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Asymmetric Dynamics between Uncertainty and Unemployment Flows in the 

United States 

 

 

Abstract 

This paper examines how different uncertainty measures affect the unemployment level, inflow, 

and outflow in the U.S. across all states of the business cycle. We employ linear and nonlinear 

causality-in-quantile tests to capture a complete picture of the effect of uncertainty on U.S. 

unemployment. To verify whether there are any common effects across different uncertainty 

measures, we use monthly data on four uncertainty measures and on U.S. unemployment from 

January 1997 to August 2018. Our results corroborate the general predictions from a search and 

matching framework of how uncertainty affects unemployment and its flows. Fluctuations in 

uncertainty generate increases (upper-quantile changes) in the unemployment level and in the 

inflow. Conversely, shocks to uncertainty have a negative impact on U.S. unemployment 

outflow. Therefore, the effect of uncertainty is asymmetric depending on the states (quantiles) 

of U.S. unemployment and on the adopted unemployment measure. Our findings suggest state-

contingent policies to stabilize the unemployment level when large uncertainty shocks occur. 

	
Keywords: Uncertainty; Unemployment; Nonlinear dynamics; Granger-causality; Quantile 

regression; U.S. labor market. 

JEL Classification: C22; D80; E24; E32; J64. 
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1. Introduction 

	
Theoretical and empirical work has shown that uncertainty affects many aspects of the 

economy. For example, uncertain times make firms postpone their investments to more certain 

times (Bernanke, 1983; Dixit and Pindyk, 1994; Calcagnini and Saltari, 2000; Bloom et al., 

2007; Antonakakis et al., 2015). Uncertainty also makes households reduce their consumption 

(Zhang and Wan, 2004), and it has an adverse effect on economic activity (Pastor and Veronesi, 

2012; Bachmann et al., 2013; Pastor and Veronesi, 2013; Fernández-Villaverde et al., 2015; 

Leduc and Liu, 2016; Basu and Bundick, 2017; Choi, 2017). Moreover, uncertainty affects the 

unemployment level (Bloom, 2009; Abaidoo, 2012; Bachmann and Bayer, 2013; Ghosal and 

Ye, 2015; Jurado et al., 2015; Baker et al., 2016; Bloom et al., 2018; Mumtaz, 2018), and the 

effect of uncertainty on the unemployment level seems to be nonlinear over the business cycle 

(Morley and Piger, 2012; Caggiano et al., 2014; Nodari, 2014; Jones and Enders, 2016; Scotti, 

2016; Caggiano et al., 2017a; Chatterjee, 2019). Nevertheless, empirical work on the 

relationship between the flows of unemployment and uncertainty is lacking,1 even though 

researchers have pointed out the importance of labor market flows when analyzing 

unemployment in general (Mortensen and Pissarides, 1994; Shimer, 2012; Elsby et al., 2013; 

Schaal, 2017). The unemployment rate is the ratio of the labor force without a job, which is a 

nonlinear result of two flows: the rate of job separation (inflow) and the rate of job finding 

(outflow). To the best of our knowledge, this is the first paper that analyzes how financial and 

economic uncertainties relate to these flows of unemployment and whether the observed 

nonlinear relationship between uncertainty and unemployment level can be explained by a 

linear relation between uncertainty and unemployment flows. 

 

This paper examines how different uncertainty measures affect flows in and out of U.S. 

unemployment, whether those relationships are nonlinear, and if there are any common effects 

across uncertainty measures. Considering unemployment flows is important because few policy 

measures can be targeted directly at the unemployment level. Conversely, policy measures that 

affect hiring or firing rates are feasible. Moreover, previous studies on uncertainty and 

unemployment have used various measures of uncertainty, but little is known about how 

																																																													
1	Schaal (2017) does construct and test a search and matching model in which the effect of uncertainty on 

unemployment flows are considered. To our knowledge, other articles that deal with the uncertainty-
unemployment relationship (e.g., Bloom, 2009; Abaidoo, 2012; Bachmann and Bayer, 2013; Jurado et al., 2015; 
Baker et al., 2016; Bloom et al., 2018; Mumtaz, 2018) all focus on the unemployment level instead of flows.	
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different types of uncertainty affect unemployment comparatively. To address this issue, we 

need a comparative assessment of how various types of uncertainty relate to unemployment and 

its flows.  

 

Furthermore, previous research papers on the impacts of uncertainty on U.S. unemployment 

have focused on effects at the mean or on impulse responses (e.g. Bloom, 2009; Schaal, 2017). 

To achieve a broader picture, we need to evaluate how the effects of uncertainty differ across 

the entire conditional distribution of unemployment and its flows. Tail-causality may be 

different than mean-causality. For instance, Lee & Yang (2012) found strong Granger-causality 

running from money to income in the U.S. in the tails of the distribution; yet there was only 

weak causality at the mean. Besides, we fully analyze Granger-causality between uncertainty 

and unemployment as the quantiles fully determine Granger-causality in distribution. Finally, 

the quantile-causality analysis verifies whether effects of uncertainty on unemployment are 

symmetric over different states (quantiles) of the U.S. economy. To our knowledge, only the 

work of Gupta et al. (2018) analyzes how uncertainty shocks affect the U.S. economic activity 

using a quantile regression framework. However, they overlook Granger-causality-in-quantile 

tests between uncertainty and unemployment and nonlinear specifications. Our results are 

relevant for scholars and policymakers alike to develop useful macroeconomic models and 

make accurate forecasts, and detailing the asymmetric dynamics on the uncertainty-

unemployment relationship will help both of these endeavors. 

 

In sum, we address three questions concerning the relationship between uncertainty and 

unemployment that have not been tackled in earlier work: (i) how does uncertainty relate to 

unemployment inflows and outflows? (ii) Which type of uncertainty affects the inflows and 

outflows of unemployment? And, (iii) are the impacts of uncertainty to unemployment 

significantly nonlinear along the business cycle? We contribute to the previous literature by 

examining the relationship between various uncertainty measures and unemployment inflows 

and outflows, and by utilizing a methodological approach proposed by Troster (2018), which 

analyzes Granger-causality between two variables over the entire conditional distribution. We 

use monthly data on unemployment level, inflow, and outflow in the U.S. over a period of 21 

years. For the same period, we use four different uncertainty measures to capture financial, 

political, and geopolitical uncertainties (Volatility Index, Financial Stress Index, U.S. 

Economic Policy Uncertainty Index, and Global Economic Policy Uncertainty Index). 
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In line with macroeconomic theory, we find that fluctuations in uncertainty lead to increases in 

the unemployment level, increases in inflow, and decreases in outflow. These effects are 

stronger for inflow than for outflow, indicating that the inflow is the main driver in the 

connection between uncertainty and the unemployment level. U.S. uncertainty measures exhibit 

a stronger connection to all three unemployment indicators compared with the global 

uncertainty indicator. Our findings corroborate previous results of nonlinear impacts of 

uncertainty on the unemployment level (Caggiano et al., 2014; Nodari, 2014; Caggiano et al., 

2017a, 2017b). However, the relation between uncertainty and unemployment flows is linear. 

