied worldwide [33].
In recent years, due to their almost 100% atomic utilization rates and exceptional activity
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and selectivity, single-atom electrocatalysts have gained significant scientific attention and
their development has been actively underway [34–36]. First, SACs loaded on supports not
only have relatively uniform and well-defined active centers with modulated coordination
bonds similar to homogeneous catalysts but also retain the advantages of easy separation,
reusability, and higher stability of non-homogeneous catalysts. Thus, SACs bridge the
gap between the two as a result [37–40]. Furthermore, advanced characterization strate-
gies, as well as density functional theory (DFT) simulations, provide significant ways to
comprehend the relationship between the atomic coordination environment and reaction
mechanisms, which benefits from the fact that the simple electronic and coordination struc-
tures of SACs make it straightforward to identify and accurately define their functional
components [41–43]. Moreover, recognizing the connection between the isolated active
atomic sites and catalytic properties enables us to better define metal atom types, coordina-
tion numbers, nearby coordination dopants, geometry shapes, and electronic structures,
and this can also substantially enhance the intrinsic comprehension of their activity and
selectivity [44,45].

Noticeably, as shown in Figure 1, the coordination environment is as crucial as the
metal center, which not only stabilizes the metal atoms but also determines the activity,
selectivity, and stability of SACs. In general, the electronic structure and/or oxidation state
of the metal center can be directly impacted by the first-shell atoms (direct coordination), in-
cluding the type, number, and axial chemical environment of the coordination atoms, while
the second- or higher-shell environment (indirect coordination) can somewhat influence the
CO2RR’s performance. The classical symmetric planar four-coordination structure (MN4:
M, metal atoms; N, nitrogen atom) is one of the common structures of the active centers
of carbon-based SACs for the CO2RR. However, there are restrictions to symmetric MN4
monoatomic sites in electrocatalytic reactions, i.e., the inappropriate adsorption strength
with intermediates might result in the symmetric coordination of N atoms with high elec-
tronegativity, which causes the whole reaction process to lag. This challenge, by modifying
the local coordination environment of the central metal atom, i.e., introducing the corre-
sponding asymmetric coordination structure, can be solved to some extent. For instance,
breaking the original M-N bond of MN4 can lead to a low-coordination site MNx (x ≤ 3)
with vacancy defects. Alternatively, by introducing heteroatoms to replace some of the
coordination N atoms of MN4, it becomes possible to construct MNxY with heteroatomic
coordination structure sites (Y is other coordination atoms such as O, S, Cl, F, etc.), and
the heteroatoms can also replace atoms on different coordination shells around the metal
center. In addition, when two isolated MN4 sites are close enough, they can transform into
neighboring metal atom sites M1M2Nx. These asymmetric atomic sites, by adjusting the
electronic structure of the catalyst to break the inappropriate adsorption strength between
the atomic active sites and the reaction intermediates, optimize the adsorption-desorption
process of reactants and products and further improve the electrocatalytic performance,
demonstrating how the local coordination environment has a significant impact on the
energy barriers and reaction paths [46–50].

So far, many impressive review papers have summarized the synthesis, characteri-
zation, and catalytic performance of SACs [51–53]. However, methods for breaking the
symmetry of metal-N4 sites, and the unique electronic structure and CO2RR catalytic behav-
ior of asymmetric atom sites, are rarely summarized [54,55]. In this review, we introduce
the influence of the asymmetric coordination structure on the intrinsic electrochemical
activity of SACs for the CO2RR, including low coordination, heteroatom coordination,
dual-metal sites, and the second coordination shell. In addition, the synthesis strategy of
asymmetric SACs, and the structure-function relationship between coordination structure
and CO2RR performance are highlighted (Figure 1). Finally, the challenges, opportuni-
ties, and future development directions of SACs for electrocatalytic energy conversion
technology are discussed.
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Figure 1. Model diagrams of symmetric and asymmetric atomic configurations. (The heteroatom
coordination (bottom) elements are reprinted with permission from ref. [56], copyright: (2019) Nature
Publishing Group; the organic-based support elements are reprinted with permission from ref. [57],
copyright: (2021) Nature Publishing Group; other elements are taken from Figures 2–7.)

2. Advantages of Asymmetrically Coordinated SACs

Initially, in 2015, Varela et al. reported that the carbon-based catalysts (Fe/Mn-N-C)
with doped N and Fe/Mn species demonstrated a higher CO selectivity of up to 80% at
−0.5 V vs. RHE, which is superior to polycrystalline Au electrodes [58] and other com-
parable metal-N-C materials (e.g., the Co protoporphyrin, Ni2+ on N-doped graphene,
Rh-porphyrin-like functionalized graphene, etc.) [59–61]. Then, the researchers identified
that FeN4 moieties were the primary active sites for the selective CO2 reduction into CO
with up to 80% FECO in an aqueous solution (Figure 2a,c) [62], whereas Fe nanoparti-
cles (NPs) mostly catalyzed hydrogen evolution [63]. Through using DFT calculations,
the CO2RR mechanism of Fe-N4-embedded N-doped graphene was further investigated,
finding that the CO2 molecules preferred to adsorb on the Fe catalytic site, while the neigh-
boring N atoms promoted the formation of COOH* and the release of CO*, thus improving
the conversion efficiency (Figure 2b) [62].
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Figure 2. (a) Normalized Fe K-edge X-ray adsorption near-edge structure (XANES) spectra of
0.5Fe/NG-750 catalyst. (b) Free energy diagram for electrochemical CO2 reduction to CO. (c) CO
Faradaic efficiency (FECO). Reprinted with permission from ref. [62]. Copyright: (2018) WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. (d) The Fourier transform extended X-ray absorption fine
structure (FT-EXAFS) fitting curve for Sn-NOC in R space. The calculated Gibbs free energy diagrams
for (e) CO2-to-CO conversion and for (f) CO2-to-HCOOH conversion. Reprinted with permission
from ref. [64]. Copyright: (2021) The Authors. Advanced Science published by Wiley-VCH GmbH.
(g) Atomic models of Cu-Fe-N6, Fe-N4, and Cu-N4 catalytic centers. (h) Free energy profiles for CO2

electroreduction reactions. (i) FECO of Fe-N-C, Cu-N-C, and Cu-Fe-N6-C. Reprinted with permission
from ref. [65]. Copyright: (2020) Wiley-VCH GmbH.

