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We analyze the effects of asymmetric couplings in setting different synchronization states for a pair
of unidimensional fields obeying complex Ginzburg-Landau equations. Novel features such as asym-
metry enhanced complete synchronization, limits for the appearance of phase synchronized states, and
selection of the final synchronized dynamics are reported and characterized.
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metric coupling configuration, whereas the case 	 � 1 time [16]), with a time step �t � 10�2 and a grid size
The synchronization of coupled chaotic systems has
attracted increasing attention over the past few years.
Different synchronization features have been described
for coupled confined systems [1] and later were explored
in natural phenomena [2] and laboratory experiments [3].

More recently, the interest moved to the study of syn-
chronization phenomena in space-extended systems, such
as large populations of coupled chaotic units and neural
networks [4], globally or locally coupled map lattices [5],
and continuous systems ruled by partial differential equa-
tions [6–8].

So far, studies on synchronization of chaos have mainly
focused on external forcings and bidirectional symmetric
or unidirectional master-slave coupling schemes. How-
ever, in nature we cannot expect to have purely unidirec-
tional or perfectly symmetrical coupling configurations.
Therefore, our intention in this Letter is to address the
effects of asymmetries in the coupling of space-extended
continuous fields.

We refer to a pair of unidimensional fields obeying
complex Ginzburg-Landau equations. This equation, in-
deed, has been extensively investigated in the context of
space-time chaos, since it describes the universal dynami-
cal features of an extended system close to a Hopf bifur-
cation [9], and therefore it can be considered as a good
model equation for many different physical situations,
such as laser physics [10], fluid dynamics [11], chemical
turbulence [12], bluff body wakes [13], etc.

The system under study is

_AA1;2 � A1;2 � �1� i��@2xA1;2 � �1� i�1;2�jA1;2j
2A1;2

�
c
2
�1� 	��A2;1 � A1;2�: (1)

Here A1;2�x; t� � �1;2�x; t�ei�1;2�x; t� are two complex
fields [of amplitudes �1;2�x; t� and phases �1;2�x; t�], dots
denote temporal derivatives, @2x stays for the second de-
rivative with respect to the space variable 0 � x � L, L is
the system extension, � and �1;2 are suitable real parame-
ters, c represents the coupling strength, and 	 is a pa-
rameter accounting for asymmetries in the coupling.
Precisely, the case 	 � 0 recovers the bidirectional sym-
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(	 � �1) recovers the unidirectional master-slave
scheme, with the field A1 (A2) driving the response of
A2 (A1).

In the uncoupled case (c 	 0), different regimes are set
in Eqs. (1) for different choices of the parameters �;�1;2
[14], depending on the stability properties of the plane
wave solutions (PWS) Aq �

��������������
1� q2

p
ei�qx�!t� [ � 1 �

q � 1, q being the wave number in Fourier space, ! �
��� ��� ��q2]. Namely, for �� > �1 a critical wave
number qc �

���������������������������������������������������������������������
�1� ���=
2�1� �2� � 1� ���

p
exists

such that all PWS in the range �qc � q � qc are linearly
stable. Outside this range, PWS become unstable through
the Eckhaus instability [15]. When crossing from below
the Benjamin-Feir line �� � �1 in the parameter space,
qc vanishes and all PWS become unstable. Above this
line, Ref. [14] describes different turbulent regimes. For
the scope of this work, we mainly concentrate on phase
turbulence (PT) and amplitude turbulence (AT) or defect
turbulence.

PT is a regime where the chaotic behavior of the field is
mainly dominated by the dynamics of ��x; t�, while the
amplitude changes smoothly, and it is always bounded
away from zero. At variance, in AT the fluctuations of
��x; t� become dominant over the phase dynamics, lead-
ing to large amplitude oscillations which can occasion-
ally cause the occurrence of space-time defects in points
where � is locally vanishing.

By selecting in (1) a sufficiently large parameter mis-
match in the equations for A1;2, one can set the uncoupled
evolutions of A1 and A2 to be in PT and AT, respectively.
In these conditions, the case 	 � 0 was extensively
studied in Ref. [7], where completely synchronized PT
states were seen to emerge as a consequence of increasing
the coupling strength, while the case 	 � 1 was consid-
ered in Ref. [8], where both complete and phase synchro-
nization features were discussed and characterized.