We also find that uncertainty enhances the out-of-sample predictability of unemployment at 

extreme states (quantiles) of the U.S. economy. 

 

The rest of this paper is organized as follows. Section 2 describes the theoretical framework of 

the effects of uncertainty on unemployment. Section 3 explains the econometric methodology 

with a particular focus on the quantile Granger-causality testing approach. Section 4 presents 

the results and discussion. Finally, Section 5 concludes the paper. 

 

2. Theoretical Framework of the Uncertainty-Unemployment Relationship 

	
In modern labor market theory, unemployment is analyzed in a search and matching framework 

with frictions (Pissarides, 2000); this framework has been also used to examine  unemployment 

flow dynamics and firm characteristics (Davis et al., 2013), the effects of trade policy (Cosar et 

al., 2016), or life cycle wage growth (Lagakos et al., 2018), to name a few recent applications. 

These search and matching models focus on a matching function and acknowledge that it takes 

both time and money for a worker and a firm to find a mutually beneficial match. A significant 

characteristic of these search and matching models is that transitions between different states 

in the labor market are made explicit, e.g., the rates of job separation and job finding. For a 

more extensive survey of the search and matching literature and its role in macroeconomics, 

see Yashiv (2007). For our purposes, stating the relationship between the ins and outs of 

unemployment suffices to show why disaggregating the unemployment level is valid.  

 

Accounting for entry and exit from the labor force is outside the scope of this paper. Following 

Yashiv (2007), let 𝑢 be the ratio of unemployed workers in the economy, 𝜆 the rate of job 
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separation, and 𝑝 the probability of finding a job. Then, the change in unemployment between 

two arbitrary periods,	𝑢̇, can be expressed as 

 

𝑢̇ = 𝜆(1 − 𝑢) − 𝑝𝑢. (1) 
 

The unemployment rate between periods does not change when the economy is in a steady state, 

which means that 𝑢 can be represented by the following equation in equilibrium:  

 

𝑢 =
𝜆

𝜆 + 𝑝. 
(2) 

 

Equation (2) shows how closely related job separation, job finding, and the level of 

unemployment are. It also demonstrates how unemployment may be disaggregated into its two 

flows. Further, as 𝜆 and 𝑝 are the in- and outflows to unemployment	(𝑢), Equation (2) illustrates 

that the flows are nonlinearly related to unemployment in equilibrium. 

 

Next, what role does uncertainty play in these unemployment flows? If we assume some wage 

rigidity and a standard Mortensen and Pissarides (1994) search and matching framework with 

frictions, the immediate response to uncertainty is that firms adjust their current labor stock. If 

capital and wages are rigid, firms are unable to adjust them quickly in response to a change in 

uncertainty. Firms can either hire or fire workforce.  

 

Bloom (2014) argues that uncertainty influences the economy in general and unemployment in 

particular through three main channels: real option, risk premium, and risk aversion. As regards 

real option, suppose that the hiring decisions firms make are irreversible investments and that 

information necessary to pursue long-run projects comes over time so that waiting may improve 

hiring decision outcomes (i.e., there is uncertainty). Under these conditions, one can show that 

cyclical investment fluctuations will arise (Bernanke, 1983). This implies that firms would hire 

less people in periods of increased uncertainty because the returns on hiring workers would be 

uncertain and there would be an outside option, which is to wait for more information. Hence, 

the option value of delaying hiring decisions is high during periods of high uncertainty. If firms 

choose to wait for more information, the result is a reduced outflow out of unemployment in 

uncertain times. Firms may also be uncertain about the value of their current contracts during a 
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shock, which would increase the rate of separation for workers (for more details, see Chen and 

Funke, 2004). 

 

As regards risk premium and risk aversion, the perceived risk of investments is high when 

uncertainty is high, increasing risk premia, which will lower overall investments if people are 

risk averse. For instance, Panousi and Papanikolaou (2012) show that investments tend to drop 

in uncertain times, especially in firms where managers own a larger share of the firm. This 

implies that managers tend to be risk averse, especially when risks are not properly diversified, 

which is more common as CEO compensation packages have increasingly come to include 

incentives such as stocks and options in the firm (Hall and Liebman, 1998; Gayle et al., 2015). 

As these CEOs can be instrumental in large hiring and firing decisions, lower diversification in 

combination with fluctuations in uncertainty may have direct effects on a firm’s hiring and 

firing rates.  

 

All three channels generate the same predictions: If the labor decisions of firms are considered 

analogous to investment decisions, then increased uncertainty will lead to an increased 

unemployment level, an increased unemployment inflow, and a decreased unemployment 

outflow. These linear effects of uncertainty on 𝜆 and 𝑝 in Equation (2) imply that the theoretical 

impact of uncertainty on 𝑢 is nonlinear. These theoretical arguments explain the potential causal 

linkages between uncertainty and the unemployment flows. Such theoretical arguments would 

be difficult to construct between uncertainty and the unemployment level, without going 

through the inflow and the outflow to unemployment as they mostly affect the observed 

unemployment level. Therefore, considering unemployment flows is crucial to investigate the 

uncertainty-unemployment relationship.  

 

3. Linear and Nonlinear Granger-Causality Tests 

	
Let UNC0 = Z0 represent any of our four uncertainty measures, and UNE0 = Y0 represent any of 

our three unemployment measures. Let ℱ056 ≡ (ℱ0568 , ℱ056: ); ∈ ℝ> be the past information sets 

of Y0 and	Z0, with ℱ0568 ≡ (Y056, … , Y05>) and	ℱ056: ≡ (Z056,… , Z05>). We define the 

conditional distribution of Y0	given	ℱ056	as	F8A(y|ℱ056
8 , ℱ056: ). The null hypothesis of Granger-

non-causality from Z0(uncertainty) to Y0 (unemployment), denoted as Z ↛ Y,  can be defined as 

follows (Granger, 1969, 1980): 



	

	 7	

 

𝐻FG↛H ∶ 	 𝐹8A(𝑦|ℱL56
H , ℱL56G ) = 𝐹HM(𝑦|ℱL56

H ), ∀y ∈ ℝ. (3) 
 

Equation (3) defines Granger-non-causality in distribution, but certain studies only test for 

Granger-non-causality in mean, i.e. 

 

𝐸(𝑌L|ℱL56H , ℱL56G ) = 𝐸(𝑌L|ℱL56H ), almost surely, (4) 
 

where 𝐸(𝑌L|ℱ056H , ℱ056G ) and 𝐸(𝑌L|ℱ056H ) are the conditional means of 𝑌L given ℱ056 and ℱ056H ,   

respectively. Then, we first employ a linear F-test (of Granger-non-causality in mean) on the 

estimated coefficients of bivariate vector autoregressive (VAR) models, to test whether 

HF: βT = 0, for all j	=	1,…, q, as follows: 

 

𝑌L = 	U𝛼W𝑌L5W

X

W

+U𝛽W𝑍L5W

X

W

+ 𝜀L, (5) 

𝑍L = 	U𝛼W∗𝑌L5W

X

W

+U𝛽W∗𝑍L5W

X

W

+ 𝜀L∗,	 (6) 

	

where the selected lag orders minimize the Bayesian Information Criterion (BIC), and ε0 and 

ε0∗ are serially uncorrelated errors. To take into account heteroscedasticity in ε0 and ε0∗, we 

employ the MacKinnon and White (1985)’s robust estimator of the variance-covariance matrix 

of the residuals. In addition, we implement the residuals serial correlation test of Breusch (1978) 

and Godfrey (1978). 