Furthermore, in a work on a N-doped porous carbon matrix including isolated FeNx
moieties with different N coordination numbers, it was revealed that when compared with
perfect FeN4 and the Fe-N3 atomic site, the low-coordinated FeN3V active center effectively
reduced the free energy barrier for promoting the formation of intermediates *COOH of rate
determination step, so that Fe1NC/S1-1000 with Fe-N3V atomic sites demonstrated a high
96% FECO [66]. In addition to controlling the N coordination number, heteroatoms exist in
different coordination shell locations or spatial orientations to alter the catalytic activity of
the atomic metal center. For instance, in contrast with the traditional Sn-N4 configuration,
which mostly produces HCOOH and H2 products, N-rich carbon catalysts made up of
atomically dispersed SnN3O1 active sites have CO as the main product (Figure 2d). Accord-
ing to DFT calculations, SnN3O1

′s atomic configuration lowers the activation energy barrier
for *COO and *COOH generation (4G = 1.37 eV) while significantly raising the energy bar-
rier for the production of *OCO (4G = 2.48 eV), which encourages the conversion of CO2
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to CO and inhibits the production of HCOOH, opening up a new route for the selectivity of
particular products (Figure 2e,f) [64]. Single atoms can also form metal-metal bonds with
other metals in order to build binary atom sites with the unique advantage of synergistic
effects. The resulting Fe/Cu-N-C catalysts exhibited excellent >95% FECO with a wide
potential range from −0.4 to −1.1 V vs. RHE (Figure 2g,i), which was primarily attributed
to the bifunctional active sites, i.e., the Cu site has a greater affinity for molecular CO2 (CO2
adsorption energy: Cu-Fe-N6-C, −0.03 eV; Fe-N-C, 0.43 eV; Cu-N-C, 0.61 eV), increasing
the CO2 concentration, while the Fe site inhibits hydrogen evolution (Figure 2h) [65,67].
In conclusion, through the modification of the MN4 coordination environment, including
the metal center, the coordination atom numbers, the coordination atom species, and the
position or spatial orientation of the coordination shell had a significant influence on the
microscopic properties and catalytic activity of the SACs. Based on a more detailed com-
parative evaluation, owing to the high electronegative N components in the local structure,
the symmetric MN4 moiety may lead to an inappropriate adsorption strength with the
intermediate and can slow down the entire reaction process, causing problems such as
low product selectivity and a high reaction overpotential. Meanwhile, the active site’s
electronic and geometric asymmetry can control the adsorption-desorption behavior of the
crucial reaction intermediates, which is beneficial in lowering the reaction energy barrier,
preventing the occurrence of side reactions, and accelerating the reaction rate, all of which
contribute to improved catalytic activity.

3. The Synthesis Strategies for Breaking MN4

There are two main routes to breaking the M-N bond of MN4. One is the carbonization
of precursors such as metal-organic frameworks (MOFs) and polymers with nitrogen-
containing specie ligands or other mixtures containing metal salt and nitrogen sources (such
as urea, melamine, dicyandiamide, N2, NH3, etc.), in which the coordination number can
be controlled by finely modulating temperature [68]. Another is the pre-construction of N-
doped graphene with abundant defects, vacancies, or edges, and subsequently introducing
metal sources that are immobilized in the pre-existing positions of graphene via pyrolytic
dispersion to produce low-coordinated metal atoms [69,70]. For instance, the weaker M-O
bond is broken in the M-NxOy hybrid coordination structure, followed by the removal of
the oxygen atom, producing an atomically scattered M-Nx catalyst [71]. In addition, M-N
bonds can also be broken by using sophisticated plasma treatments [72,73].

The introduction of coordinated heteroatoms beyond N can be achieved via the
following methods: (i) pre-storing in the precursor through coordination, impregnation,
encapsulation, grinding, or other physical mixing styles; (ii) using biomass precursors or
polymers rich in a variety of non-metallic elements (purslane, chitosan, cyanobacteria, etc.);
(iii) for materials with low boiling points, such as S, P, and I, one can diffuse onto the carbon
substrate via the sublimation effect during carbonization, coordinating with metals, or
replacing carbon atoms; and (iv) using reactants that contain certain heteroatoms, such as S
powder, thiourea, and sulfur salts for S, triphenylphosphine, NaH2PO2, and polypyrrole
for P, NH4I and I2 for I, HCl, NaCl, and KCl for Cl, borane and boronic acid for B, and
polytetrafluoroethylene for F [74–83].

The construction of homonuclear/heteronuclear bimetallic atoms is commonly achieved
via increasing the concentration or species of the metal salts, usually accompanied by
monometallic sites. For the fabrication of homonuclear sites, the increased metal amount
means raising the possibility of NPs [84]. Ligand-protected diatomic nodes can be designed
using MOF substrates acting as metal precursors [85]. Recently, an anion replacement
deposition-precipitation method was reported, in which water-soluble M2 precursors
become insoluble after anion replacement and were thus deposited onto a pre-prepared
carrier [86]. For heteronuclear sites, one method is to encapsulate two metal salts into
the pore channels of the MOF template [87], and another is to prepare a mixed precursor
containing a nitrogen source, carbon source, and double metallic source [88]. Preparing
high-quality bimetallic structures using atomic layer deposition (ALD) technologies, where
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the second metal can only be attached to the primary metal by modulating the deposition
conditions, has also been demonstrated to be effective [89].

4. The Characterization of Asymmetric Atom Sites

Currently, there are two main characterization tools for describing single atomic sites:
high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
and XAFS.

The resolution of HADDF-STEM images can reach up to 1 Å, allowing a fine distinction
between individual atoms [90]. For instance, Zhang et al. reported a conception in which
graphene defects capture Ni single atoms as active sites, as shown in Figure 3a, and
identified the presence of di-vacancy defects that trap an atomic Ni species (aNi@Di-
vacancy) [91]. Furthermore, Liu et al. synthesized an atomic dispersed cobalt-based
catalyst with a doped I species that has low-coordination CoN3 and IN3 sites (Co-I-N/G).
Through atomic-scale HAADF-STEM images (Figure 3b) and a Z-contrast analysis, two sets
of uniformly distributed bright spots with different intensities (marked by green and yellow
circles, respectively) were attributed to Co and I atoms, respectively [92]. For dual-atom
sites, Zhou et al. presented a bimetallic (Rh-Fe) interbond as an ideal chemical facilitator
(FR-NCS) that can facilitate the dispersion of Fe atoms. In Figure 3c, most of the Fe and
Rh are uniformly and atomically dispersed on the nitrogen-doped carbon hollow spheres
shell (highlighted by blue circles), and Fe-Rh “hetero-pair” atoms are found in Figure 3d,
demonstrating the formation of an Rh-Fe interband [93]. In short, it can be noted that the
STEM technique does not acquire accurate structural information about the atom species
and coordination number.

