
Asymmetric Deep Supervised Hashing

Qing-Yuan Jiang, Wu-Jun Li
National Key Laboratory for Novel Software Technology

Collaborative Innovation Center of Novel Software Technology and Industrialization
Department of Computer Science and Technology, Nanjing University, China

jiangqy@lamda.nju.edu.cn,liwujun@nju.edu.cn

Abstract

Hashing has been widely used for large-scale approximate
nearest neighbor search because of its storage and search ef-
ficiency. Recent work has found that deep supervised hashing
can significantly outperform non-deep supervised hashing in
many applications. However, most existing deep supervised
hashing methods adopt a symmetric strategy to learn one deep
hash function for both query points and database (retrieval)
points. The training of these symmetric deep supervised hash-
ing methods is typically time-consuming, which makes them
hard to effectively utilize the supervised information for cases
with large-scale database. In this paper, we propose a novel
deep supervised hashing method, called asymmetric deep
supervised hashing (ADSH), for large-scale nearest neighbor
search. ADSH treats the query points and database points in
an asymmetric way. More specifically, ADSH learns a deep
hash function only for query points, while the hash codes for
database points are directly learned. The training of ADSH is
much more efficient than that of traditional symmetric deep
supervised hashing methods. Experiments show that ADSH
can achieve state-of-the-art performance in real applications.

Introduction

With the explosive growing of data in real applications,
nearest neighbor (NN) search (Gionis, Indyk, and Motwani
1999; Andoni and Indyk 2006; Andoni and Razenshteyn
2015) has attracted much attention from machine learning
community, with a lot of applications in information re-
trieval, computer vision and so on. However, in big data
applications, the searching time for exact nearest neighbor
is typically expensive or impossible for the given queries.
Hence, approximate nearest neighbor (ANN) search (An-
doni and Razenshteyn 2015) has become more and more
popular in recent years. As a widely used technique for
ANN search, hashing (Weiss, Torralba, and Fergus 2008;
Zhang et al. 2010; Neyshabur et al. 2013; Liu et al. 2014;
Lin et al. 2014a; Shen et al. 2015b; 2015a; Song et al. 2015;
Xie, Shen, and Zhu 2016; Liu et al. 2016b; 2016a; Shi et
al. 2017; Shen et al. 2017; Dasgupta, Stevens, and Navlakha
2017) aims to encode the data points into compact binary
hash codes. Thanks to the binary hash code representation,
hashing methods can provide constant or sub-linear search

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time and dramatically reduce the storage cost for the data
points (Gong and Lazebnik 2011). Hence, hashing has at-
tracted more and more attention for large-scale ANN search.

As the pioneering work, locality sensitive hashing (LSH)
(Kulis and Grauman 2009; Datar et al. 2004) tries to use
random projections as hash functions. LSH-like methods
are always called data-independent methods, because the
random projections are typically independent of training
data. On the contrary, data-dependent methods (Kong and Li
2012), which are also called learning to hash (L2H) meth-
ods, aim to learn the hash functions from training data. Data-
dependent methods usually achieve more promising perfor-
mance than data-independent methods with shorter binary
codes. Hence, data-dependent methods have become more
popular than data-independent methods in recent years.

Based on whether supervised information is used or not,
data-dependent methods can be further divided into two cat-
egories (Kang, Li, and Zhou 2016): unsupervised hashing
and supervised hashing. Representative unsupervised hash-
ing methods include spectral hashing (SH) (Weiss, Tor-
ralba, and Fergus 2008), iterative quantization (ITQ) (Gong
and Lazebnik 2011), isotropic hashing (IsoH) (Kong and Li
2012), discrete graph hashing (DGH) (Liu et al. 2014), scal-
able graph hashing (SGH) (Jiang and Li 2015) and ordinal
embedding hashing (OEH) (Liu et al. 2016b). Unsupervised
hashing learns hash functions that map input data points into
binary codes only using unlabeled data. On the contrary, su-
pervised hashing tries to learn the hash function by utilizing
supervised information. In recent years, supervised hashing
has attracted more and more attention because it can achieve
better accuracy than unsupervised hashing.

Most traditional supervised hashing methods are non-
deep methods which cannot perform feature learning from
scratch. Representative non-deep supervised hashing meth-
ods include supervised hashing with kernels (KSH) (Liu et
al. 2012), asymmetric hashing with two variants Lin:Lin
and Lin:V (Neyshabur et al. 2013), latent factor hash-
ing (LFH) (Zhang et al. 2014), fast supervised hash-
ing (FastH) (Lin et al. 2014a), supervised discrete hash-
ing (SDH) (Shen et al. 2015b), column-sampling based dis-
crete supervised hashing (COSDISH) (Kang, Li, and Zhou
2016) and asymmetric discrete graph hashing ADGH (Shi et
al. 2017). Recently, deep supervised hashing, which adopts
deep learning (Krizhevsky, Sutskever, and Hinton 2012) to

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3342

perform feature learning for hashing, has been proposed.
Representative deep supervised hashing methods include
convolutional neural networks based hashing (CNNH) (Xia
et al. 2014), network in network hashing (NINH) (Lai et al.
2015), deep pairwise supervised hashing (DPSH) (Li, Wang,
and Kang 2016), deep hashing network (DHN) (Zhu et al.
2016), deep supervised hashing (DSH) (Liu et al. 2016a)
and deep asymmetric pairwise hashing (DAPH) (Shen et al.
2017)1. By integrating feature learning and hash-code learn-
ing (or hash function learning) into the same end-to-end ar-
chitecture, deep supervised hashing can significantly outper-
form non-deep supervised hashing.

