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Abstract – We study the effects of asymmetric cost on the cooperative behavior in the snowdrift
game on scale-free networks. The asymmetric cost reflects the inequality in mutual cooperation and
the diversity of cooperators. We focus on the evolution of cooperation and the inequality in wealth
distribution influenced by the degree of asymmetry in cost, related with cooperators’ connections.
Interestingly, we find that when cooperators with more neighbors have the advantage, cooperative
behavior is highly promoted and the rich exploits the poor to get richer; while if cooperators with
less neighbors are favored, cooperation is highly restricted and the rich are forced to offer some
payoff to the poor so that the wealth is more homogeneously distributed. The wealth distribution
in population is investigated by using the Gini coefficient and the Pareto exponent. Analytical
results and discussions are provided to better explain our findings. The asymmetric cost enhances
the leader effects in the decision making process by heterogeneous wealth distribution, leading not
only to very high cooperator density but also to very stable cooperative behavior.
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Understanding cooperative behavior ranging from
natural to society by means of game theory has been an
active topic of interdisciplinary research [1–4]. A central
and challenging issue is how cooperative behavior emerges
among selfish individuals, which apparently contradicts
Darwinian selection. So far, game theory and simple
models have provided a powerful framework to address
this issue, in particular, incorporated with the approach of
complex networks [5–9]. Two simple games, the Prisoner’s
Dilemma game (PDG) and the snowdrift game (SG) as
a paradigm to explore the pairwise interactions among
selfish individuals, have drawn growing attention [10].
The proposal of the SG as an alternative to the PDG is,
on the one hand, because of the difficulties in assessing
proper payoffs in the PDG, and more importantly the
biological interest1, on the other hand. In these games,
both players can choose to cooperate or defect to maxi-
mize their payoffs which are determined by both their
strategies and the payoff matrix. The main difference
between the two games is that in the PDG a cooperator
will have the lowest sucker’s payoff if he/she encounters
a defector; while in the SG, mutual defection leads to

1The snowdrift game is equivalent to the hawk-dove game.

the lowest payoffs of both players. Apparently, the SG
favors the cooperation compared to the PDG. However,
defectors are always offered the highest payoff if they
encounter cooperators, which results in the instability of
cooperation in both games. The difference between the
two-person games and real observations thus leads to the
important consideration of interaction pattern among
individuals, in other words, the combination of games and
complex networks, to better mimic the game dynamics
and explain the emergence of cooperation.
Since the original finding by Nowak and May that a

simple spatial structure can induce the emergence and
persistence of cooperation [11], the interplay between
games and network structures, associated with new
decision making strategies has been extensively studied,
such as games on regular networks [12–21], complex
networks [22–32] and adaptive networks with alternative
interactions [33–37]. There are a variety of surprising
findings. For instance, cooperation is inhibited by the
spatial structure in the SG [15]; adaptive networks [33,35]
and connection diversity in scale-free networks can consid-
erably enhance cooperation [26]; phase transition and
hysteresis behavior [17]; optimal connectivity density [29];
resonance-type phenomenon [30] etc. Besides, there are
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some natural mechanisms in the real world, such as
reward and costly punishment [38], variation in strategy
transfer capability [39], noise [30,40–43] and memory
effects [16,44], have been explored to explain cooperative
behaviors.
In most previously studied games, symmetric payoff

with sharing the same cost is assumed to be an intrin-
sic property in mutual cooperation. In other words, the
diversity in cooperators is overlooked. In reality, there
are no absolutely fair negotiations in social and econom-
ical systems due to the difference in status, strength and
influence between two parties. For example, In commer-
cial activities, some powerful international corporations
often use their strength or power to force their weak
co-players to make an unfair deal. On the contrary, many
welfare policies are established to protect disadvantaged
groups. We thus argue that asymmetric cost distribution
in cooperation would be ubiquitous, ranging from nature
to society. To be general, we investigate the SG by taking
the asymmetric cost into account to better characterize
the evolution of cooperation in the real world. The asym-
metric cost is related with the connectivity of individuals
and governed by a parameter. Our model can be simply
reduced to the original SG by setting the parameter value
to be zero. We find that the asymmetric cost can nearly
induce a complete cooperation state in the SG on scale-
free networks, regardless of the total cost in cooperation.
The striking finding is explained by some illustration of
strategy evolution in a small network example. We inves-
tigate the wealth distribution in terms of the Gini coeffi-
cient and Pareto exponent in the SG with asymmetric cost.
We provide some theoretical analysis based on the mean-
field approximation to give a firm support for simulation
results. We also study the effect of asymmetric cost on
cooperation by restraining connectivity diversity. Cooper-
ation is still remarkably enhanced, sufficiently supporting
the strong positive effect of asymmetric cost on coopera-
tion. Our work may shed some new light in the study of
cooperation in games on networks.
In this paper, we adopt the Barabási-Albert (BA)

scale-free network model [45] to represent the population
structure. In this model, starting from m0 fully connected
nodes, a new node with m (m�m0) edges is added
to the system at every step. The new node links to m
different nodes by a “preferential attachment” mechanism:
the probability of connecting to an existing node i is
proportional to its degree, i.e., pi = ki/