EXAFS can be used to calibrate the atomic species and obtain the neighboring atom
structure, and, thus, is an indispensable tool for investigating asymmetric coordination [94].
Sui et al. synthesized an effective CO2RR catalyst featuring Ag atoms coordinated with three
nitrogen atoms (Ag1-N3, Figure 3e). In the EXAFS spectra, a significant peak in the Ag-SACs’
EXAFS spectra at 1.5 Å is attributed to Ag-N scattering, but there is no Ag-Ag scattering at
2.6 Å, indicating an atomically dispersed Ag species (Figure 3f). In the EXAFS fitting curves
(Figure 3g,h), the Ag-N coordination numbers of Ag1-N3/PCNC and Ag1-N2/PCNC are fit-
ted from 3.1 to 1.9, respectively, demonstrating the formation of Ag1-N3 and Ag1-N2 coordi-
nation structures. The electrochemical test results showed the trend of the CO Faradaic effi-
ciency (FECO) sequence, Ag1-N3/PCNC > Ag1-N2/PCNC > Ag NPs/C > CFP, confirming
that Ag1-N3 was the best active site among them (Figure 3i) [95].
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permission from ref. [91]. Copyright: (2017) Elsevier Inc. (b) Atomic-scale HAADF-STEM image of
Co-I-N/G. Reprinted with permission from ref. [92]. Copyright: (2021) American Chemical Society.
(c) HAADF-STEM image of FR-NCS. (d) The zoomed-out blue rectangular area showing the existence
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fitting curves at R space. (i) FECO. Reprinted with permission from ref. [95]. Copyright: (2021)
American Chemical Society.

5. Asymmetric Atom Sites for CO2RR
5.1. Low-Coordination Structure

Eliminating part of the coordinated N atoms from the original symmetric MN4 results
in the corresponding defective sites, i.e., the low-coordinated MNx configuration. The
low-coordination sites of MNx (M = Fe, Co, Ni, Cu, Zn, Mn, Ag, etc.; x < 4) are mainly
constructed in two strategies: one is a one-step method to obtain the desired coordination
numbers, and the other is breaking the original metal-coordination bond.
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In abundant atomically dispersed based metal-nitrogen co-decorated carbon (M-NC)
materials, some transition metals, i.e., Fe, Co, Ni, and Cu, can facilitate charge transfer to
account for their unfilled 3d orbitals. Wang et al. reported the gas diffusion of ferrocene and
thermal activation (800–1000 ◦C) to successfully fabricate isolated Fe atoms loaded on N-
doped porous carbon polyhedrons (Figure 4a) with different N coordination numbers (FeN4,
FeN3). According to DFT calculations and experimental measurements, the Fe-N3V active
centers have most balanced free energy barriers of intermediates, CO2 to *COOH (0.47 eV),
*COOH to *CO (0.15 eV), and *CO to CO (0.14 eV), strengthening its CO2RR performance.
At the same applied potential of −0.5 V vs. RHE, the FECO of Fe1NC/S1-1000, Fe1NC/S1-
900, and Fe1NC/S1-800 are 96%, 90%, and 82%, respectively (Figure 4b,c) [66]. Similarly,
three atomically dispersed Co catalysts (800 ◦C, Co-N4; 900 ◦C, Co-N3; and 1000 ◦C, Co-N2)
can be selectively synthesized by adopting various pyrolysis temperatures of bimetallic
Co/Zn ZIFs. The Co-N2 could acquire a better selectivity and activity compared with
other Co-Nx, which demonstrated that the inert reactive sites could also be activated by
adjusting the coordination environment (Figure 4d,e) [96]. Rong et al. adopted the other
strategy that differs from those mentioned above to construct a vacancy-defect Ni site.
The single-atom Ni-N3O mixed-coordination precursors were first synthesized at 500 ◦C
and then heated to 800 ◦C, where the oxygen atoms could be subsequently eliminated
on account of the weaker Ni-O interactions, leading to atomically dispersed Ni-N3-V
catalysts (Figure 4f). It was discovered that the electrocatalytic activity of the CO2RR
can be significantly enhanced after the introduction of vacancy defects in Ni-N3-V SACs,
compared with the difficulty of the NiN3 site to release CO (4G = 1.264 eV), and this
is mainly attributed to Ni-N3-V’s optimized and moderate CO2 to COOH* reaction free
energy (4G = 0.680 eV) (Figure 4g) [71]. Calculations further disclose that the active
site is the particular defect-Ni-N3 structure [97]. Moreover, the Ni-pyridinic N2V2 is
quickly generated as a result of the high-energy plasma’s constant collision and presents a
more advantageous comprehensive performance than other Ni-pyridinic NxC3−x species,
resulting in a higher CO2RR efficiency and worse HER activity (Figure 4h,i) [72]. Lin et al.
found that the FECO of both the NiN2 site and FeN4 site is proportional to the reaction
temperature, but that the NiN2 site is more effective, which stems from the variation in the
adsorption strength of the key intermediates between the two [98]. Cu-based nanocatalysts
are frequently utilized for the construction of a wide range of C1+ and C2+ products [99].
The work of Guan et al. showed the significance of the distance between isolated atomic
copper sites for the electroreduction of CO2 to various hydrocarbons (Figure 4j). DFT
calculations indicate that high 4.9%mol Cu concentrations with adjacent Cu-N2 sites are
more advantageous for the formation of C2H4 due to the reduced free energy of the C-C
coupling, while all isolated Cu-N4, neighboring Cu-N4, and isolated Cu-N2 sites tend to
generate C1 products when the concentration of Cu is less than 2.4%mol [100].

To date, Zn-NC has received less attention compared with other transition metals (Fe,
Co, Ni, and Cu), and it is generally believed that when the 3d10 orbital is fully occupied,
it can significantly impair electron transport and lower the electrocatalytic activity of Zn.
Li et al. reported a N-anchored low-valence Zn single-atom catalyst that contains saturated
four-coordinate (ZnN4) and unsaturated (Zn-N3) active sites. The unsaturated Zn-N3
could dramatically reduce the energy barrier by stabilizing the COOH* intermediate, thus
allowing simultaneous large current densities of up to 1 A cm−2 and high CO selectivity
of up to 95% using flow cell devices (Figure 4k) [68]. Compared with the poor selectivity
and activity (65% FECO, 3.3 mA cm−2 of jCO) of Mn-N4 [58], the Mn-N3 center in Mn-
C3N4/CNT can attain an excellent CO2RR performance (98.8% FECO, 14.0 mA cm−2 of
jCO). In situ X-ray absorption spectra and DFT calculations reveal that the Mn-N3 site can
lower the free energy barrier for the production of the crucial intermediate COOH*, which
is responsible for high catalytic performance (Figure 4l) [101]. Additionally, altering the
coordinate environment of the Ag atoms can boost their activity. It was shown that the
Ag1-N3 site performed better than Ag1-N2 and Ag NPs, owing to its lower CO binding
energy [95].
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Nature Publishing Group.