Most existing deep supervised hashing methods, includ-
ing CNNH, NINH, DPSH, DHN and DSH, adopt a sym-
metric strategy to learn one deep hash function for both
query points and database points. The training of these sym-
metric deep supervised hashing methods is typically time-
consuming. For example, the storage and computational cost
for these hashing methods with pairwise supervised infor-
mation is O(n2) where n is the number of database points.
The training cost for methods with triplet supervised infor-
mation (Zhao et al. 2015; Zhang et al. 2015) is even higher.
To make the training practicable, most existing deep super-
vised hashing methods have to sample only a small sub-
set from the whole database to construct a training set for
hash function learning, and many points in database may be
discarded during training. Hence, it is hard for these deep
supervised hashing methods to effectively utilize the super-
vised information for cases with large-scale database, which
makes the search performance unsatisfactory.

In this paper, we propose a novel deep super-
vised hashing method, called asymmetric deep supervised
hashing (ADSH), for large-scale nearest neighbor search.
The main contributions of ADSH are outlined as follows:

• ADSH treats the query points and database points in an
asymmetric way. More specifically, ADSH learns a deep
hash function only for query points, while the binary hash
codes for database points are directly learned. To the best
of our knowledge, ADSH is the first deep supervised
hashing method which treats query points and database
points in an asymmetric way.

• The training of ADSH is much more efficient than that of
traditional symmetric deep supervised hashing methods.
Hence, the whole set of database points can be used for
training even if the database is large.

• ADSH can directly learn the binary hash codes for
database points, which will be empirically proved to be
more accurate than the strategies adopted by traditional
symmetric deep supervised hashing methods which use
the learned hash function to generate hash codes for
database points.

• Experiments on three large-scale datasets show that
ADSH can achieve state-of-the-art performance in real
applications.

1DAPH is also an asymmetric deep supervised hashing method,
which adopts an asymmetric strategy different from our ADSH.
DAPH had not been published before the submission of ADSH.

Notation and Problem Definition

Notation

Boldface lowercase letters like b denote vectors, and bold-
face uppercase letters like B denote matrices. B∗j denotes
the jth column of B. Bij denotes the (i, j)th element of ma-

trix B. Furthermore, ‖B‖F and BT are used to denote the
Frobenius norm and the transpose of matrix B, respectively.
Capital Greek letters like Ω denote sets of indices. Boldface
0 denotes a vector with all elements being 0. The symbol ⊙
is used to denote the Hadamard product.

Problem Definition

For supervised hashing methods, supervised information
can be point-wise labels (Shen et al. 2015b), pairwise la-
bels (Liu et al. 2011; Heo et al. 2012; Liu et al. 2012;
Li, Wang, and Kang 2016) or triplet labels (Norouzi, Fleet,
and Salakhutdinov 2012; Wang et al. 2013; Zhao et al. 2015;
Zhang et al. 2015). In this paper, we only focus on pairwise-
label based supervised hashing which is a common applica-
tion scenario.

Assume that we have m query data points which are de-
noted as X = {xi}

m
i=1

and n database points which are
denoted as Y = {yj}

n
j=1

. Furthermore, pairwise super-

vised information, denoted as S ∈ {−1,+1}m×n, is also
available for supervised hashing. If Sij = 1, it means that
point xi and point yj are similar. Otherwise, xi and yj are
dissimilar. The goal of supervised hashing is to learn bi-
nary hash codes for both query points and database points
from X, Y and S, and the hash codes try to preserve the
similarity between query points and database points. More
specifically, if we use U = {ui}

m
i=1

∈ {−1,+1}m×c to
denote the learned binary hash codes for query points and
V = {vj}

n
j=1

∈ {−1,+1}n×c to denote the learned binary
hash codes for database points, where c denotes the binary
code length. To preserve semantic similarity, the Hamming
distance between ui and vj should be as small as possible
if Sij = 1. Otherwise, the Hamming distance between ui

and vj should be as large as possible. Moreover, we should
also learn a hash function h(xq) ∈ {−1,+1}c so that we
can generate binary code for any unseen query point xq .

Please note that in many cases, we are only given a set of
database points Y = {yj}

n
j=1

and the pairwise supervised
information between them. We can also learn the hash codes
and hash function by sampling a subset or the whole set of
Y as the query set for training. In these cases, X ⊆ Y.

Asymmetric Deep Supervised Hashing

In this section, we introduce our asymmetric deep super-
vised hashing (ADSH) in detail, including model formula-
tion and learning algorithm.

Model Formulation

Figure 1 shows the model architecture of ADSH, which con-
tains two important components: feature learning part and
loss function part. The feature learning part tries to learn
a deep neural network which can extract appropriate fea-
ture representation for binary hash code learning. The loss

3343

�������	
�� ���������	���������	��

�
�
���
���
��	����
	�

�
��������

��������

��������

��������

��������

����

��������
��

��
��
����	��

���
���

�������	
������	����
���	��������	����

���������������	��
��� !h �

Figure 1: Model architecture of ADSH.

function part aims to learn binary hash codes which preserve
the supervised information (similarity) between query points
and database points. ADSH integrates these two components
into the same end-to-end framework. During training proce-
dure, each part can give feedback to the other part.