 

To account for possible nonlinearities in the data, we perform the VAR parameter stability tests 

(SupF, AveF, and ExpF) of Andrews (1993), Andrews and Ploberger (1994), and Hansen 

(1997). Further, we apply Broock et al. (1996)’s BDS test that tests if VAR residuals are i.i.d. 

versus the alternative hypothesis of nonlinearity. If we reject the null hypothesis that the data 

are linear, we may also test for nonlinear Granger-non-causality in mean. Then, we test for 

nonlinear causality on the normalized VAR residuals, using the procedures developed by 

Hiemstra and Jones (1994) and Diks and Panchenko (2006). 
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For robustness, we consider multivariate mean-causality tests. First, we test for mean-causality 

in a multivariate VAR with an unemployment series and four uncertainty measures. Besides, 

we apply the Diks and Wolski (2016)’s test on multivariate VAR standardized residuals, to 

check for nonlinear causality in a multivariate VAR. 

 

Mean-causality overlooks possible relationships in the conditional tails of the distribution of	Y0; 

to provide a broader picture of the uncertainty-unemployment relationship, we employ tests of 

Granger-non-causality in quantiles, as they fully determine the distribution of the variable. The 

quantile-causality analysis verifies whether the uncertainty-unemployment relationship is 

symmetric over the conditional distribution of unemployment. The effects of uncertainty shocks 

on the U.S. unemployment rate are asymmetric along the business cycle (Caggiano et al., 2014, 

2017a). Moreover, the U.S. unemployment rate displays asymmetric dynamics across 

recessions and growth periods (Koop and Potter, 1999; Morley and Piger, 2012; Morley et al., 

2013). Thus, the quantile-causality procedure detects nonlinear or asymmetric relationships 

across the distribution, and it fully tests the null hypothesis of Equation (3). 

 

To verify the uncertainty-unemployment causality, we use the quantile-causality proposed by 

Troster (2018). This method has some advantages beyond illuminating quantile-causality 

between series. The most relevant advantages for our purposes are that it enables nonlinear 

quantile-regression specifications, it has good finite-sample power, and it is robust to non-

normality in the data. The following section follows closely the explanation of Granger 

causality in quantiles from Troster (2018) and Troster et al. (2018). The reader is asked to 

consult these references for a detailed explanation of the methodology. We provide a condensed 

description of this methodology as follows. 

 

Let Q_
8,:(∙ 	 |ℱ056H , ℱ056G ) be the τ-th quantile of	F8A(∙ |ℱ056

H , ℱ056G ), Equation (3) can then be 

expressed as 

 

𝐻F
bc:G↛H ∶ 	𝑄e

H,G(𝑌L|ℱ056H , ℱ056G ) = 𝑄eH(𝑌L|ℱ056H ),	a.s., 	∀𝜏 ∈ (0,1). (7) 
 

Troster (2018) shows that 𝐻F in Equation (7) can be tested with the test statistic 

𝑆i =
1
𝑇𝑛U

l𝜓⋅W; 𝑾𝜓⋅Wl
p

Wq6

, (8) 
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where 𝑾 is a T × T matrix with elements w0,u = exp	[-0.5(ℱ056 − ℱu56)w] and 𝜓⋅W;  is the j-th 

column of Ψ, a T × n matrix with elements ψ},T = 1 ~Y} − m~ℱ}56H , θ��τT�� ≤ 0� − τT for a 

grid of n quantiles �𝜏W�Wq6
n

⊂ (0,1), where 1(⋅)	is an indicator function, and m(ℱ}56H , θ�(τT)) is 

a parametric quantile regression model for the conditional 𝜏-quantile of 𝑌�, with ℳ =

�𝑚�⋅, 𝜃(𝜏)�l𝜃(⋅): 𝜏 ↦ 𝜃(𝜏) ∈ Θ ⊂ ℝX,		for	𝜏 ∈ (0,1)	�. We assume correct specification of the 

quantile regression model under 𝐻F of Equation (7); then, we calculate the test statistic	S� of 

Equation (8) by employing a subsampling method proposed by Troster (2018) with an optimal 

subsample length of b = �kT2/5�, where k is a constant integer and [⋅] is the floor function 

(Sakov and Bickel, 2000).  

 

We first use the S�-test in Equation (8) to test for quantile-causality on the distribution of 	Y0, 

using linear quantile autoregressive (QAR) models m�ℱ056H , θ�(τ)�:	Q_8(Y0|ℱ056H ) =

	∑ θℓ(τ)Y05�ℓ , for a grid of quantiles �τT�T
�
⊂ (0,1) and ℓ = {1, 2, 3}, under 𝐻F of Equation (7). 

Further, we consider the nonlinear conditional autoregressive value-at-risk (CAViaR) models 

of Engle and Manganelli (2004) under the null in Equation (7). The CAViaR models specify 

an autoregressive process of the quantiles, obtaining reliable performance compared with 

alternative models (Bao et al., 2006; Yu et al., 2010; Chen et al., 2012; Jeon and Taylor, 2013). 

Thus, the symmetric absolute value (SAV) and the asymmetric slope (AS) specifications are 

also employed under the null in Equation (7) as follows: 

 

SAV: 𝑄eH(𝑌L|ℱ056H ) = 𝛼(𝜏) + 	𝛽(𝜏)𝑄eH(𝑌L56|ℱ056H ) + 𝛾(𝜏)|𝑌L56|, (9) 

AS: 𝑄eH(𝑌L|ℱ056H ) = 𝛼(𝜏) + 	𝛽(𝜏)𝑄eH(𝑌L56|ℱ05wH ) + 𝛾(𝜏)(𝑌L56)� + 𝛿(𝜏)(𝑌L56)5, (10) 
 

where (Y056)5 = −min	{Y056,	0} and (Y056)� = max{Y056,	0}. To provide further motivation 

for the use of nonlinear CAViaR models under 𝐻F	in Equation (7), we compare 120 recursive 

monthly out-of-sample forecasts of certain quantiles of the distribution for each unemployment 

series under linear and nonlinear specifications. We verify whether nonlinear quantile 

specifications enhance out-of-sample predictability of forecasts of certain quantiles of the 

distribution. 
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Finally, for robustness, we also apply the Sup-Wald quantile-causality test of Koenker and 

Machado (1999). We estimate a linear quantile model for an unemployment measure,	𝑌L, that 

depends on a lagged uncertainty index, 𝑍L56, and test whether HF:	β(τ) = 0 over a grid of 

quantiles �τT�T
�
⊂ (0,1) as follows: 

 

𝑄eH
∗(𝑌L|ℱ056G ) = 𝛼(𝜏) + 	𝛽(𝜏)𝑍L56. (11) 

 

4. Results and Discussion 

	
Our monthly seasonally adjusted data on uncertainty and unemployment covers a 21-year 

period from January 1997 to August 2018. The selection of the sample period was due to data 

availability and to the methodological need for a balanced data set. Our sample period 

encompasses the period of the great recession and thus covers both calm and turbulent economic 

periods. We retrieved data on unemployment level (ULV), unemployment inflow (INU), and 

unemployment outflow (OUT) of the U.S. from the Current Population Survey (CPS) of the 

Bureau of Labor Statistics. The CPS is a rotating survey of a stratified sample of American 

households, from which the Bureau of Labor Statistics estimates a number of different 

unemployment measures each month.  