In the following we consider all values of 	 2

�1;�1� and highlight the effects of asymmetries in
the synchronization properties of system (1). Simu-
lations were performed with a Crank-Nicholson, Adams-
Bashforth scheme (which is second order in space and
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FIG. 1. (a) Pearson’s coefficient � (see text for definition)
vs the parameter space �c; 	�. Other parameters are � � 2,
�1 � �0:7, and �2 � �1:05. (b) Pearson’s coefficient vs cou-
pling asymmetry 	, for c � 0:25 (dashed line) and c � 0:6
(solid line).
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�x � 0:25, for L � 100 (corresponding to 400 grid
points) and spatial periodic boundary conditions
[A1;2�0; t� � A1;2�L; t��.

Let us start by discussing how to characterize the
synchronization properties of the coupled fields by means
of suitable indicators [8].

In order to reveal 1:1 phase synchronization (PS), in-
stead of using the phases �1;2�x; t� 2 
0; 2��, we make
reference to the unfolding of the phases to the real axis
[�1;2�x; t� 2 R]. This way, 1:1 PS holds if the following
condition is satisfied:

�� � max
x2L;T�t2R

j�1�x; t� ��2�x; t�j<K; (2)

where T denotes a transient time and K is a suitable real
number. Condition (2) implies that the maximum relative
phase difference remains bounded for all times. In (2), we
introduce a transient time T, which allows us to get rid of
all transient effects (in the present case T � 4000). Even
though formally Eq. (2) can be considered as a proper
indicator for PS only within phase turbulent regimes, we
follow the same strategy as [8] of using it also for mea-
suring intermediate PS states displaying AT.

An alternative measure of frequency locking can be
obtained by monitoring the mean frequency mismatch.
The mean frequency of each field is given by �1;2 �

limt!1
h�1;2�x;t�ix

t , where h ix denotes spatial average. 1:1
frequency synchronization (FS) occurs when

�� � �1 ��2 � 0: (3)

It is important to notice that condition (3) represents a
weaker form of phase locking. Indeed, while PS implies
FS, the opposite does not hold in general, because the
evolution of �� might be affected by 2� phase slips over
secular time scales, which are averaged out in the fre-
quency definition.

As for complete synchronization (CS) states, they can
be detected by monitoring the Pearson’s coefficient �,
which measures the degree of cross correlation between
the moduli �1;2�x; t� (once again after the transient time
T),

� �
h��1 � h�1i���2 � h�2i�i�����������������������������

h��1 � h�1i�
2i

p �����������������������������
h��2 � h�2i�

2i
p ; (4)

where h i denotes a full space-time average.
Precisely, when � ’ 0 the two fields are linearly un-

correlated; � � 1 marks complete correlation and � �
�1 indicates that the fields are negatively correlated.

Another indicator for the disorder in the system is the
number of phase defects N. Theoretically, a defect is a
point (x; t) for which ��x; t� ! 0; i.e., defects are inter-
sections of the zero-level curves in the �x; t� plane of the
real and imaginary parts of A1;2�x; t�. In practice, because
of the finite size of the mesh, we count as defects at time t
those points xi where the ��xi; t� is smaller than 2:5�
10�2 and that are furthermore local minima for the
function ��x; t�. It is well known that N is an extensive
064103-2
quantity of both time and space, and therefore it is some-
times convenient to refer to the defect density nD, which
is calculated as the defect number N per unit time and
unit space.

Let us move now to describe the effects of asymmetry
in the coupling in system (1). For that purpose, we select
� � 2, �1 � �0:7, and �2 � �1:05, which corresponds
to set the uncoupled evolution of A1 (A2) in PT (AT). In all
cases, the different synchronization indicators are eval-
uated over a time t � T � 6000.

Figure 1 reports the Pearson’s coefficient values in the
parameter space �c; 	� (a) as well as two cuts of the
surface at c � 0:25 and c � 0:6 (b). The results indicate
that the threshold for the appearance of a CS state de-
pends crucially on the asymmetry 	 in the coupling. In
particular, Fig. 1 shows that asymmetry can enhance the
occurrence of a synchronized motion.

Let us now move to discuss how asymmetry influences
the selection of the final synchronized state. Looking at
Fig. 2, one realizes that the CS state (� ’ 1) occurs in PT
(no defects in both fields), for nearly all values of 	. This
confirms the results already shown in Ref. [7] for 	 � 0
and indicates that the preferred state for complete syn-
chronization is in the PT regime, except for 	 very close
to �1, where the AT system is driving the ‘‘slaved’’ PT
064103-2
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FIG. 2. Total number of defects N generated in the system A2

(a) and A1 (b) vs the parameter space �c; 	�. Other parameters
are as in the caption of Fig. 1. The density of space-time defects
nD can be obtained here by normalizing N to 6000� 100
(time interval � space interval).