Please note that the feature learning is only performed for
query points but not for database points. Furthermore, based
on the deep neural network for feature learning, ADSH
adopts a deep hash function to generate hash codes for
query points, but the binary hash codes for database points
are directly learned. Hence, ADSH treats the query points
and database points in an asymmetric way. This asymmetric
property of ADSH is different from traditional deep super-
vised hashing methods. Traditional deep supervised hash-
ing methods adopt the same deep neural network to perform
feature learning for both query points and database points,
and then use the same deep hash function to generate binary
codes for both query points and database points.

Feature Learning Part In this paper, we adopt a convo-
lutional neural network (CNN) model from (Chatfield et al.
2014), i.e., CNN-F model, to perform feature learning. This
CNN-F model has also been adopted in DPSH (Li, Wang,
and Kang 2016) for feature learning. The CNN-F model
contains five convolutional layers and three fully-connected
layers, the details of which can be found at (Chatfield et al.
2014; Li, Wang, and Kang 2016). In ADSH, the last layer of
CNN-F model is replaced by a fully-connected layer which
can project the output of the first seven layers into R

c space.
Please note that the framework of ADSH is general enough
to adopt other deep neural networks to replace the CNN-F
model for feature learning. Here, we just adopt CNN-F for
illustration.

Loss Function Part To learn the hash codes which can
preserve the similarity between query points and database
points, one common way is to minimize the L2 loss between
the supervised information (similarity) and inner product of
query-database binary code pairs. This can be formulated as
follows:

min
U,V

J(U,V) =
m∑

i=1

n∑

j=1

(
uT
i vj − cSij

)2
(1)

s.t. U ∈ {−1,+1}m×c,V ∈ {−1,+1}n×c,

ui = h(xi) , ∀i ∈ {1, 2, . . . ,m}.

However, it is difficult to learn h(xi) due to the dis-
crete output. We can set h(xi) = sign(F (xi; Θ)), where
F (xi; Θ) ∈ R

c. Then, the problem in (1) is transformed to

the following problem:

min
Θ,V

J(Θ,V) =

m∑

i=1

n∑

j=1

[
h(xi)

Tvj − cSij

]2
(2)

=

m∑

i=1

n∑

j=1

[
sign(F (xi; Θ))Tvj − cSij

]2

s.t. vj ∈ {−1,+1}c , ∀j ∈ {1, 2, . . . , n}.

In (2), we set F (xi; Θ) to be the output of the CNN-F model
in the feature learning part, and Θ is the parameter of the
CNN-F model. Through this way, we seamlessly integrate
the feature learning part and the loss function part into the
same framework.

There still exists a problem for the formulation in (2),
which is that we cannot back-propagate the gradient to Θ
due to the sign(F (xi; Θ)) function. Hence, in ADSH we
adopt the following objective function:

min
Θ,V

J(Θ,V) =
m∑

i=1

n∑

j=1

[
tanh(F (xi; Θ))Tvj − cSij

]2
,

s.t. V ∈ {−1,+1}n×c, (3)

where we use tanh(·) to approximate the sign(·) function.
In practice, we might be given only a set of database

points Y = {yj}
n
j=1

without query points. In this case,
we can randomly sample m data points from database to
construct the query set. More specifically, we set X = YΩ

where YΩ denotes the database points indexed by Ω. Here,
we use Γ = {1, 2, . . . , n} to denote the indices of all the
database points and Ω = {i1, i2, . . . , im} ⊆ Γ to denote
the indices of the sampled query points. Accordingly, we set
S = SΩ, where S ∈ {−1,+1}n×n denotes the supervised
information (similarity) between pairs of all database points
and SΩ ∈ {−1,+1}m×n denotes the sub-matrix formed by
the rows of S indexed by Ω. Then, we can rewrite J(Θ,V)
as follows:

min
Θ,V

J(Θ,V) =
∑

i∈Ω

∑

j∈Γ

[
tanh(F (yi; Θ))Tvj − cSij

]2

s.t. V ∈ {−1,+1}n×c. (4)

Because Ω ⊆ Γ, there are two representations for yi,
∀i ∈ Ω. One is the binary hash code vi in database, and
the other is the query representation tanh(F (yi; Θ)). We add
an extra constraint to keep vi and tanh(F (yi; Θ)) as close
as possible, ∀i ∈ Ω. This is intuitively reasonable, because
tanh(F (yi; Θ)) is the approximation of the binary code of
yi. Then we get the final formulation of ADSH with only
database points Y for training:

min
Θ,V

J(Θ,V) =
∑

i∈Ω

∑

j∈Γ

[
tanh(F (yi; Θ))Tvj − cSij

]2

+ γ
∑

i∈Ω

[vi − tanh(F (yi; Θ))]2 (5)

s.t. V ∈ {−1,+1}n×c,

where γ is a hyper-parameter.