 

We also use data on four measures of economic uncertainty, the St. Louis Fed Financial Stress 

Index (FSI), the Global and United States Economic Policy Uncertainty Indices (GPU and EPU, 

respectively), and the Chicago Board Options Exchange Volatility Index (VIX). We obtained 

the FSI and VIX indices from the Federal Reserve Bank of St. Louis 

(https://fred.stlouisfed.org/). The GPU and EPU indices, developed by Baker et al. (2016), were 

retrieved from the authors’ website (https://www.policyuncertainty.com/). 

 

The FSI is a composite index comprised of several different interest rates and yield spread 

series. The VIX series calculates the S&P 500 expected volatility, i.e., financial uncertainty 

about the top firms in the U.S. economy. It is a widespread proxy for macroeconomic 

uncertainty in the U.S. (Bloom, 2009). The U.S. EPU index of Baker et al. (2016) is a composite 

indicator comprised of information from major U.S. newspaper publications and survey data. 

U.S. policy uncertainty has been shown to affect general investments (Jens, 2017), housing 

market returns (Chow et al., 2017), and unemployment (Baker et al., 2016). We also employ 
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the GPU index that is constructed by taking the population weighted average of the EPU in 20 

countries (Baker et al., 2016). The GPU is a measure of global economic policy uncertainty that 

considers global uncertainty while the other three indices are domestic to the U.S.  

 

Table 1 displays summary statistics. The skewness and kurtosis measures indicate that all 

uncertainty and unemployment series are not normally distributed, with the exception of EPU. 

The Jarque-Bera test confirms these findings at the 5% level. However, the quantile Granger-

causality method we will employ is robust to asymmetrically distributed data. Further, we find 

that the unemployment measures are nonstationary in level, while most of the uncertainty 

measures are stationary, at the 5% significance level. The exception is FSI where the results of 

the unit root tests of Dickey and Fuller (1979) and Elliott et al. (1996) disagree. Since both unit-

root tests indicate that FSI is stationary in differences, we employ the first difference of FSI for 

robustness. Thus, we take the first difference on all unemployment series and on FSI, and we 

use GPU, EPU, and VIX in level. Figure 1 plots the unemployment series. It reports a difference 

of an order of magnitude in scale between the differenced unemployment level graph and the 

differenced flow graphs.  

	

Next, we employ mean-causality tests. Panel A of Table 2 displays the results of conventional 

Granger causality tests running from the four uncertainty measures to unemployment and its 

flows, using bivariate VAR models of Equations (5)-(6). All VAR residuals are serially 

uncorrelated at the 5% level. We uncover a weak connection from uncertainty measures to 

unemployment changes by applying mean-causality tests. We find evidence that VIX affects 

changes in ULV at the 5% significance level. The EPU and VIX	lead	ΔINU at the 5% and at 

the 10% significance levels, respectively. Further, shocks to FSI affect ΔOUT at the 10% level. 

 

Panel B of Table 2 reports the BDS test results on the VAR residuals. We cannot reject that the 

VAR residuals are i.i.d. for the bivariate VAR models between unemployment series and 

uncertainty indices at the 5% level. Conversely, the VAR parameter stability tests reject the null 

of stable parameters on all VAR models with ΔULV at the 5% significance level. Further, the 

VAR parameter stability tests reject the null of stable parameters for the bivariate VAR models 

with ΔINU and GPU, EPU, and VIX, at the 5% level. Therefore, the results of parameter 

stability tests suggest applying nonlinear mean-causality tests on the VAR models with ΔULV 

and ΔINU. 
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Panel A of Table 3 shows the results of the nonlinear Granger-non-causality tests in mean. Both 

test results find no significant evidence of nonlinear causality in mean from uncertainty indices 

to ΔULV and ΔINU at the 5% significance level. Panel B of Table 3 reports the test results of 

multivariate Granger-non-causality in mean. For each unemployment series, we estimate a VAR 

including all the four uncertainty indices. For all multivariate VARs, the lag length of one was 

selected and the residuals are serially uncorrelated at the 5% significance level.  

 

Conforming to the findings presented in Table 2, Panel B of Table 3 reports that VIX 

significantly affects ΔULV. Further, shocks to FSI lead to changes in ULV when we control for 

the other uncertainty indices. The VIX still leads to changes in INU, but we uncover no causality 

in mean from EPU to ΔINU in a multivariate VAR. In addition, both ΔFSI and GPU indices 

lead to changes in INU at the 5% level, controlling for other uncertainty indices. In contrast to 

the results of Table 2 (Panel A), the multivariate tests indicate no causality from ΔFSI to ΔOUT 

at the 10% level, but the VIX leads ΔOUT at the 1% level. Finally, the nonlinear multivariate 

tests do not find nonlinear causality from uncertainty to changes in unemployment, 

corroborating the results presented in the Panel A of Table 3. 

 

Conventional Granger-causality tests in mean are limited because they consider only causality 

at the mean of the unemployment series distribution. Under this limitation, the results presented 

in Tables 2-3 still provide sparse evidence supporting Granger-causality from uncertainty to 

unemployment changes. 

 

To address these limitations, we now turn to the quantile Granger-causality tests. Table 4.A 

shows the results of the ST test in Equation (8), testing the null hypothesis of Granger-non-

causality from uncertainty to the unemployment level (∆ULV) in a given quantile τ for three 

different lag specifications, L ∈ {1, 2, 3}. The resulting subsample size to calculate ST is b = 46, 

for 𝑏 = �𝑘𝑇2/5� with k = 5, but our findings are similar for other values of the constant k. Bold 

typeface p-values denote rejection of the null hypothesis at the 1% and 5% levels. We omitted 

the results for a grid of twenty quantiles to preserve space; they can be found in the 

supplementary material and do not change our conclusions.  
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The rejection of 𝐻F	in Equation (7) at two upper quantiles 0.7 and 0.8 indicates that fluctuations 

in uncertainty lead to positive shocks to the unemployment level. We find no support for 

Granger-causality from uncertainty indices to changes in the unemployment level across the 

whole distribution however, except for the VIX-∆ULV causality, but this result depends on the 

autoregressive lag specifications.  

 

Tables 4.B-4.C report quantile-causality test results for the two unemployment flows we 

consider. As we would expect from the results on changes in the unemployment level, 

fluctuations in uncertainty lead to positive shocks in inflow (Table 4.B). When we examine 

causality across the whole of the conditional distribution of inflow, we find support for Granger-

causality for the two and three-lag autoregressive model specifications for most uncertainty 

measures. As in the results on changes in the unemployment level, these results are robust to 

different quantiles used (Table A.2 in the Supplementary Material provides the twenty-quantile 

analysis). Overall, the connection between uncertainty and inflow is stronger than between 

uncertainty and level. 