∑
j kj , where j

runs over all existing nodes and ki is the degree of node i.
In this paper, we setm0 =m= 4. Initially, cooperators and
defectors are randomly distributed on nodes. At each time
step, all players involved in the SG play with their direct
neighbors and get payoffs according to the payoff matrix:

C D

C 1− r/2 1− r

D 1 0

(1)

For the original SG, the elements in the payoff matrix
are T = b, R= b− r/2, S = b− r, and P = 0, with the
constraint b� r� 0. It is natural to set b= 1 and b� r� 0
(see 1). Thus we can investigate evolutionary behavior
with a single parameter while the essentials of the SG are
preserved. One can see that, when both players cooper-
ate, they get the same payoff, ignoring their differences,
which may not reflect the real scenarios. So we intro-
duce an unbalanced payoff distribution to the SG game
model:

C D

C 1− r ·Λ 1− r

D 1 0

(2)

where Λ is the asymmetric coefficient and r is the cost.
If one cooperates (C) and the other defects (D), the
cooperator bears the whole cost r and his/her payoff is
1− r while the defector costs nothing and gains payoff 1.
For mutual cooperation, the costs of two cooperators i and
j are rΛi and rΛj , where Λi and Λj are defined as

Λi =
kαj

kαi + k
α
j

and Λj =
kαi

kαi + k
α
j

, (3)

where α is an adjustable parameter. From the definition,
we have Λi+Λj = 1 and the total cost of cooperators i
and j is fixed to be r(Λi+Λj) = r. Thus, the total payoff
for mutual cooperation is fixed to be 2− r, but it can
be unequally shared by two cooperators because of the
unequal costs of rΛi and rΛj between nodes i and j.
Who will gain higher or lower payoffs is determined by
the parameter α associated with the node degrees of
two cooperators. If α> 0, high-degree nodes exploit low-
degree nodes to get richer. If α< 0, low-degree nodes
get more payoff from high-degree nodes. Irrespective of
the value of α, it can be easily proved that the payoff
rank T >R>S >P is strictly satisfied. For α= 0, the
model is reduced to the standard SG. This mechanism
reflects the diversity of individuals in the real world as
well, because the asymmetric cost distribution is induced
by the diversity of individuals which is quantified by
heterogeneous node degrees.
In each step, all pairs of directly linked nodes are

engaged in a single round of the SG. The total payoff of
player i is stored as Pi. The accumulative payoff (wealth)
of player i since the beginning of simulation is stored as
Wi. The learning strategy of nodes is as follows: for each
node i, a neighbor j is randomly selected; then node i
adopts j’s strategy with a probability [12,46]:

Hi→j =
1

1+exp[(Pi−Pj)/κ]
. (4)

Here 0<κ<∞ characterizes the environmental noise,
including bounded rationality, individual trials, errors in
decision, etc. The effect of noise κ on the stationary
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Fig. 1: (Color online) Frequency of cooperators as a function of
the total cost r for different values of the asymmetric parameter
α on scale-free networks.

density of cooperation (cooperator frequency) has been
well studied in ref. [40]. In this paper, we set κ= 0.1 as in
other studies.
Simulations are carried out on BA scale-free networks

with size N = 1000 and m0 =m= 4. Initially, strategies
(C and D) are randomly distributed among population.
Equilibrium frequencies of cooperators are obtained by
averaging over 3000 generations after a transient time of
104 generations. Each data is averaged by 100 runs on 100
different networks.
Figure 1 shows the variation of cooperator frequency

as a function of r for different values of α. One can
see that the cooperator frequency is highly affected by
α. When α= 0, high cooperator frequency is maintained
for a large range of r and only falls below 0.8 when
r > 0.9. For α= [−3,−2,−1], the cooperator frequency
is remarkably depressed and it decreases monotonously
with the decrement of α. For α= [1, 2, 3], the cooperator
frequency is promoted: the cooperator frequency keeps 1.0
for almost the entire range of r.
Figure 2 shows the variation of cooperator frequency

with α. One can see that the cooperator frequency keeps
1.0 when r is small. But if r is larger than 0.6, where the
temptation to defect is significantly magnified and players
should be more favorable of defect, the asymmetric payoff
distribution has a profound influence on the cooperator
frequency. There is a sharp jump around α= 0. For large
values of r, the cooperator frequency is greatly depressed
when α< 0 and rapidly increases to 1.0 when α> 0. This
surprising phenomenon may contradict our expectation at
the first glance. When α> 0, the interest of majority in
the population will be hurt, but the cooperative behavior
is promoted. On the contrary, when α< 0, the mechanism
restrains cooperation.
Figure 3 provides some explanation for the above find-

ings. It reveals how the asymmetric payoff mechanism
affects the evolution of cooperative behavior. Figure 3(a) is