3344

In real applications, if we are given both Y and X, we
use the problem in (3) for training ADSH. If we are only
given Y, we use the problem in (5) for training ADSH. Af-
ter training ADSH, we can get the binary hash codes for
database points, and a deep hash function for query points.
We can use the trained deep hash function to generate the bi-
nary hash codes for any query points including newly com-
ing query points which are not seen during training. One
simple way to generate binary codes for query points is to
set uq = h(xq) = sign(F (xq; Θ)).

From (3) and (5), we can find that ADSH treats query
points and database points in an asymmetric way. More
specifically, the feature learning is only performed for query
points but not for database points. Furthermore, ADSH
adopts a deep hash function to generate hash codes for query
points, but the binary hash codes for database points are
directly learned. This is different from traditional deep su-
pervised hashing methods which adopt the same deep hash
function to generate binary hash codes for both query points
and database points. Because m ≪ n in general, ADSH
can learn the deep neural networks efficiently, and is much
faster than traditional symmetric deep supervised hashing
methods. This will be verified in our experiments.

Learning Algorithm

Here, we only present the learning algorithm for prob-
lem (5), which can be easily adapted for problem (3). We
design an alternating optimization strategy to learn the pa-
rameters Θ and V in problem (5). More specifically, in each
iteration we learn one parameter with the other fixed, and
this process will be repeated for many iterations.

Learn Θ with V fixed When V is fixed, we use back-
propagation (BP) algorithm to update the neural network pa-
rameter Θ. Specifically, we sample a mini-batch of the query
points, then update the parameter Θ based on the sampled
data. For the sake of simplicity, we define zi = F (yi; Θ)
and ũi = tanh(F (yi; Θ)). Then we can compute the gradi-
ent of zi as follows:

∂J

∂zi
=
{
2
∑

j∈Γ

[
(ũT

i vj − cSij)vj

]
+ 2γ(ũi − vi)

}

⊙ (1− ũ2

i). (6)

Then we can use chain rule to compute ∂J
∂Θ

based on ∂J
∂zi

,

and the BP algorithm is used to update Θ.

Learn V with Θ fixed When Θ is fixed, we rewrite the
problem (5) in matrix form:

min
V

J(V) =‖ŨVT − cS‖2F + γ‖VΩ − Ũ‖2F (7)

=‖ŨVT ‖2F − 2ctr(VTST Ũ)

− 2γtr(VΩŨT) + const

s.t. V ∈ {−1,+1}n×c,

where Ũ = [ũi1 , ũi2 , . . . , ũim]T ∈ [−1,+1]m×c, VΩ de-
notes the binary codes for the database points indexed by Ω,
i.e., VΩ = [vi1 ,vi2 , . . . ,vim]T .

We define Ū = {ūj}
n
j=1

, where ūj is defined as follows:

ūj =

{
ũj if j ∈ Ω

0 otherwise.

Then we can rewrite the problem (7) as follows:

min
V

J(V) = ‖VŨT ‖2F − 2tr
(
V[cŨTS+ γŪT]

)
+ const

= ‖VŨT ‖2F + tr(VQT) + const

s.t. V ∈ {−1,+1}n×c, (8)

where Q = −2cST Ũ−2γŪ, “const” is a constant indepen-
dent of V.

Then, we update V bit by bit. That is to say, each time we
update one column of V with other columns fixed. Let V∗k

denote the kth column of V and V̂k denote the matrix of V

excluding V∗k. Let Q∗k denote the kth column of Q and Q̂k

denote the matrix of Q excluding Q∗k. Let Ũ∗k denote the

kth column of Ũ and Ûk denote the matrix of Ũ excluding

Ũ∗k. To optimize V∗k, we can get the objective function:

J(V∗k) =‖VŨT ‖2F + tr(VQT) + const

=tr
(
V∗k[2Ũ

T
∗kÛkV̂

T
k +QT

∗k]
)
+ const.

Then, we need to solve the following problem:

min
V∗k

J(V∗k) =tr(V∗k[2Ũ
T
∗kÛkV̂

T
k +QT

∗k]
)
+ const

s.t. V∗k ∈ {−1,+1}n. (9)

Then, we can get the optimal solution of problem (9) as fol-
lows:

V∗k = −sign(2V̂kÛ
T
k Ũ∗k +Q∗k), (10)

which can be used to update V∗k.
We summarize the whole learning algorithm for ADSH in

Algorithm 1. Here, we repeat the learning for several times,
and each time we can sample a query set indexed by Ω.

Out-of-Sample Extension

After training ADSH, the learned deep neural network can
be applied for generating binary codes for query points in-
cluding unseen query points during training. More specifi-
cally, we can use the following equation to generate binary
code for xq:

uq = h(xq; Θ) = sign(F (xq; Θ)).

Complexity Analysis

The total computational complexity for training ADSH is
O(ToutTin[(n+2)mc+(m+1)nc2 +(c(n+m)−m)c]).
In practice, Tout, Tin, m and c will be much less than n.
Hence, the computational cost of ADSH is O(n). For tra-
ditional symmetric deep supervised hashing methods, if all
database points are used for training, the computational cost
is at least O(n2). Furthermore, the training for deep neural
network is typically time-consuming. For traditional sym-
metric deep supervised hashing methods, they need to scan

3345

Algorithm 1 The learning algorithm for ADSH

Input: Y = {yi}
n
i=1

: n data points.
S ∈ {−1, 1}n×n: supervised similarity matrix.
c: binary code length.