 

We present the results on outflow (∆OUT) in Table 4.C, where we find significant Granger-

causality from uncertainty indices to outflow in the quantiles 0.1, 0.4, and 0.5. We find sparse 

evidence of causality across the whole conditional distribution of outflow, with only a few 

uncertainty measures showing significant results that are dependent on lag specification. 

Uncertainty precedes negative shocks to unemployment outflow, but the results are weaker than 

for unemployment level and inflow. 

 

For comparison, Figure 2 presents the estimated quantile-regression coefficients of lagged 

uncertainty indices together with their 95% confidence intervals as displayed in Equation (11). 

We only find significant causality, at the 5% significance level, from EPU to ∆ULV (at median 

quantiles), from VIX to ∆ULV (at all quantiles), and from VIX to ∆INU (at the upper-tail 

quantiles of 0.7 and 0.8). 

 

We now analyze the ST test results when we specify nonlinear CAViaR models under 𝐻F in (7). 

To highlight the benefits of applying nonlinear models, we compare quantile forecasts for 

ΔULV, ΔINU, and ΔOUT using linear and nonlinear quantile regression models. We compare 

the root mean squared error (RMSE) of 120 recursive monthly out-of-sample forecasts of 

certain quantiles of the distribution. We perform the first forecast on September 1, 2008, and 
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we increase our in-sample period at each monthly forecast. We consider the following quantiles 

τ	=	{0.1, 0.3, 0.5, 0.7, 0.9}, in which we found significant quantile-causality from uncertainty 

indices to unemployment.   

 

Table 5 presents the RMSE of the recursive quantile forecasts. The linear quantile models 

outperform the nonlinear CAViaR models for the quantiles τ	=	{0.3, 0.5} and the upper-tail 

quantile τ	=	0.7. Conversely, the CAViaR models provide a lower RMSE for the tail quantiles 

τ	=	0.1 and τ	=	0.9 than linear quantile autoregressive models. Thus, we find evidence that 

CAViaR models have a better specification for the extreme tail quantiles of unemployment 

series. 

 

Table 6.A displays the quantile-causality test results for unemployment changes using nonlinear 

specifications under 𝐻F in Equation (7). There is still causality from ΔFSI to ΔULV at the 

quantile τ	=	0.7 at the 10% level, but both GPU and EPU do not lead ΔULV at all quantiles. On 

the other hand, VIX leads ΔULV at all quantiles greater than τ	=	0.1, when we apply nonlinear 

quantile specifications. Therefore, nonlinear quantile models uncover a strong pattern of VIX-

ΔULV causality. 

 

Tables 6.B and 6.C show the quantile-causality test results for unemployment inflow and 

outflow using nonlinear quantile specifications under the null hypothesis. In line with the results 

displayed in Table 3, we find absence of nonlinear quantile-causality from uncertainty indices 

to unemployment inflow and outflow. 

 

To highlight the usefulness of our findings, we check whether the observed uncertainty-

unemployment causality improves the out-of-sample predictability to unemployment. In-

sample predictability of uncertainty does not necessary entail out-of-sample forecast 

improvements. We consider the quantiles with significant uncertainty-unemployment 

causality	τ	=	{0.1, 0.3, 0.5, 0.7, 0.9}. We perform 120 recursive monthly out-of-sample 

forecasts on these quantiles, using a QAR(1) model and an enlarged model that includes a past 

uncertainty index. We perform the first forecast on September 1, 2008, and we increase our in-

sample period at each monthly forecast. To compare the forecast models, we employ the 

modified Diebold and Mariano (1995)’s test of Harvey et al. (1997) and the Clark and West 
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(2007)’s test of equal forecast accuracy. For both tests, the quantile-forecasts errors of both 

forecast models are equal under the null hypothesis. 

 

Table 7 illustrates the out-of-sample predictability test results. The observed causality from 

ΔFSI to ΔULV at upper-tail quantiles does not help improve the predictability to ΔULV. 

Conversely, the observed GPU-ΔULV nonlinear causal relationship at the lower-tail 

quantile	τ=0.1 improves the out-of-sample predictability to ΔULV, at the 5% level. Further, the 

Granger-causality from VIX to ΔULV enhances the out-of-sample predictability to ΔULV at 

the quantiles τ	=	{0.3, 0.5, 0.7, 0.9}. These results corroborate the nonlinear quantile-causality 

findings presented in Table 6.A, where the causality from VIX to ΔULV is strong at all quantiles 

except for the lower-tail quantile of τ=0.1. 

 

Table 7 also shows that lagged values of GPU, EPU, and VIX improve the out-of-sample 

predictability of ΔINU at the lower-tail quantile τ=0.1, conforming to the quantile-causality 

outcomes displayed in Table 4.B. Nevertheless, lagged values of ΔFSI do not help predict 

ΔINU, at the 5% level. Finally, the observed causality from GPU and EPU to ΔOUT is 

significant to the out-of-sample predictability of ΔOUT at the lower-tail quantiles of τ=0.1 and 

τ=0.3. 

 

Consistent with Gupta et al. (2018), the impacts of uncertainty depend on the states (quantiles) 

of the U.S. economy. Further, the effects of uncertainty on U.S. unemployment depend on the 

uncertainty measure and on the specification of the quantile regression model. We also provide 

evidence of improvements in out-of-sample predictability of uncertainty to the unemployment 

level; these findings corroborate the results of Segnon et al. (2018), who showed that uncertainty 

improves the precision of U.S. GNP growth forecasts. Our findings are also consistent with 

Caggiano et al. (2014), Jones and Enders (2016), Caggiano et al. (2017a, 2017b), and Chatterjee 

(2019), among others, who found that the reaction of U.S. unemployment to uncertainty is 

asymmetric along the business cycle. 

 

5. Conclusion and Policy Implications 

	
Uncertainty affects almost all decisions in an economy. In this paper, we explore how 

uncertainty influences decisions about hiring and firing in the U.S. labor market. Our findings 
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indicate that uncertainty leads to positive shocks in the unemployment level, which reaffirms 

certain results of earlier research (Bloom, 2009; Abaidoo, 2012; Bachmann and Bayer, 2013; 

Jurado et al., 2015; Baker et al., 2016; Bloom et al., 2018; Mumtaz, 2018). We then break down 

the unemployment level into inflow that is a result of firing (or quitting on the worker’s side) 

and outflow that is a result of hiring (or job finding on the worker’s side). We see that 

uncertainty leads to positive shocks on unemployment inflow, in line with the search and 

matching model of Schaal (2017), while uncertainty negatively affects U.S. unemployment 

outflow. As our findings are consistent across different measures of uncertainty, these measures 

seem to succeed in measuring economic uncertainty about the future in a more general sense. 

We corroborate the previously documented nonlinear impacts of uncertainty on the 

unemployment level (Caggiano et al., 2014; Nodari, 2014; Caggiano et al., 2017a, 2017b). In 

addition, we find that uncertainty and unemployment flows are linearly connected.  