Fig. 2: (Color online) Frequency of cooperators as a function
of the asymmetric parameter α for different values of the total
cost r on scale-free networks.
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Fig. 3: (Color online) Illustration of the evolution for r= 1.

a typical hub structure in the scale-free networks. Assume
that the hub node is a cooperator and its neighbors are
randomly assigned strategies. If α= 0, the hub cooper-
ator’s total payoff is 1.0, equalling to its two defector
neighbors (see fig. 3(a)). Thus, cooperation cannot outper-
form defection. If α= 1, the hub cooperator can exploit
its two cooperative neighbors to collect a larger payoff 1.6
(fig. 3(b)). According to the payoff difference, two non-hub
defectors are more likely to be invaded by C strategy in
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the next generation (fig. 3(c)). In the pattern of fig. 3(c),
the steady cooperative behavior is easily maintained: the
hub cooperator surrounded by non-hub cooperators has
great influence on its neighbors and can hardly reverse
to D strategy due to its payoff advantage. If α=−1, the
hub cooperator can only get 0.2 from each cooperative
neighbor and its total payoff is only 0.4, which is much
smaller than those of its defector neighbors (their payoffs
are both 1.0, see fig. 3(d)). Thus in the next step, the hub
node is probably invaded by D strategy (fig. 3(e)). In the
pattern of fig. 3(e), the hub node chooses to defect and
its collective payoff is 2.0, while all its neighbors get noth-
ing. So in the next generation, all players learn to choose
the D strategy and the system falls to a pure D state
(fig. 3(f)).
Besides the cooperative behavior, the game dynam-

ics on networks are also suitable to characterize the
wealth accumulating behavior in the society [46–49]. Since
the asymmetric cost can evidently affect the collection
of wealth, next we will investigate the wealth distri-
bution in terms of two important economic parame-
ters: the Gini coefficient and the Pareto exponent. They
both measure the inequity of wealth distribution and
have important implications for the economics and the
sociology.
The Gini coefficient, which was developed by the Italian

statistician Corrado Gini in 1912, varies from 0 (when
the players have the same wealth) to 1 (when the whole
wealth is possessed by only one player). Thus, a low
Gini coefficient indicates more equal income or wealth
distribution, while a high Gini coefficient indicates more
unequal distribution. 0 corresponds to perfect equality
and 1 corresponds to perfect inequality. Worldwide, Gini
coefficients range from approximately 0.249 in Japan to
0.707 in Namibia.
It is well known that even in the developed countries, it

is common that 40% of the total wealth is owned by only
10% of the population. The wealth distribution is often
described as “Pareto tail” that decays as a power law of
wealth:

P (W )∝W−(1+v), (5)

where P (W ) is the probability of finding a person with
wealth larger than W , and the value of v is usually called
the Pareto exponent. Empirical studies show that v= 1.6
for USA, v= 2.6 for Italy, and v= 0.8 for India [46–48].
Figure 4 shows the variation of Gini coefficient and

Pareto exponent with α for different values of r. One can
see that the Gini coefficient monotonously increases and
the Pareto exponent monotonously decreases with the
increment of α, which means that the wealth becomes
more unevenly distributed. Moreover, the values of
the Gini coefficient (0.2–0.7) and the Pareto exponent
(0.8–3.0) above are in accordance with empirical data of
real world. Next, we will give a simple analysis of nodes’
payoff.

Fig. 4: (Color online) Gini coefficient (a) and Pareto exponent
(b) vs. α for different values of r.