Output: V: binary hash codes for database points.
Θ: neural network parameter.

Initialization: initialize Θ, V, mini-batch size M and it-
eration number Tout, Tin.
for w = 1 → Tout do

Randomly generate index set Ω from Γ. Set S = SΩ,
X = YΩ based on Ω.
for t = 1 → Tin do

for s = 1, 2, . . . ,m/M do
Randomly sample M data points from X = YΩ

to construct a mini-batch.
Calculate zi and ũi for each data point yi in the
mini-batch by forward propagation.
Calculate the gradient according to (6).
Update the parameter Θ by using back propaga-
tion.

end for
for k = 1 → c do

Update V∗k according to update rule in (10).
end for

end for
end for

n points in an epoch of the neural network training. On the
contrary, only m points are scanned in an epoch of the neu-
ral network training for ADSH. Typically, m ≪ n. Hence,
ADSH is much faster than traditional symmetric deep super-
vised hashing methods.

To make the training practicable, most existing symmet-
ric deep supervised hashing methods have to sample only a
small subset from the whole database to construct a train-
ing set for deep hash function learning, and many points in
database may be discarded during training. On the contrary,
ASDH is much more efficient to utilize more database points
for training.

Experiment

We carry out experiments to evaluate our ADSH and base-
lines which are implemented with the deep learning toolbox
MatConvNet (Vedaldi and Lenc 2015) on a NVIDIA M40
GPU server.

Datasets

We evaluate ADSH on three datasets: MS-COCO (Lin
et al. 2014b), CIFAR-10 (Krizhevsky 2009) and NUS-
WIDE (Chua et al. 2009).

The MS-COCO contains 82,783 training, 40,504 valida-
tion images which belong to 91 categories. It’s a multi-label
dataset. For training image set, we discard the images which
have no category information. For MS-COCO dataset, two
images will be defined as a ground-truth neighbor (similar
pair) if they share at least one common label.

The CIFAR-10 dataset is a single-label dataset which con-
tains 60,000 32 × 32 color images. Each image belongs to
one of the ten classes. For CIFAR-10 dataset, two images
will be treated as a ground-truth neighbor (similar pair) if
they share one common label.

The NUS-WIDE dataset consists of 269,648 web im-
ages associated with tags. It is a multi-label dataset where
each image might be annotated with multi-labels. Following
DPSH (Li, Wang, and Kang 2016), we only select 195,834
images that belong to the 21 most frequent concepts. For
NUS-WIDE dataset, two images will be defined as a ground-
truth neighbor (similar pair) if they share at least one com-
mon label.

Baselines and Evaluation Protocol

To evaluate ADSH and baselines, we choose some meth-
ods as baselines for comparison, including one unsupervised
hashing method ITQ (Gong and Lazebnik 2011), seven
non-deep supervised hashing methods Lin:Lin (Neyshabur
et al. 2013), Lin:V (Neyshabur et al. 2013), LFH (Zhang
et al. 2014), FastH (Lin et al. 2014a), SDH (Shen et al.
2015b), COSDISH (Kang, Li, and Zhou 2016) and kernel
ADGH (KADGH) (Shi et al. 2017), three deep supervised
hashing methods, DSH (Liu et al. 2016a), DHN (Zhu et
al. 2016) and DPSH (Li, Wang, and Kang 2016). Among
these baselines, Lin:Lin, Lin:V and KADGH are asymmet-
ric and others are based on symmetric hashing. Other meth-
ods, include CNNH (Xia et al. 2014) and NINH (Lai et al.
2015), are not adopted for comparison because they have
been found to be outperformed by the adopted baselines like
DPSH.

For non-deep hashing methods, we utilize 4,096-dim
deep features which are extracted by the pre-trained CNN-
F model on ImageNet dataset for fair comparison. KADGH
and SDH are kernel-based methods, for which we randomly
select 1,000 data points as anchors to construct the kernels
by following the suggestion of the authors of KADGH. As
KADGH can only be used for single-label dataset, we only
carry out experiments on CIFAR-10 dataset for KADGH.
For FastH, LFH and COSDISH, we use boosted decision
tree for out-of-sample extension by following the setting of
FastH. For most baselines including ITQ, Lin:Lin, Lin:V,
LFH, FastH, SDH, COSDISH and DPSH, source code is
kindly provided by their authors. For DSH and DHN, al-
though the authors provide source code, for fair comparison
we carefully re-implement their methods on MatConvNet to
remove effect on training time caused by different platforms.
For DHN, DPSH and DSH, we resize all images to 224 ×
224 and use the raw pixels as the inputs for all datasets. In
order to avoid overfitting, we set weight decay as 5× 10−4.
In addition, some deep hashing methods adopt other neu-
ral networks for feature learning. For example, DHN adopts
AlexNet (Krizhevsky, Sutskever, and Hinton 2012). We find
that the deep baselines with CNN-F network can outperform
the counterparts with the original networks. For fair compar-
ison, we adopt the same deep neural networks for DHN and
DSH, i.e., the CNN-F network. We initialize CNN-F with
the pre-trained model on ImageNet. Following the sugges-
tions of the authors, we set the mini-batch size to be 128 and

3346

Table 1: MAP on three datasets. The best results for MAP are shown in bold.