 

Our results corroborate the general predictions from a search and matching framework of how 

uncertainty affects unemployment and its flows. Specifically, the findings that fluctuations in 

different types of uncertainty leads to positive shocks in unemployment level, positive shocks 

to inflow, and negative (but weaker, or more delayed) shocks to outflow are all in line with 

theory. Further, the finding that the uncertainty-unemployment level relation is nonlinear while 

the uncertainty-unemployment flows relation is linear is also in line with theory. 

 

Our main policy implication is that government and policymakers should strive for economic 

stability insofar as possible, if they wish to manage the unemployment level of the economy. 

The differences in effects we observe across four uncertainty measures indicate that such 

stability is especially important in the financial sector, which our results show that has the 

strongest connection to unemployment and its flows, but it is also important in domestic and 

global economic policy. Reducing the fluctuations in uncertainty will lead to a more stable rate 

of job separation, because uncertainty leads to positive shocks to unemployment inflow. In 

addition, uncertainty negatively affects outflow. The level of unemployment at any given time 

is a positive function of inflow and a negative function of outflow, which means that the 

heterogeneous linkage between uncertainty and flows induces increases in the unemployment 

level. Thus, reducing the fluctuations in uncertainty will help control both of the flows in a way 

that reduces the level of unemployment. This analysis is complicated by the nonlinear relation 

between uncertainty and unemployment level and, as we demonstrate, becomes much clearer 

once flows are considered.  
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Certain authors (e.g. Bloom, 2009; Basu and Bundick, 2017; Caggiano et al., 2017b) 

recommend designing monetary and fiscal policies that manage fluctuations in uncertainty; our 

results indicate that such stabilization policies would have positive effects for the labor market 

as well. However, since monetary and fiscal policy interventions may be ineffective in episodes 

of heightened uncertainty (Bloom, 2009; Bloom et al., 2018), insofar as these results apply to 

the labor market, we would caution against reactive policies that counterbalance uncertainty 

impacts on unemployment. Therefore, implementing more direct employee protection subsidies 

that are enabled during uncertain times is a possible intervention as long as it is not done 

reactively. Another way for policymakers to reduce fluctuations in uncertainty is to increase the 

overall transparency in the regulatory process and to work towards more long-term plans than 

those that are typically enacted, so that businesses and other economic actors face less 

uncertainty about their future.  

 

In sum, this paper highlights the importance of using unemployment flow data when analyzing 

issues related to unemployment, because in doing so we have been able to provide a 

comprehensive picture of how economic uncertainty relates to unemployment. Furthermore, we 

have shown that while the relation between uncertainty and the unemployment level is 

nonlinear, it can be explained through a linear relation between uncertainty and unemployment 

flows, which in turn are nonlinearly connected to the unemployment level. Our findings are 

important for policymakers who need to incorporate the uncertainty measures to predict the 

inflows and outflows to unemployment. 
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Tables and Figures 
 
 

Table 1. Descriptive Statistics	

 Unemployment Uncertainty 
 ULV INU OUT FSI GPU EPU VIX 

Mean 9.04 7.53 7.63 -0.09 4.64 4.70 2.95 
Std. Dev. 0.29 0.13 0.10 1.03 0.37 0.37 0.35 
Skewness 0.66 0.85 0.47 1.11 0.31 0.15 0.47 
Kurtosis -0.71 0.53 -0.07 2.37 -0.52 -0.40 0.07 
Jarque-Bera 24.00a 34.75a 9.45a 116.41a 6.81b 2.54 9.86a 
ADF I(0) -1.68 -1.62 -1.05 -2.23 -4.77a -5.66a -4.24a 
ADF I(1) -3.20a -18.05a -12.37 a -11.01a -12.40a -13.38a -13.05a 
ERS I(0) -1.98 -1.82 -1.40 -3.07a -4.75a -5.70a -4.09a 
ERS I(1) -2.87a -3.24a -2.67a -10.83a -12.26a -12.09a -13.11a 
Obs. 260 260 260 260 260 260 260 
Notes: All variables are transformed to their natural logarithm except for FSI. ADF is the Augmented Dickey-Fuller unit-root 
test proposed by Dickey and Fuller (1979). ERS is the unit-root test of Elliott et al. (1996). All variables are in level in this table 
but differenced according to the ADF and ERS test results in subsequent analyses. The notation a and b indicate rejection of the 
null hypothesis that the series is I(1) at the 1% and 5% significance levels, respectively. The data on unemployment were retrieved 
from the BLS, Bureau of Labor Statistics, from https://www.bls.gov/webapps/legacy/cpsflowstab.htm. FSI and VIX were 
retrieved from FRED, Federal Reserve Bank of St. Louis, from https://fred.stlouisfed.org. Data for GPU and EPU are the result 
of work by Baker et al. (2016) and were retrieved from https://www.policyuncertainty.com. 
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Table 2. Granger-Causality Tests in Mean and Nonlinearity Tests 

Panel A. Granger-Causality Tests in Mean 

Null hypothesis	 P-value (F-test)	 L	 Breusch-Godfrey test	
ΔFSI to ΔULV	 0.209 6 0.276 
GPU to ΔULV	 0.350 6 0.479 
EPU to ΔULV	 0.323 6 0.128 
VIX to ΔULV	 0.026b  5 0.077 
ΔFSI to ΔINU	 0.272 2 0.065 
GPU to ΔINU	 0.266 2 0.052 
EPU to ΔINU	 0.086c  5 0.093 
VIX to ΔINU	 0.003a  5 0.581 
ΔFSI to	ΔOUT	 0.074c  2 0.110 
GPU to ΔOUT	 0.109 4 0.291 
EPU to ΔOUT	 0.102 4 0.190 
VIX to ΔOUT	 0.254 3 0.053 
Notes: This table shows the p-values of a Granger-causality test shown in Equations (5)-(6), where the null 
hypothesis is Granger-non-causality from each uncertainty index to the respective unemployment measure. The 
notation a, b, and c indicate rejection of the null hypothesis at the 1%, 5%, and 10% significance levels, 
respectively. L indicates the lag length of the VAR model that minimized the BIC such that the VAR residuals 
were serially uncorrelated. Breusch-Godfrey test denotes the p-values of the serial correlation test of the residuals 
proposed by Breusch (1978) and Godfrey (1978). The residuals are uncorrelated under the null hypothesis. The 
GPU, EPU, and VIX are stationary series in level, and thus they were not differenced. 	
	