For individual i in the SG, its payoff could be estimated
as

Pi = kiρc

kmax∑
k=kmin

p(k|ki)ρc

(
1−

rkα

kαi + k
α

)

+ kiρc

kmax∑
k=kmin

p(k|ki)(1− ρc)(1− r)

+ ki(1− ρc)

kmax∑
k=kmin

p(k|ki)ρc

= kiρ
2
c

kmax∑
k=kmin

kp(k)

〈k〉
− kiρ

2
cr

kmax∑
k=kmin

kp(k)

〈k〉

kα

kαi + k
α

+ kiρc(1− ρc)(1− r)

kmax∑
k=kmin

kp(k)

〈k〉

+ kiρc(1− ρc)

kmax∑
k=kmin

kp(k)

〈k〉

= kiρc+ kiρc(1− ρc)(1− r)

− kiρ
2
cr
1

〈k〉

〈
k

1+ (ki
k
)α

〉
, (6)
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Fig. 5: Time series of frequency of cooperators for different
values of α.

where 〈.〉 denotes the ensemble average over all nodes and∑kmax
k=kmin

kp(k) = 〈k〉= 2m . Assume there is a hub node i
and a non-hub node j(ki� k� kj), one can easily obtain
that Pi increases with the increment of α and Pj decreases
with the increment of α. Thus the gap between the rich
and the poor becomes wider as α grows.
For α= 0, the model is reduced to the standard snow-

drift game. We thus have

Pi = kiρc+ kiρc(1− ρc)(1− r)−
1

2
kiρ
2
cr. (7)

Since Pi is obtained, the wealth distribution can be
obtained from

p(k)d(k) = p(P )dP, (8)

where p(k) is the degree distribution of BA scale-free
network: p(k) = 2m2k−γ . For finite network size, γ is a
little bit smaller than 3. The wealth distribution thus is

p(P ) = p(k(P ))
dk(P )

dP
, (9)

where dk(P )/dP can be obtained from eq. (6). In partic-
ular, for large positive values of α and in the tail of the
wealth distribution, we can approximately write

Pi ≈ kiρc+ kiρc(1− ρc)(1− r)− k
1−α
i ρ2cr〈k

α〉. (10)

For very small negative values of α,

Pi ≈ kiρc+ kiρc(1− ρc)(1− r)− kiρ
2
cr. (11)

Next, we investigate the effect of α on the time series of
cooperator frequency. We find that α can also affect the

Fig. 6: (Color online) Frequency of cooperators as a function
of the asymmetric parameter α for different values of the total
cost r, for the normalized updating.

evolution behaviors of cooperation. As shown in fig. 5, the
evolution process are more stable when the asymmetric
payoff distribution mechanism is applied, especially when
α> 0. When α= 0, the cooperator frequency is driven by
the hub nodes. If some hub nodes reverse their strategies
(C to D, or D to C), there will be a large fluctuation
in the system’s cooperator frequency. When α> 0, the
hub nodes become richer and the non-hub nodes become
poorer. The gap between the rich and the poor is more
evident. According to the learning strategy (4), a high-
degree node can easily influence its neighbors’ strategy but
their own strategies are extremely difficult to be changed.
So the evolution is steady. When α< 0, the influence of
hub nodes is weakened and the wealth distribution in
population becomes homogeneous (see figs. 3 and 4). Since
the evolution is no longer driven by a few hub nodes, there
will not be large fluctuations in the time series. We have
examined the time series of different system sizes from
N = 1000 to N = 5000 and the situation is alike.
Moreover, previous researches have proposed a normal-

ized learning strategy to avoid additional bias caused by
the heterogeneity of degrees:

Hi→j =
1

1+exp[(Pi/ki−Pj/kj)/κ]
, (12)

where the ratio of the total payoff of a player and its degree
Pi/ki is defined as the normalized total payoff. Figure 6
shows the cooperator frequency as a function of α with the
normalized learning rule. One can see that the asymmetric
cost can still remarkably enhance cooperator frequency
without the affection of diversity in node degrees.
In summary, we have introduced an asymmetric cost

in cooperation into the evolutionary snowdrift game on
scale-free networks and then investigated its influence on
cooperation behavior and wealth distribution in the popu-
lation. In our model, the asymmetric cost distribution can
be adjusted by only one parameter α. If α> 0, the rich get
richer and the poor get poorer. Simulation results show
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that the cooperator frequency and the non-identity of
population both monotonously increase with α. The effect
of α on the systems wealth distribution haven been studied
by using the Pareto exponent and the Gini coefficient as
well. It is found that with the increment of α, the Pareto
exponent decreases monotonously, while the Gini coeffi-
cient increases monotonously. The study of time series
of cooperator frequency shows that the asymmetric cost
results in very stable cooperative behavior, in particular
for α> 0. All these results demonstrate that the asymmet-
ric cost mechanism considerably promotes the cooperative
behavior in evolutionary games but with an inequality
wealth distribution. Since the asymmetric cost and payoff
distribution are common in nature and human society, we
expect our findings to be more relevant to understanding
the emergence of cooperation in the real world.
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[12] Szabó G. and Töke C., Phys. Rev. E, 58 (1998) 69.
[13] Doebeli M. and Knowlton N., Proc. Natl. Acad. Sci.

U.S.A., 95 (1998) 8676.
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