Method
MS-COCO CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
ITQ 0.6338 0.6326 0.6308 0.6338 0.2619 0.2754 0.2861 0.2941 0.7143 0.7361 0.7457 0.7553

Lin:Lin 0.6557 0.6722 0.6701 0.6736 0.6099 0.6312 0.6079 0.6013 0.5556 0.5704 0.5627 0.5555
LFH 0.7085 0.7389 0.7580 0.7725 0.4178 0.5738 0.6414 0.6927 0.7116 0.7681 0.7949 0.8135
FastH 0.7194 0.7478 0.7544 0.7604 0.5971 0.6632 0.6847 0.7020 0.7267 0.7692 0.7817 0.8037
SDH 0.6954 0.7078 0.7115 0.7164 0.4539 0.6334 0.6514 0.6603 0.7646 0.7998 0.8017 0.8124
COSDISH 0.6895 0.6924 0.7312 0.7589 0.5831 0.6614 0.6802 0.7016 0.6425 0.7406 0.7843 0.7964
KADGH N/A N/A N/A N/A 0.6134 0.6607 0.6701 0.6829 N/A N/A N/A N/A

DPSH 0.7461 0.7667 0.7729 0.7777 0.6818 0.7204 0.7341 0.7464 0.7941 0.8249 0.8351 0.8442
DHN 0.7440 0.7656 0.7691 0.7740 0.6805 0.7213 0.7233 0.7332 0.7719 0.8013 0.8051 0.8146
DSH 0.6962 0.7176 0.7156 0.7220 0.6441 0.7421 0.7703 0.7992 0.7125 0.7313 0.7401 0.7485

ADSH 0.8388 0.8590 0.8633 0.8651 0.8898 0.9280 0.9310 0.9390 0.8400 0.8784 0.8951 0.9055

Binary code length

12 24 32 48

T
o

p
-5

K
 p

re
c

is
io

n

0.75

0.8

0.85

0.9

(a) MS-COCO

Binary code length

12 24 32 48

T
o

p
-5

K
 p

re
c

is
io

n

0.35

0.45

0.55

0.65

0.75

0.85

0.95

(b) CIFAR-10

Binary code length

12 24 32 48

T
o

p
-5

K
 p

re
c

is
io

n

0.65

0.7

0.75

0.8

0.85

0.9

(c) NUS-WIDE

Figure 2: Top-5K precision on three datasets.

tune the learning rate among [10−6, 10−2] by using a vali-
dation set. For ADSH method, we set γ = 200, Tout = 50,
Tin = 3, |Ω| = 2000 by using a validation strategy for all
datasets. To avoid effect caused by class-imbalance prob-
lem between positive and negative similarity information,
we empirically set the weight of the element -1 in S as the
ratio between the number of element 1 and the number of
element -1 in S.

For MS-COCO dataset, we use the pruned training images
as database points and randomly select 5,000 images (250
images per category) which belong to the 20 most cate-
gories from validation set as test set. For CIFAR-10 dataset,
we randomly select 1,000 images (100 images per class)
for test set, with the remaining images as database points.
For NUS-WIDE dataset, we randomly choose 2,100 im-
ages (100 images per class) as test set, with the rest of the
images as database points following the setting of DPSH (Li,
Wang, and Kang 2016). Because the deep hashing baselines
are very time-consuming for training, we randomly select
10,000 images (500 images per category) which belong to
the 20 most categories from database points for training all
baselines except Lin:V for MS-COCO dataset. Similar to ex-
isting works like (Li, Wang, and Kang 2016), we randomly
choose 5,000 (500 images per class) and 10,500 images (500
images per class) from database for training all baselines
except Lin:V for CIFAR-10 and NUS-WIDE, respectively.
The necessity of random sampling for training set will also

be empirically verified in the later section.
We report Mean Average Precision (MAP), Top-K preci-

sion curve to evaluate the proposed ADSH and baselines.
For NUS-WIDE dataset, the MAP results are calculated
based on the Top-5K returned samples. We also compare
the training time between different deep hashing methods.
All experiments are run five times, and the average values
are reported.

Accuracy

The MAP results are presented in Table 1. We can find that in
most cases the supervised methods can outperform the unsu-
pervised methods, and the deep methods can outperform the
non-deep methods. Furthermore, we can find that ADSH can
significantly outperform all the other baselines, including
deep hashing baselines, non-deep supervised hashing base-
lines and unsupervised hashing baselines.

Some baselines, including Lin:Lin, LFH, SDH, COS-
DISH, KADGH can also be adapted to learn binary hash
codes for database directly due to their training efficiency.
We carry out experiments to evaluate the adapted counter-
parts of these methods which can learn binary codes for
database directly, and denote the counterparts of these meth-
ods as Lin:V, LFH-D, SDH-D, COSDISH-D, KADGH-D re-
spectively. It means that Lin:V, LFH-D, SDH-D, COSDISH-
D, KADGH-D adopt all database points for training. We re-
port the corresponding MAP results in Table 2. We can find

3347

Table 2: MAP on three datasets. The best results for MAP are shown in bold.