Panel B. Nonlinearity Tests 

VAR BDS (m=2) BDS (m=3) BDS (m=4) SupF AveF ExpF 
ΔULV, ΔFSI 0.146 0.503 0.565 0.006a  0.012b  0.008a  
ΔULV, GPU 0.547 0.996 0.907 0.005a  0.043b  0.005a  
ΔULV, EPU 0.300 0.659 0.504 0.023b  0.043b  0.021 
ΔULV, VIX 0.400 0.841 0.819 0.000a  0.004a  0.000a  
ΔINU, ΔFSI 0.962 0.600 0.320 0.609 0.539 0.626 
ΔINU, GPU 0.785 0.519 0.215 0.029b  0.225 0.081c  
ΔINU, EPU 0.541 0.134 0.027b  0.000a  0.022b  0.000a  
ΔINU, VIX 0.877 0.525 0.134 0.000a  0.069c  0.001a  
ΔOUT, ΔFSI 0.260 0.585 0.946 0.913 0.548 0.718 
ΔOUT, GPU 0.183 0.871 0.518 0.092c  0.074c  0.068c  
ΔOUT, EPU 0.162 0.897 0.500 0.129 0.104 0.101 
ΔOUT, VIX 0.152 0.945 0.632 0.701 0.663 0.646 
Notes: This table presents the p-values of the BDS test for nonlinearity in the VAR residuals of Broock et al. 
(1996), where m denotes the dimension. The residuals are i.i.d. under the null hypothesis. The SupF, AveF, and 
ExpF are the tests of parameter stability of the VAR models proposed by Andrews (1993), Andrews and Ploberger 
(1994), and Hansen (1997), respectively. The notation a, b, and c denote rejection of the null hypothesis at the 1%, 
5%, and 10% significance levels, respectively. 
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Table 3. Nonlinear and Multivariate Granger-Causality Tests in Mean 

Panel A. Nonlinear Granger-Causality Tests in Mean 
Null hypothesis L P-value (HJ) P-value (DP) 
ΔFSI to ΔULV 6 0.643 0.625 
GPU to ΔULV 6 0.674 0.659 
EPU to ΔULV 6 0.885 0.183 
VIX to ΔULV 5 0.909 0.182 
ΔFSI to ΔINU 2 0.737 0.342 
GPU to ΔINU 2 0.840 0.837 
EPU to ΔINU 5 0.626 0.704 
VIX to ΔINU 5 0.886 0.802 
Notes: This table shows the p-values of the nonlinear causality tests HP and DP of Hiemstra and Jones (1994) 
and Diks and Panchenko (2006), respectively. We used the lag order that minimized the BIC on the bivariate 
VAR models. We applied the test on the standardized residuals of the VARs with a bandwidth of 𝜖 = 1.5. 

 

Panel B. Multivariate Granger-Causality Tests in Mean 

Null hypothesis P-value (F-test) L Breusch-
Godfrey test P-value (DW) 

ΔFSI to ΔULV 0.015b  8 0.171 0.121 
GPU to ΔULV 0.471 8 0.171 0.858 
EPU to ΔULV 0.519 8 0.171 0.961 
VIX to ΔULV 0.078c  8 0.171 0.782 
ΔFSI to ΔINU 0.013b  4 0.086 0.327 
GPU to ΔINU 0.035b  4 0.086 0.918 
EPU to ΔINU 0.362 4 0.086 0.303 
VIX to ΔINU 0.001a  4 0.086 0.482 
ΔFSI to	ΔOUT 0.374 2 0.081 0.517 
GPU to ΔOUT 0.117 2 0.081 0.803 
EPU to ΔOUT 0.575 2 0.081 0.653 
VIX to ΔOUT 0.000a  2 0.081 0.178 
Notes: This table presents the p-values of multivariate Granger-causality tests in mean. The F-test is a linear 
Granger-causality in mean test that is calculated in a multivariate VAR model with an unemployment series and 
four uncertainty indices. We used the lag order that minimized the BIC on the multivariate VAR models. 
Breusch-Godfrey test denotes the p-values of the serial correlation test of the residuals proposed by Breusch 
(1978) and Godfrey (1978). The VAR residuals are serially uncorrelated under the null hypothesis. The notation 
a, b, and c denote rejection of the null hypothesis at the 1%, 5%, and 10% significance levels, respectively. DW 
test is the multivariate nonlinear causality test of Diks and Wolski (2016) on the standardized residuals of the 
multivariate VARs. We used a bandwidth parameter of 𝜖 = 1.021 to calculate the p-values of the DW test. 
	

 
 
 
	

 

Table 4. Quantile-Causality Tests for Changes in Unemployment Measures 
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A. Unemployment Level (ΔULV)	
	 ΔFSI to ΔULV	 GPU to ΔULV	 EPU to ΔULV	 VIX to ΔULV	
τ	 L=1	 L=2 L=3	 L=1	 L=2 L=3	 L=1	 L=2 L=3	 L=1	 L=2 L=3	

0.1	 0.311 0.212 0.269 0.113 0.090c 0.179 0.311 0.137 0.198 0.033b 0.033b 0.038b 
0.2	 0.783 0.840 0.896 0.901 0.877 0.986 0.731 0.892 0.868 0.226 0.429 0.481 
0.3	 0.863 0.778 0.807 0.887 0.962 0.533 0.396 0.741 0.425 0.212 0.264 0.297 
0.4	 0.274 0.486 0.623 0.415 0.608 0.373 0.302 0.358 0.292 0.156 0.245 0.203 
0.5	 0.330 0.684 0.212 0.608 0.769 0.316 0.410 0.524 0.217 0.123 0.410 0.137 
0.6	 0.783 0.198 0.382 0.939 0.755 0.599 0.910 0.392 0.448 0.377 0.028b 0.170 
0.7	 0.014b 0.071c 0.099c 0.028b 0.406 0.387 0.033b 0.321 0.392 0.005a 0.042b 0.066c 
0.8	 0.014b 0.264 0.500 0.057c 0.675 0.929 0.019b 0.722 0.920 0.005a 0.123 0.208 
0.9	 0.085c 0.137 0.014b 0.552 0.590 0.071c 0.297 0.387 0.047b 0.033b 0.005a 0.014b 
∀τ	 0.137 0.557 0.278 0.557 0.929 0.608 0.297 0.698 0.382 0.042b 0.057c 0.118 

B. Unemployment Inflow (ΔINU) 
	 ΔFSI to ΔINU GPU to ΔINU EPU to ΔINU VIX to ΔINU 
τ L=1 L=2 L=3 L=1 L=2 L=3 L=1 L=2 L=3 L=1 L=2 L=3 

0.1	 0.052c 0.278 0.274 0.052c 0.222 0.241 0.052c 0.208 0.231 0.052c 0.236 0.297 
0.2	 0.250 0.184 0.137 0.222 0.061c 0.052c 0.222 0.075c 0.085c 0.241 0.146 0.104 
0.3	 0.274 0.519 0.840 0.217 0.406 0.774 0.212 0.344 0.788 0.222 0.387 0.821 
0.4	 0.788 0.368 0.642 0.769 0.599 0.722 0.910 0.613 0.750 0.656 0.538 0.788 
0.5	 0.703 0.231 0.368 0.972 0.495 0.802 0.962 0.439 0.783 0.689 0.156 0.288 
0.6	 0.849 0.722 0.368 1.000 1.000 0.840 0.972 0.788 0.632 0.420 0.349 0.198 
0.7	 0.212 0.005a 0.005a 0.311 0.005a 0.005a 0.236 0.005a 0.005a 0.137 0.005a 0.005a 
0.8	 0.009a 0.198 0.113 0.019b 0.439 0.217 0.009a 0.170 0.104 0.009a 0.160 0.057c 
0.9	 0.005a 0.184 0.472 0.080c 0.354 0.462 0.009a 0.179 0.179 0.005a 0.080c 0.071c 
∀τ	 0.278 0.038b 0.009a 0.241 0.042b 0.052c 0.217 0.005a 0.019b 0.189 0.009a 0.005a 