The investigation of the above works reveals that the reduced oxidation state of the
monoatomic metal center with low coordination numbers makes it easier to adsorb reactant
molecules, and optimize the adsorption strength of intermediates, especially COOH* in
the CO product process. In addition, we also speculate that the extra space caused by
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low coordination also facilitates a more flexible matching between reactant molecules and
active sites.

5.2. Lateral Heteroatom Coordination Structure

The doping of non-metallic atoms in carbon supports is an efficient and flexible
technique for improving the overall performance of SACs, such as through the introduction
of heteroatoms to replace the coordinated N atoms in the symmetrical planar MN4 sites to
form a lateral heteroatom coordination structure. The laterally coordinated non-metallic
heteroatoms, such as C, N, S, O, B, P, F, etc., could modulate the coordination environment
of the atomic metal active center through direct coordination (first coordination shell) and
indirect coordination (second or higher coordination shell), thereby achieving the goal of
optimizing the reaction path.

In 2017, Zhao et al. reported ZIF-8-derived NiN3C1 single atomic catalysts for the
efficient electroreduction of CO2. The positive correlation between HCO3− concentration
and the efficiency of CO2 electroreduction was disclosed (Figure 5a), which mainly ben-
efits from the dual roles of HCO3− (the proton donor in the reaction solution, the ideal
equilibrium carrier for CO2) [102]. Gong et al. used non-nitrogenous MOFs, bimetallic
MgNi-MOF-74 with extra pyrrole (Py) N sources, to construct a series of NiSA-Nx-C (x = 2,
3, 4) at various carbonation temperatures (Figure 5b), wherein the NiSA-N2-C could easily
facilitate the formation of the COOH* intermediate and therefore result in its remarkable
activity (Figure 5c) [103]. Yang et al. also observed that the N coordination number dropped
from 4 to 1, while the C coordination number grew throughout the construction process
of the Ni@NxCy catalysts when the temperature was raised from 800 to 1100 ◦C [104]. Of
note is the charge capacity of the site for facilitating the electrochemical steps as well as
hydrogen bonding to the intermediate for stabilizing the intermediates, which were often
ignored in previous DFT calculations and are indispensable [105]. To lower the production
investment of single-atom catalysts, Zu et al. synthesized kilogram-scale Snδ+ on N-doped
graphene (SnN2C2) using a rapid freeze-vacuum drying-calcination procedure, and its
electroreduction activity basically remained inactive even after 200 h (Figure 5d) [106].
Sulfur and oxygen atoms have been viewed as ideal alternatives for coordinated N in the
metal-Nx center because of their lower electronegativity than N, having the ability to dra-
matically change the active center’s local electronic densities [107]. Wang et al. developed
an atomically dispersed N, S co-coordinated Bi site catalyst (Bi-N3S/C) shown in Figure 5e,
which achieved up to 98.3% FECO at −0.8 V vs. RHE, which is significantly better than
Bi-SAs-N/C, and this demonstrated that the introduction of S can greatly lower the energy
barrier of the intermediates of the rate-determining step [108]. Sometimes, other strategies
are employed in cooperation with heteroatomic coordination to increase a catalyst’s activity.
In a S/N dual-heteroatom anchored unsaturated Ni site (NiN2S-V), the decreased energy
barriers for the electroreduction of CO2 to CO are a result of both doped S atoms and
evolved S vacancies [109]. As shown in Figure 5f, this synergistic interaction was also
verified by Chen et al. via developing a tandem catalyst consisting of a single Cu site with N
and S co-coordinated and atomically dispersed Cu clusters (Cu-S1N3/Cux) [110]. Guo et al.
demonstrated the difference between prepared SnN3O1 (CO product) and a classic SnN4
(HCOOH product) configuration for CO2-to-CO conversion [64]. Meanwhile, Sn-C2O2F
catalysts with distinctive non-nitrogen coordination structures also support the opinion
just mentioned according to the selectivity of CO2RR products [83]. In addition, the smaller
radii of the electron-deficient B make it vulnerable to coordinate with the electron-rich
N via electron-sharing effects, such as with the B-doping in B/N co-coordinated atomic
Fe-based catalyst (Fe-N3B) that also facilitated *COOH formation and inhibited hydrogen
generation [82]. Indirectly coordinated heteroatoms (secondary or higher coordination
shells) can also induce local electric fields and change the catalytic behavior of the catalytic
center. Chen et al. reported S doping in the second coordination shell of FeN4 (FeN4S),
shown in Figure 5g, and Gu et al. finished the B bridging atomic coordination of NiN4
(NiN4B2) shown in Figure 5h, both inducing an enhanced CO2RR performance relative to
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pristine FeN4 as well as NiN4, respectively [111,112]. P, in the N group, as a classic electron
donor, through integrating into carbon substrates, can alter the electronic structure of the
metal site via its 3p lone pair electrons. In Sun et al.’s work on Fe-SAC/NPC (FeN4O1-P),
by fitting FT-EXAFS spectra in R space, each Fe atom was separated by four Ns and one
O, while a single P in high-coordination shells (n ≥ 3) was merged mainly as P-C bonds
into the N-doped carbon (Figure 5i), and the P of the third coordination shell enhanced
the stability of the key *COOH intermediate on Fe, resulting in an outstanding CO2RR
performance at a low applied potential [113].
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Figure 5. (a) Proposed reaction paths of Ni SAs/N-C for CO2RR. Reprinted with permission from
ref. [102]. Copyright: (2017) American Chemical Society. (b) Schematic of preparation of the NiSA-
Nx-C catalysts. (c) FECO. Reprinted with permission from ref. [103]. Copyright: (2019) Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim. (d) Chronoamperometry test of single-atom Snδ+ on N-
doped graphene at the potentials of −1.6 V versus SCE. Reprinted with permission from ref. [106].
Copyright: (2019) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) The EXAFS fitting for
Bi-SAs-NS/C. Reprinted with permission from ref. [108]. Copyright: (2021) Tsinghua University
Press and Springer-Verlag GmbH Germany, part of Springer Nature. (f) Schematic of Cu-S1N3/Cu
for CO2RR. Reprinted with permission from ref. [110]. Copyright: (2021) Wiley-VCH GmbH. (g) The
fitting EXAFS spectra of Fe1-NSC and fitting model. Reprinted with permission from ref. [111].
Copyright: (2022) Wiley-VCH GmbH. (h) The FT-EXAFS spectrum for Ni-SAs@BNC. Reprinted
with permission from ref. [112]. Copyright: (2022) Elsevier Ltd. (i) Different local structures of
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Copyright: (2021) Wiley-VCH GmbH.