Method
MS-COCO CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
Lin:V 0.7616 0.7803 0.7812 0.7842 0.8206 0.8160 0.8038 0.7993 0.7163 0.7565 0.7615 0.7605
LFH-D 0.7408 0.7729 0.8063 0.8165 0.5091 0.7267 0.7712 0.8333 0.7761 0.8351 0.8604 0.8790
SDH-D 0.7644 0.7724 0.7708 0.7711 0.6616 0.8466 0.8501 0.8501 0.8571 0.8808 0.8815 0.8756
COSDISH-D 0.6976 0.7685 0.8052 0.7943 0.8544 0.8700 0.8802 0.8771 0.8084 0.8546 0.8636 0.8752
KADGH-D N/A N/A N/A N/A 0.8606 0.8710 0.8759 0.8749 N/A N/A N/A N/A

ADSH 0.8388 0.8590 0.8633 0.8651 0.8898 0.9280 0.9310 0.9390 0.8400 0.8784 0.8951 0.9055

Training time (in hour)

1 2 3 4 5 10 15 20

M
A

P

0.6

0.65

0.7

0.75

0.8

0.85

(a) 12 bits

Training time (in hour)

1 2 3 4 5 10 15 20 25

M
A

P

0.6

0.7

0.8

0.9

(b) 24 bits

Training time (in hour)

12345 10 15 20 25 30

M
A

P

0.6

0.7

0.8

0.9

(c) 32 bits

Training time (in hour)

12345 10 15 20 25 30 35 40

M
A

P

0.65

0.7

0.75

0.8

0.85

0.9

(d) 48 bits

Figure 3: Training time on MS-COCO dataset.

that Lin:V, LFH-D, SDH-D, COSDISH-D, KADGH-D can
outperform Lin:Lin, LFH, SDH, COSDISH, KADGH re-
spectively. This means that directly learning the binary hash
codes for database points is more accurate than the strate-
gies which use the learned hash function to generate hash
codes for database points. We can also find that ADSH can
outperform all the other baselines in most cases.

We also report Top-5K precision in Figure 2 on three
datasets. Once again, we can find that ADSH can signifi-
cantly outperform other baselines in most cases especially
for large code length.

Time Complexity

Furthermore, we compare our ADSH to deep hashing base-
lines by adopting the whole database as the training set on
MS-COCO dataset. The results are shown in Figure 3. Here,
DSH, DHN and DPSH denote the deep hashing baselines
with 10,000 sampled points for training. DSH-D, DHN-D
and DPSH-D denote the counterparts of the corresponding
deep hashing baselines which adopt the whole database for
training. We can find that if the whole database is used for
training, it need more than 10 hours for most baselines to
converge. Hence, we have to sample a subset for training
on large-scale datasets. From Figure 3, we can also find that
to achieve similar accuracy, our ADSH is much faster than
all the baselines, either with sampled training points or with
the whole database. In addition, ADSH can achieve a higher
accuracy than all baselines with much less time.

Sensitivity to Parameters

Figure 4 presents the effect of the hyper-parameters γ and
the number of query points (m) for ADSH on MS-COCO
dataset, with binary code length being 24 bits and 48 bits.
From Figure 4 (a), we can see that ADSH is not sensitive
to γ in a large range with 1 < γ < 500. Figure 4 (b)
presents the MAP results for different number of sampled
query points (m) on MS-COCO dataset. We can find that

0.01 0.1 1 10 100 500 1000

M
A

P

0.84

0.85

0.86

0.87

(a) γ

100 500 1000 2000 3000

M
A

P

0.81

0.82

0.83

0.84

0.85

0.86

0.87

(b) m

Figure 4: Hyper-parameters on MS-COCO dataset.

better retrieval accuracy can be achieved with larger number
of sampled query points. Because larger number of sampled
query points will result in higher computation cost, in our
experiments we select a suitable number to get a tradeoff be-
tween retrieval accuracy and computation cost. By choosing
m = 2000, our ADSH can significantly outperform all other
deep supervised hashing baselines in terms of both accuracy
and efficiency.

Conclusion

In this paper, we propose a novel deep supervised hash-
ing method, called ADSH, for large-scale nearest neighbor
search. To the best of our knowledge, this is the first deep
supervised hashing method which treats query points and
database points in an asymmetric way. Experiments on real
datasets show that ADSH can achieve the state-of-the-art
performance in real applications.

Acknowledgement

This work is supported by the NSFC (61472182), the key re-
search and development program of Jiangsu (BE2016121),
and a fund from Tencent.

3348

References

Andoni, A., and Indyk, P. 2006. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions.
In FOCS, 459–468.

Andoni, A., and Razenshteyn, I. P. 2015. Optimal data-
dependent hashing for approximate near neighbors. In
STOC, 793–801.

Chatfield, K.; Simonyan, K.; Vedaldi, A.; and Zisserman, A.
2014. Return of the devil in the details: Delving deep into
convolutional nets. In BMVC.

Chua, T.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng, Y.
2009. NUS-WIDE: a real-world web image database from
national university of singapore. In CIVR.

Dasgupta, S.; Stevens, C. F.; and Navlakha, S. 2017. A neu-
ral algorithm for a fundamental computing problem. Science
358(6364):793–796.

Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S.
2004. Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, 253–262.