FIG. 3. Space-time plot of �1�x; t� (a) and �2�x; t� (b) for
c � 0:38 and 	 � �1. Time is increasing upwards. Other
parameters are as in the caption of Fig. 1.
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system. Even more interestingly, the final CS state is
reached after an intermediate (� < 1) AT state, where
both systems display phase defects, and the number of
defects in the field A1 (that was originally set in PT)
shows a kind of divergence for coupling strengths close
but slightly below the threshold for CS [Fig. 2(b)].
Simulations performed at c � 0:38 and 	 � �1 with
a system of larger extent L � 1000 show that the PT
system [Fig. 3(a)] produces approximately 19 times
more defects than the AT system [Fig. 3(b)] within the
intermediate state.

Finally, we discuss how asymmetric couplings influ-
ence the settings of PS and FS states. Figure 4 reports the
indicators for PS (a) and FS (b), as well as a plot of the
maximum phase difference vs time (c) for the parameters
c � 0:6 and 	 � �0:9. As already noticed for CS, the
thresholds for the setting of PS and FS states depend on
the asymmetry, and both synchronization features are
enhanced for 	 ) 1 [see Figs. 4(a) and 4(b)]. In the
opposite limit (	 ) �1), by comparing Fig. 4(a) with
Fig. 1, one realizes that PS is set for coupling strengths
for which a CS state has already emerged in the system;
thus the range for the existence of a PS regime is here
shrunk. Eventually, for 	 ’ �1, PS fails, due to the
presence of defects in the final synchronized state.

At variance, FS states persist also for 	 ’ �1 [see
Fig. 4(b)]. This indicates how the two conditions for FS
and PS point to different synchronization features, since
they emerge from different measures of phase and fre-
064103-3
quency synchronization. More insight on the limits for PS
states can be extracted from Fig. 4(c). The upper left plot
of Fig. 4(c) shows a maximum phase difference that
increases linearly with time, as expected for parameters
(c � 0:2, 	 � �0:9) for which FS fails. The lower left
plot of Fig. 4(c) shows the maximum phase difference vs
time for c � 0:6 and 	 � �0:9 (parameters for which FS
is observed while PS fails). There, one can see that the
system shows rather long epochs of phase locked states,
interrupted by sudden 2� phase slips, that occur over
secular time scales. The right plots report the correspond-
ing spatial distributions of ~�����x� � mod2�
�1�x; t� �
�2�x; t�� mediated over many time realizations. While
for c � 0:2 the distribution comes out to be quite homo-
geneous in 
0; 2��, at c � 0:6 a clear peak in P� ~�����
indicates a preferred value in the phase difference holding
over the 2�-stairlike behavior.

Another effect of asymmetry is the transition from
normal to anomalous FS states, as can be seen in
Fig. 4(b).‘‘Anomalous’’ phase synchronization [17] indi-
cates a situation in which increasing the coupling ini-
tially leads to a degradation of frequency locking. Here,
for almost all 	(except for 	 � 1), an increase in c yields
initially a higher frequency difference. After reaching a
maximum, �� eventually vanishes as c approaches the
asymmetry dependent threshold for FS. This anomaly is
intimately related to the preference of the system for a PT
synchronized state. When 	 approaches 1, the final syn-
chronized state is reached by means of a smooth transi-
tion in ��, because the coupling scheme approaches the
unidirectional configuration with the PT subsystem forc-
ing the AT one. At variance, for the other values of 	,
the final state is reached after an intermediate partially
synchronized regime (see Figs. 2 and 3 and the above
discussion), which is producing the anomaly in the FS
transition.

In conclusion, we have addressed and studied several
synchronization regimes in continuous space-extended
064103-3
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FIG. 4. (a) Maximum value of j���t�j (in logarithmic scale)
over the finite time t � T � 6000 vs the parameter space �c; 	�;
(b) absolute value of �� vs the parameter space �c; 	�; (c) j��j
vs time for c � 0:2 (upper left) and c � 0:6 (lower left) with
	 � �0:9. Note that the function in the lower plot is increasing
by finite jumps (2� phase slips), while in the upper plot the
phase difference increases linearly with time reflecting a non-
vanishing mean frequency mismatch. Upper (lower) right plots
report P� ~����� vs ~���� (see text for definitions).
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chaotic fields influenced by an asymmetry in the cou-
pling. In particular, we have given evidence of novel
features induced by asymmetry, such as the setting of
the thresholds for the appearance of FS, PS, and CS, as
well as the selection of the final synchronized state and of
the transition route to it.
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