In short, heteroatom coordination has a greater influence on CO2RR conversion com-
pared with lower coordination strategies and can even completely change the obtained
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product, e.g., SnN4, a classical formic-acid-producing catalyst, transforms into CO after
the introduction of a coordinated O or F. Further enhancement of the understanding of the
mechanism of heteroatom action can expand the choice of products.

5.3. Axial Heteroatom Coordination Structure

Heteroatoms in the conductive carbon supports can function as bridges to axially
couple to MN4 sites, while isolated heteroatoms can also build axial coordination patterns
in the form of unsaturated coordination (dangling atoms). The various heteroatoms can
directly coordinate with the single atomic M center in the symmetric MN4 to construct an
asymmetric axial coordination structure of MN4X1 (X = N, O, S, Cl, F), which is essentially
identical to the function of the lateral structural configuration, i.e., to obtain a more suitable
electron structure and performance than pristine MN4.

Zhang et al. designed a graphene-confined atomic dispersed FeN5 catalytic site in
Figure 6a–c, in which the electron density of the Fe 3d orbitals is further consumed through
axial pyrrolic N, thus weakening the Fe-CO π back donation, resulting in a fast desorption
toward CO and high selectivity (only at −0.46V vs. RHE, up to ~5 mA cm−2, FECO ca.
97.0%) [114]. After the substitution of axial N by O, the corresponding catalytic activity
of the obtained Fe1N4O1 was further strengthened (−0.56 V to −0.87 V vs. RHE, up
to ~15 mA cm−2, FECO nearly 100%), as shown in Figure 6d–f [115]. Simultaneously,
similar satisfactory results were also achieved for NiN4O (−0.5 V to −1.1V vs. RHE, up
to ~30 mA cm−2, FECO above 90%), which could be responsible for the axial traction
effect with an additional axial oxygen atom in Figure 6g–i [116]. Additionally, the one-pot
template sacrificial pyrolysis method used by Huang et al. promises the development of
a series of metal-N4-O catalysts, such as well-defined Ni-N4-O, for a variety of catalytic
applications [117]. Aiming to attain the targets of high selectivity, high current density, and
long-term stability, Wu et al. designed and prepared a CdN4S1/CN catalyst that is effective
for the electrochemical reduction of CO2 to CO (−2.1 V to −2.7 V vs. Ag/Ag+, FECO more
than 95%) in H-type cells with [Bmim]PF6-MeCN cathodic electrolytes and also reaches
an outstanding current density of 182.2 mA cm−2, which is majorly owing to the reason
that Cd can inhibit HER as well as S with a high spin density and charge delocalization can
lower the key free energy barrier. Thus, the CdN4S1 site has a lower free energy barrier for
the CO2RR (0.27 eV) and higher free energy barriers for the formation of H* for the HER
(0.49 eV) (Figure 6j–l) [118]. Furthermore, Huang et al. designed a new Ni-N5-C single-atom
catalyst with an enzyme-like catalytic active site and then evaluated its performance using
a flow cell device, achieving a maximum current density of 1.23 A cm−2 at −2.4 V vs.
RHE with a 99.6% FECO and 100 h continuous stable operation [119]. In addition, in some
reported works, Cl and F are also used as axial coordination atoms of MN4 to improve
the electroreduction properties of CO2, such as FeN4Cl/NC and MnN4Cl, and, although
both of them can achieve a high selectivity of >90%, they are limited to a narrow lower
potential window [56,78]. In another specialized configuration catalyst of SnC2O2F, the F
atom bonded to Sn has a significant capability to inhibit hydrogen evolution [83].

By summarizing the above-mentioned works, it can be found that the activity of the
CO2RR is gradually enhanced by modifying the axial coordination atoms or optimizing the
choice of metal centers, and the axial coordination atoms seem to be more advantageous
in inhibiting hydrogen precipitation. Importantly, the choice of electrolyte, such as ionic
liquids, also has a significant effect on the improvement of CO2RR yield.

5.4. Dual-Metal Coordination Structure

Bimetallic atomic sites, i.e., neighboring monoatomic sites, provide more opportunities
for the manipulation of the electrical and geometric structures of SACs on the basis of
preserving atomic dispersion. Differing from SACs, bimetallic heteroatomic site catalysts,
mainly including M1N4-M2N4, M1M1Nx, M1M2Nx, etc., utilize two adjacent metal atoms
to achieve a functional association and synergistic effect and, furthermore, through the elec-
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tronic interactions between them, to efficiently tailor the binding strength of intermediates
as well as optimize CO2RR activity.
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(2021) Wiley-VCH GmbH.



Nanomaterials 2023, 13, 309 14 of 28

Xie et al. synthesized a neighboring bi-metal atom catalyst (NiN4-SnN4) with each
Ni and S coordinated with four Ns (Figure 7a). The neighboring Ni redistributes the
electrons of Sn and results in the reduced free energy barrier of *OCHO and subsequent
thermodynamically spontaneous determining step, and by taking double advantage of
the synergistic effect of the NiSn diatomic site and the increased utilization, exhibits
excellent selectivity for the generation of formate (86.1% at −0.82 VRHE) compared with
Sn-SAC (70.4% at −0.82 VRHE) as well as Ni-SAC (<1 %), as shown in Figure 7b [120].
Hao et al. designed a non-bridged Ni dual-atom catalyst (Ni2N6) with a local structure
of N3-Ni-Ni-N3 for CO2 to CO (Figure 7c), and in situ environmental STEM captured the
Ostwald ripening process of the Ni species generating the bulk phase and the subsequent
atomization dynamics process of the transformation into Ni diatomic sites (Figure 7d). The
actual active sites for the fast CO2RR kinetics and the slower HER kinetics are Ni diatomic
sites (Ni2N6OH) induced via hydroxyl adsorption, according to in situ XAFS studies and
theory calculations (Figure 7e). [84] In addition, there is a similar active site on the O-bridge
adsorption structure (O-Ni2N6) of the 2N-bridged Ni2N6 site for the dynamic catalysis of
CO2 [85]. Moreover, several other homoatomic binuclear site catalysts with the special
local environment and a non-bridged Ni2N4C2 and Pd2 dual-atom site with a PdN2O2
coordination structure have shown superior, nearly 100% CO selectivity [86,121].
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Nanomaterials 2023, 13, 309 15 of 28

charges (∆q) and Gibbs free energy/Helmholtz free energy for *COOH formation on different sites.
Reprinted with permission from ref. [84]. Copyright: (2022) Nature Publishing Group. (f) Atomic
structure of different dual-metal sites on graphene layer. Reprinted with permission from ref. [122].
Copyright: (2022) Wiley-VCH GmbH. (g) Partial density of states (pDOS) of Ni in NiN4 and NiCuN6.
Reprinted with permission from ref. [123]. Copyright: (2022) American Chemical Society. (h) Climb-
ing image nudged elastic band (CI-NEB) calculated kinetic reaction processes. Reprinted with
permission from ref. [124]. Copyright: (2022) Wiley-VCH GmbH.