Gionis, A.; Indyk, P.; and Motwani, R. 1999. Similarity
search in high dimensions via hashing. In VLDB, 518–529.

Gong, Y., and Lazebnik, S. 2011. Iterative quantization: A
procrustean approach to learning binary codes. In CVPR,
817–824.

Heo, J.; Lee, Y.; He, J.; Chang, S.; and Yoon, S. 2012. Spher-
ical hashing. In CVPR, 2957–2964.

Jiang, Q.-Y., and Li, W.-J. 2015. Scalable graph hashing
with feature transformation. In IJCAI, 2248–2254.

Kang, W.-C.; Li, W.-J.; and Zhou, Z.-H. 2016. Column
sampling based discrete supervised hashing. In AAAI, 1230–
1236.

Kong, W., and Li, W.-J. 2012. Isotropic hashing. In NIPS,
1655–1663.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1106–1114.

Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Master’s thesis, University of Toronto.

Kulis, B., and Grauman, K. 2009. Kernelized locality-
sensitive hashing for scalable image search. In ICCV, 2130–
2137.

Lai, H.; Pan, Y.; Liu, Y.; and Yan, S. 2015. Simultaneous
feature learning and hash coding with deep neural networks.
In CVPR, 3270–3278.

Li, W.-J.; Wang, S.; and Kang, W.-C. 2016. Feature learn-
ing based deep supervised hashing with pairwise labels. In
IJCAI, 1711–1717.

Lin, G.; Shen, C.; Shi, Q.; van den Hengel, A.; and Suter,
D. 2014a. Fast supervised hashing with decision trees for
high-dimensional data. In CVPR, 1971–1978.

Lin, T.; Maire, M.; Belongie, S. J.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014b. Microsoft
COCO: common objects in context. In ECCV, 740–755.

Liu, W.; Wang, J.; Kumar, S.; and Chang, S. 2011. Hashing
with graphs. In ICML, 1–8.

Liu, W.; Wang, J.; Ji, R.; Jiang, Y.; and Chang, S. 2012.
Supervised hashing with kernels. In CVPR, 2074–2081.

Liu, W.; Mu, C.; Kumar, S.; and Chang, S. 2014. Discrete
graph hashing. In NIPS, 3419–3427.

Liu, H.; Wang, R.; Shan, S.; and Chen, X. 2016a. Deep
supervised hashing for fast image retrieval. In CVPR, 2064–
2072.

Liu, H.; Ji, R.; Wu, Y.; and Liu, W. 2016b. Towards optimal
binary code learning via ordinal embedding. In AAAI, 1258–
1265.

Neyshabur, B.; Srebro, N.; Salakhutdinov, R.; Makarychev,
Y.; and Yadollahpour, P. 2013. The power of asymmetry in
binary hashing. In NIPS, 2823–2831.

Norouzi, M.; Fleet, D. J.; and Salakhutdinov, R. 2012. Ham-
ming distance metric learning. In NIPS, 1070–1078.

Shen, F.; Liu, W.; Zhang, S.; Yang, Y.; and Shen, H. T.
2015a. Learning binary codes for maximum inner product
search. In ICCV, 4148–4156.

Shen, F.; Shen, C.; Liu, W.; and Shen, H. T. 2015b. Super-
vised discrete hashing. In CVPR, 37–45.

Shen, F.; Gao, X.; Liu, L.; Yang, Y.; and Shen, H. T. 2017.
Deep asymmetric pairwise hashing. In MM, 1522–1530.

Shi, X.; Xing, F.; Xu, K.; Sapkota, M.; and Yang, L. 2017.
Asymmetric discrete graph hashing. In AAAI, 2541–2547.

Song, D.; Liu, W.; Ji, R.; Meyer, D. A.; and Smith, J. R.
2015. Top rank supervised binary coding for visual search.
In ICCV, 1922–1930.

Vedaldi, A., and Lenc, K. 2015. Matconvnet: Convolutional
neural networks for MATLAB. In MM, 689–692.

Wang, J.; Liu, W.; Sun, A. X.; and Jiang, Y. 2013. Learning
hash codes with listwise supervision. In ICCV, 3032–3039.

Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In NIPS, 1753–1760.

Xia, R.; Pan, Y.; Lai, H.; Liu, C.; and Yan, S. 2014. Super-
vised hashing for image retrieval via image representation
learning. In AAAI, 2156–2162.

Xie, L.; Shen, J.; and Zhu, L. 2016. Online cross-modal
hashing for web image retrieval. In AAAI, 294–300.

Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In SIGIR, 18–25.

Zhang, P.; Zhang, W.; Li, W.-J.; and Guo, M. 2014. Super-
vised hashing with latent factor models. In SIGIR, 173–182.

Zhang, R.; Lin, L.; Zhang, R.; Zuo, W.; and Zhang, L. 2015.
Bit-scalable deep hashing with regularized similarity learn-
ing for image retrieval and person re-identification. TIP
24(12):4766–4779.

Zhao, F.; Huang, Y.; Wang, L.; and Tan, T. 2015. Deep
semantic ranking based hashing for multi-label image re-
trieval. In CVPR, 1556–1564.

Zhu, H.; Long, M.; Wang, J.; and Cao, Y. 2016. Deep hash-
ing network for efficient similarity retrieval. In AAAI, 2415–
2421.

3349