To date, some works about the neighboring heterometal M1M2Nx sites (M1/M2: Fe, Co,
Ni, Cu, Zn, etc.) catalysts have been published. Li et al. designed several possible bimetallic
site configurations with DFT computational simulations, i.e., non-bridged (Fe-Ni)N6, 2N-
bridged (Fe-Ni)N6, and 1N-bridged (Fe-Ni)N7 sites (Figure 7f). The optimal CO2RR activity
and selectivity were identified to be at the 2N-bridged (Fe-Ni)N6 sites, which can account
for these two metal sites’ synergistic interaction that could simultaneously promote the
adsorption of *COOH and the desorption of *CO while inhibiting the HER [122]. More
in-depth insights can be provided through an electronic structure analysis: in the NiFe
heteroatom sites, Fe acts as the catalytic center with a higher oxidation state resulting
from its orbital coupling with Ni, which facilitates CO2 activation and does not change the
binding strength to *COOH but the weakened binding strength with *CO intermediates,
and accelerates CO desorption, thus increasing the catalytic CO2RR activity [125]. Jiao
et al. concluded that in non-bonding Fe1-Ni1-N-C, the Fe atomic site can also be highly
activated by the adjacent single-atom Ni through non-bonding interactions between them
to act as the active center [126]. Meanwhile, Ren et al. believe that the key to the CO2RR
is the collaborative coordination of CO at non-bridged diatomic NiFeN6 sites fixed on
nitrogenated carbon [127].

Furthermore, two types of (Cu-Ni)N6 for non-bridged Ni/Cu-N-C (Figure 7g) and
2N-bridged CuNi-DSA/CNF (inset of Figure 7h) have been reported: for non-bridged
Ni/Cu-N-C, the introduction of the secondary Cu metal accelerates the rate-determining
step of *COOH formation by transferring the Ni 3d orbital energy to the Fermi energy
level; for 2N-bridged CuNi-DSA/CNF, electronegativity shifts between Cu and Ni, causing
strong electronic interactions and the offset effect, which can efficiently optimize the
adsorption strength of *COOH intermediates. The activation energy of *COOH creation on
CuN4-NiN4 is 0.08 eV, as shown in Figure 7h, which is much lower than that on CuN4 and
NiN4 (0.58 eV and 0.48 eV), proving that the CuNi dual-atom sites do actually facilitate the
kinetic process of *COOH production [123,124,128]. In addition, co-constructed M1M2Nx
composed of other metals, e.g., the ZIF-8 containing Fe/Cu sources derived a Cu-Fe
diatomic site catalyst that coordinated with the N and was doped in the carbon matrix
(non-bridged (Cu-Fe)N6) [65,67]; direct pyrolysis of a combination of carbon black, metal
salt, and a urea nitrogen source yielded a Co-Cu diatomic site catalyst (2N-bridged (Co-
Cu)N6) [129]; a mixture of chitosan and Ni/Zn metal salts derived atomically dispersed
Ni-Zn bimetal sites coordinated on N-doped carbon (non-bridged (Ni-Zn)N6) [130]; and
a precursor containing Zn/Co nitrate, urea, and activated carbon black derived diatomic
Zn-Co monomers supported on nitrogen-doped carbon (2N-bridged (Zn-Co)N6) [131],
have also shown better CO2 electroreduction performances.

The analysis of the above different strategies for improving the CO2RR reveals that
each strategy has its own unique advantages, and the combined use of these strategies may
achieve unexpected results. It is important to note that the final evaluation index of almost
all the strategies focuses on the pair energy barrier and adsorption energy changes due to
electronic interactions but ignores factors such as hydrogen bonding, solvation effects, and
spatial structure that are often simplified or ignored in theoretical analyses. In addition,
mesoscopic factors, such as the modulation of the solid-liquid-gas interface, should also be
taken into account.
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5.5. Asymmetric Atom Sites of Organic/Metal-Based Supports for CO2RR

Except for carbon-based ones, organic/metal-based supports are also capable of
loading the above-mentioned asymmetric coordination atom sites. Organic crystalline
materials, including MOFs, covalent organic frameworks (COFs), metal-organic complexes,
etc., have explicit structures and tuned metal sites while retaining a major problem of poor
electrical conductivity that cannot be ignored.

To overcome the conductivity of a crystallite, one strategy is to enhance conductivity
with itself, e.g., conductive MOFs with conjugated organic ligands, and the other is to
integrate it with other better conductive materials. Zhang et al. provided coordination-
environment-dependent single-site-Cu-O4 conductive MOFs (Cu-DBC), and, by comparing
the Cu-N4 sites of two other COFs (Cu-TTCOF and Cu-PPCOF), it can be found that the
Cu-O4 site with lower free energy barrier has better CO2 to CH4 activity (Faradaic efficiency
of CH4 up to ~80% at −0.9 V vs. RHE) than the CuN4 sites (Figure 8a) [57]. Another con-
ductive COF (PcCu-TFPN) with a high electron density and isolated phthalocyanine CuN4
sites is more appropriate for the critical step of the C-C coupling of *CH3 intermediates
with CO2 to generate acetates (Faradaic efficiency of 90.3(2)% at −0.8 V vs. RHE), as shown
in Figure 8b [132]. To more precisely elucidate the essential contribution of C-C coupling
to the CO2 deep reduction of C2+ products, Shao et al. designed two MOFs with various
nodes, and, compared with BIF-104 with isolated Cu sites as a reference, BIF-102 for the Cl-

bridging of a dimer Cu unit can provide a higher C2H4 Faraday efficiency as high as ~11.3%,
while the adjacent Cu atom acts as a modulator, changing the reaction barrier, promoting
C-C coupling, and providing a reaction pathway for generating C2+ products that differ
from isolated monomers, which shows that there exists a close correlation between the
active-centered coordination structure and CO2RR selectivity (Figure 8c) [133]. Zhu et al.
hold a comparable view that in robust π–π stacking MOFs (CuBtz) with pyrazolate-bridged
dicopper(I) sites, the uncoordinated N atoms act as proton relays and co-catalyze with
neighboring Cu sites to promote *CO hydrogenation and the C-C coupling for the highly
selective electroreduction of CO2 to C2+ products (Figure 8d) [134]. Instead, Lin et al.
anchored cobalt phthalocyanine with CoN4 sites (CoPc) in the FeN4 sites of graphene
(Fe-N-C) for synergistic catalytic CO2 electroreduction, and the received CoPc@Fe-N-C
showed a broader potential window and larger CO current density beyond Fe-N-C [135].
Pan et al. used pre-prepared hollow carbon spheres as supports to successfully construct
CoN5 asymmetric sites through the coordination of Co in CoPC and N-doped carbon
spheres (Figure 8e), obtaining a high selectivity of FECO of over 90% for the CO2RR across a
broad potential range, from−0.57 V to−0.88 V vs. RHE (Figure 8f) [136]. A similar strategy
was successfully employed by Wang et al. to immobilize planar CoII-2,3-naphthalocyanine
(NapCo) on graphitic sulfoxide (SO) or carboxyl (COO)-doped graphene (NapCo@graphitic
SO; NapCo@COO), i.e., where axial coordination between CoN4 in NapCo and O from
SO or COO occurred (Figure 8g). As a result, there was good electronic communication
between NapCo and graphene in NapCo@graphitic SO compared with NapCo@COO,
resulting in a high Faraday efficiency of 97% for CO production, yet no activity for CO2
electroreduction was found for the CoN4 site of pristine NapCo without graphene [137].
In metal-based supports, Jiao et al. reported Cu1

0-Cu1
x+ pairs stabilized on the Te surface

imperfections of Pd10Te3 alloy nanowires, and, with Cu1
x+ and Cu1

0 separately correspond-
ing to the adsorption of molecular H2O and CO2, with an almost completely suppressed
HER, this named bi-atomic activating bimolecular effect facilitates the evolution of CO2 to
CO (Figure 8h) [138].

Unlike carbon-based supports, there are still relatively few hetero-coordination atoms
loaded on organic/metal-based supports, and the key is to fundamentally address organic
substrates’ conductivity, stability, and lessened selectivity, as well as metallic carriers’
undesirable competitive HER, but satisfactory CO2RR data have still been found from the
limited reports, which inspires the majority of researchers to continue exploring this vast
uncharted territory.
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Figure 8. (a) Faradaic efficiencies of CH4 for crystalline single-site Cu electrocatalysts. Reprinted with
permission from ref. [57]. Copyright: (2021) Nature Publishing Group. (b) Faradaic efficiencies of dif-
ferent CO2RR products for PcCu-TFPN. Reprinted with permission from ref. [132]. Copyright: (2022)
Wiley-VCH GmbH. (c) The possible preferential reaction pathways of BIF-102NSs and BIF-104NSs.
Reprinted with permission from ref. [133]. Copyright: (2021) Wiley-VCH GmbH. (d) The possible
reaction process of C2+ products for CuBtz. Reprinted with permission from ref. [134]. Copyright:
(2022) American Chemical Society. (e) Schematic illustration of Co-N5/HNPCSs. (f) FECO. Reprinted
with permission from ref. [136]. Copyright: (2018) American Chemical Society. (g) Heterogenization
of NapCo onto doped-graphene through p-p stacking and coordination with heteroatoms. Reprinted
with permission from ref. [137]. Copyright: (2019) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(h) Schematic illustration of Cu atom pair anchored on Pd10Te3 nanowires. Reprinted with permission
from ref. [138]. Copyright: (2019) Nature Publishing Group.

6. Summary and Outlook

For over a decade, significant advancements have been accomplished in the structural
design and fundamental electrocatalytic investigation of SACs as next-generation catalysts
with a maximum of nearly 100% atomic utilization [139–141]. However, for the CO2RR, the
simplicity of the conventional MN4 structure severely restricts the substantial improvement
of its electrocatalytic activity. It is commonly accepted that the SACs’ coordination struc-
tures determine the electronic structures and thus affect the intrinsic electrocatalytic activity.
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It follows that the local/expanded coordination environment of active single atoms in SACs
has a combined effect on the stability, catalytic performance, and utilization of the loaded
materials [142,143]. As shown in Table 1, asymmetric atom sites, which have recently
gained popularity among a wide range of researchers, can provide flexible structures with
customizable atomic configuration, local/expanded coordination, and electronic architec-
ture without damaging this principle of high atomic utilization, thereby breaking such
innate limitations of MN4. Therefore, efforts have been made in recent years to develop
more advanced asymmetric atom electrocatalysts for the CO2RR compared with SACs.

Table 1. The comparison of CO2RR performances of the SACs with different active sites.

Catalyst Active Site Electrolyte Product, FE (%) Current Density
(mA cm−2) (E vs. RHE) Ref.

Fe1NC/S1–800 FeN4 0.5 M KHCO3 CO, 82 ~2.9 (−0.5 V) [66]
NiN4 NiN4 0.5 M KHCO3 CO, ~80 ~15 (−0.9 V) [71]

Fe1NC/S1–1000 FeN3 0.5 M KHCO3 CO, 96 6.4 (−0.5 V) [66]
NiN3V NiN3 0.5 M KHCO3 CO, >90 ~60 (−0.9 V) [71]

Mn–C3N4/CNT MnN3 0.5 M KHCO3 CO, 98.8 14 (−0.55 V) [101]
Ni SAs/N-C NiN3C1 0.5 M KHCO3 CO, 71.9 10.48 (−1.0 V) [102]
NiSA-N2-C NiN2C2 0.5 M KHCO3 CO, ~100 ~12 (−0.8 V) [103]

Single-atom Snδ+ on N-doped
graphene

SnN2C2 0.25 M KHCO3 Formate, 74.3 11.7 (−1.6 VSCE) [106]

Sn-NOC SnN3O1 0.1 M KHCO3 CO, 94 13.9 (−0.7 V) [64]
Bi-SAs-NS/C BiN3S1 0.5 M KHCO3 CO, 98.3 ~10 (−0.8 V) [108]

FeN5 FeN4N1 0.1 M KHCO3 CO, 97 ~5 (−0.46 V) [114]
Fe-CON400–400 FeN4O1 0.1 M KHCO3 CO, ~100 ~15 (−0.56~−0.87 V) [115]

Ni-N4-O/C NiN4O1 0.5 M KHCO3 CO, >90 ~30 (−0.5~−0.1.1 V) [116]
NiSn-APC NiN4-SnN4 0.5 M KHCO3 Formate, 86.1 ~22 (−0.82 V) [120]

ZIF-NC-Ni-Fe 2N-bridged FeNiN6 0.1 M KHCO3 CO, >93 ~22 (−0.3~−1.0) [122]
Ni/Cu-N-C Non-bridged NiCuN6 0.5 M KHCO3 CO, 97.7 ~13.7 (−0.6 V) [123]

Furthermore, the attention on the CO2RR has extended to the catalytic environment,
as the catalytic activity can be modulated by altering the structural parameters of the
catalyst (solid)-electrolyte (liquid)-molecular reactant (gas) three-phase interface [144–146].
Some advances have been realized in these interfacial modulation studies, wherein it
was discovered that controlling the proton supply or CO2 supply can effectively inhibit
the HER [147,148], electrodes with improved interfacial structures significantly improve
selectivity and partial current density at relatively low overpotentials in H-type electrolytic
cells [149,150], and membrane reactors and microfluidic reactors (flow cells) can achieve
higher current densities [151,152]. Modification of the catalyst-electrolyte interface region
also includes the addition of external molecules (or polymers), changes in electrolyte
composition and concentration, the design of novel reactor and electrode structures, and a
combination of these approaches, and these modification strategies can significantly affect
the intrinsic and extrinsic catalytic activity of the catalyst. Furthermore, the design of syngas
(H2 and CO) catalysts can also give us some guidance, especially by regulating the relative
content of different active center species, to achieve the selectivity of H2 and CO, which
can be used to determine the differences in various activities of metal sites for the CO2RR
and HER and to obtain general design principles [153,154]. Moreover, some predictions
about CO2RR electrocatalysts from theoretical calculations also provide guidance for the
development of new catalysts, which have previously received less attention, for example,
Rh@Au(100) and Rh@Ag(100), which may produce CH4 [155], and the Cu2N4-loaded C2N
layer, which can form CH4 and C2H4 [156], are expected to perform well.

Recent studies on asymmetric atom sites in the electrocatalysis of the CO2RR were
reviewed in this paper, with importance placed on the comparison of asymmetric atom sites
and traditional SACs for the CO2RR, including an examination of the crucial role that coor-
dination structures play in the intrinsic electrocatalytic activity of supports-loaded SACs,
including local coordination (metal atom center and first coordination shell) and extended
coordination (second and higher coordination shell), as well as the resulting alternation
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in the adsorption parameters, the decrease in the energy barrier of rate-determining step,
and the optimization of the reaction pathway. It can be straightforwardly found that asym-
metric atom sites have significant advantages in improving the electrocatalytic properties
when performing the CO2RR over symmetrical atomic catalysts, including catalytic activity,
Faraday efficiency, selectivity, stability, etc. It is worth noting that, for the CO2RR, this is a
universal rule, but some prominent properties of the symmetric coordination should not be
neglected, and thus it is concluded that asymmetric atom catalysts are expected to break
the theoretical boundary of SACs [157,158]. Furthermore, we proposed the current urgent
challenges to be solved and future expected directions in the field of asymmetric atom sites.

The accurate management of single atoms’ desired coordination environments on the
supports remains a major challenge. After the coordination environment is optimized, the
corresponding active monoatom is securely trapped in the surface anchor site via the charge
transfer effect, interaction absorption, etc., which could successfully avoid the metal atom
movement and agglomeration caused by high surface energy during the construction pro-
cedure and reaction system, impairing its catalytic efficacy [159–161]. Currently, SACs with
outstanding performance have been successfully established using some reported synthetic
approaches, including wet chemistry, ALD deposition, and high-temperature pyrolysis.
However, metal nanoclusters or even NPs are occasionally doped into the resultant SACs.
The conventional wet impregnation methods are easy to implement, low-cost, and have
a scalable production, but obtaining highly loaded and precisely regulated single-atom
coordinated sites is challenging [162–164]. The popular high-temperature pyrolysis method
generally involves the high-temperature calcination of a pre-designed precursor, but it
often has unpredictable and ill-defined multiple coordination structures simultaneously
due to the influence of the pyrolysis temperature, heating rate, inert atmosphere, and other
factors [165–167]. The ALD method, which has the advantage of high-precision control
procedures, also has the non-negligible disadvantages of complex synthesis steps, a handful
of substrate selection, high investment, and low productivity [168–170]. Not negligibly, a
suitable choice of supports species will influence the vacancies and defects on the surface to
be better utilized for stabilizing isolated metal atoms. Carbon-based materials have become
the main choice of carriers for SACs due to the easy introduction of O, S, and N elements,
but a major drawback is the instability of carbon-based materials at high temperatures
and high oxygen concentrations [171–174]. Correspondingly, the field of supports should
be expanded, such as organic crystallization, metals, and derived oxides and nitrides,
as well as the selection of the best preparation techniques. Practically speaking, further
breakthroughs in the field of SACs lie in the updating of low-cost, easily scalable, and
environmentally friendly preparation methods [175–180].

Accurate identification of the coordination environment is essential for the develop-
ment of SACs. STEM techniques allow direct viewing of individual metal atoms to obtain
relatively well-defined coordination structures, but the low Z-contrast of the first/second
coordination shell (e.g., C, N, S, etc.) causes considerable trouble in mapping the spatial
positions of the near-end light atoms. In addition, XAFS characterization can directly distin-
guish between metal NPs and atomically dispersed atoms, but the acquired coordination
structure is generally an averaged result [178–185]. Currently, a combination of characteri-
zation techniques, such as electron energy loss spectroscopy (EDS), X-ray photoelectron
spectroscopy (XPS), scanning tunneling microscopy (STM), non-contact atomic force mi-
croscopy (AFM), and DFT theoretical modeling, is required to obtain a relatively reliable
local structure determination [181–189]. With the emergence of various in situ/operando
characterization techniques in recent years, it has become feasible to directly monitor cat-
alytic reaction processes, which would be extremely potent if applied in conjunction with
advanced theoretical modeling. For example, the conversion of dispersed metal atoms into
clusters or NPs during electrolysis has been confirmed [184]. A comprehensive insight into
the structure-property connection relies on the expression of isolated single atoms rather
than statistically averaging data of all the single atoms in diverse bonding structure distri-
butions. The combination of electron microscopy techniques, spectral analysis, and DFT
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calculations can, firstly, reflect the nature of a single-atom configuration, then, recognize the
dynamic evolution of the active components during the formation of products, and, finally,
make the reaction pathway and mechanism gradually clear, which is of major interest for
catalyst design [190–195].

Large-scale industrial applications require the batch construction of SACs with high
activity and selectivity using simple and scalable methods, whereby the ultimate goal is to
switch out the current noble metal-based electrocatalysts with more accessible transition
metals, which is advantageous for the atomic economy and the advancement of green
chemistry [188–198]. A practical screening tool is machine learning, which enables the
matching and integration of different elements or groups, model construction, and the
specific performance prediction of catalysts, and then obtaining optimal results using high-
throughput screening, these methods greatly reduce the investment of time and human,
material, and financial resources [199–203]. In addition, the factor of long-term thermody-
namic stability also needs to be considered [204,205]. Too strong or too weak interactions
in the metal-species-anchored supports systems during catalysis can result in negative Ost-
wald maturation and the migration and aggregation of active sites, respectively [206,207].
In particular, the high temperatures and reducing environments usually faced in industrial
applications make catalysts more vulnerable to poisoning or deactivation [199,207]. Overall,
the design of high-quality asymmetric atom electrocatalysts via reasonable coordination
modulation remains promising.
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