C. Unemployment Outflow (ΔOUT)	
	 ΔFSI to ΔOUT	 GPU to	ΔOUT	 EPU to ΔOUT	 VIX to ΔOUT	
τ	 L=1	 L=2 L=3	 L=1	 L=2 L=3	 L=1	 L=2 L=3	 L=1	 L=2 L=3	

0.1	 0.009a 0.481 0.132 0.042b 0.481 0.099c 0.009a 0.264 0.099c 0.009a 0.509 0.160 
0.2	 0.830 0.835 0.906 0.736 0.726 0.811 0.943 0.877 0.991 0.792 0.415 0.392 
0.3	 0.132 0.104 0.127 0.132 0.080c 0.085c 0.132 0.094c 0.113 0.132 0.080c 0.080c 
0.4	 0.014b 0.245 0.245 0.014b 0.137 0.170 0.014b 0.302 0.377 0.014b 0.193 0.330 
0.5	 0.075c 0.052c 0.038b 0.075c 0.047b 0.042b 0.080c 0.137 0.085c 0.075c 0.142 0.066c 
0.6	 0.137 0.108 0.184 0.184 0.170 0.241 0.259 0.193 0.344 0.278 0.193 0.311 
0.7	 0.906 0.425 0.080c 0.858 0.420 0.198 0.792 0.552 0.222 0.561 0.618 0.212 
0.8	 0.283 0.840 0.788 0.250 0.646 0.769 0.349 0.887 0.887 0.472 0.741 0.651 
0.9	 1.000 0.514 1.000 0.750 0.608 1.000 0.566 0.608 0.991 0.816 0.458 0.462 
∀τ	 0.033b 0.099c 0.104 0.038b 0.075c 0.123 0.061c 0.156 0.146 0.085c 0.184 0.123 
Notes: These tables show the subsampling p-values for the test in Equation (8) of Granger-non-causality from the four 
uncertainty measures to changes in the unemployment level (ΔULV) in Table 4.A, in the unemployment inflow (ΔINU) in Table 
4.B, and in the unemployment outflow (ΔOUT) in Table 4.C. The notation 𝐿 ∈ {1,	2,	3} indicates the lag length of the quantile 
autoregressive model under	𝐻F. The notation a, b, and c indicate rejection of 𝐻F	at the 1%, 5%, and 10% levels, respectively. 
The subsample size used to calculate the test statistic is b = 	46. The row “∀τ” shows the subsampling p-values of the test in 
Equation (8) considering all quantiles of	ΔULV, ΔINU, and ΔOUT for Tables 4.A, 4.B, and 4.C, respectively. 

Table 5. RMSE of Out-of-sample Quantile Forecasts 
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RMSE ΔULV ΔINU ΔOUT 
τ	=	0.1    
QAR(1) 0.0381 0.0951 0.0916 
QAR(2) 0.0377 0.0897 0.0907 
QAR(3) 0.0379 0.0882 0.0901 
SAV 0.0346 0.1033 0.1033 
AS 0.0343 0.0839 0.0623 
τ	=	0.3    
QAR(1) 0.0301 0.0720 0.0572 
QAR(2) 0.0288 0.0672 0.0572 
QAR(3) 0.0282 0.0681 0.0564 
SAV 0.0340 0.0753 0.0683 
AS 0.0336 0.0745 0.0631 
τ	=	0.5    
QAR(1) 0.0279 0.0681 0.0544 
QAR(2) 0.0271 0.0644 0.0548 
QAR(3) 0.0265 0.0641 0.0543 
SAV 0.0327 0.0780 0.0872 
AS 0.0323 0.0736 0.0668 
τ	=	0.7    
QAR(1) 0.0319 0.0753 0.0617 
QAR(2) 0.0315 0.0715 0.0617 
QAR(3) 0.0307 0.0713 0.0612 
SAV 0.0325 0.0988 0.0854 
AS 0.0325 0.0728 0.0629 
τ	=	0.9    
QAR(1) 0.0472 0.0974 0.0885 
QAR(2) 0.0469 0.0948 0.0853 
QAR(3) 0.0456 0.0956 0.0857 
SAV 0.0332 0.1104 0.1196 
AS 0.0346 0.0865 0.0689 
Notes: This table shows the root mean squared error (RMSE) of 120 recursive monthly out-of-sample quantile 
forecasts for ΔULV, ΔINU, and ΔOUT. We consider the quantiles τ={0.1, 0.3, 0.5, 0.7, 0.9}. The first forecast 
date is September 1, 2008. The models that attained the lowest RMSE are in bold. 

 

 

 

 

 

 

 

 

 

Table 6. Nonlinear Quantile-Causality Tests for Changes in Unemployment Measures 
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A. Unemployment Level (ΔULV)	
	 ΔFSI to ΔULV	 GPU to ΔULV	 EPU to ΔULV	 VIX to ΔULV	
τ	 SAV	 AS	 SAV	 AS	 SAV	 AS	 SAV	 AS	

0.1	 0.258 0.185 0.702 0.303 0.371 0.427 0.124 0.135 
0.2	 0.006a 0.674 0.006a 0.927 0.011b 0.685 0.006a 0.090c 
0.3	 0.685 0.713 0.713 0.860 0.444 0.506 0.028b 0.101 
0.4	 0.388 0.427 0.365 0.455 0.135 0.169 0.022b 0.045b 
0.5	 0.702 0.236 0.629 0.826 0.157 0.287 0.084c 0.096c 
0.6	 0.337 0.348 0.747 0.663 0.303 0.275 0.051c 0.045b 
0.7	 0.084c 0.079c 0.736 0.904 0.343 0.809 0.017b 0.073c 
0.8	 0.253 0.225 0.787 0.865 0.702 0.730 0.045b 0.118 
0.9	 0.315 0.152 0.989 0.719 0.466 0.376 0.028b 0.028b 
∀τ	 0.208 0.298 0.455 0.949 0.258 0.427 0.006a 0.017b 

B. Unemployment Inflow (ΔINU) 
	 ΔFSI to ΔINU GPU to ΔINU EPU to ΔINU VIX to ΔINU 
τ	 SAV AS SAV AS SAV AS SAV AS 

0.1	 0.865 1.000 0.876 0.916 0.719 0.888 0.882 1.000 
0.2	 0.320 0.775 0.534 0.303 0.326 0.646 0.101 0.691 
0.3	 0.129 0.596 0.180 0.809 0.646 0.972 0.208 0.337 
0.4	 0.253 0.528 0.298 1.000 0.534 1.000 0.236 0.803 
0.5	 0.264 0.517 0.287 0.949 0.478 0.916 0.129 0.281 
0.6	 0.287 0.444 0.107 0.983 0.444 0.646 0.180 0.118 
0.7	 0.388 0.337 0.449 0.826 0.371 0.343 0.253 0.152 
0.8	 0.298 0.478 0.247 0.433 0.129 0.135 0.146 0.084c 
0.9	 0.202 0.455 0.202 0.433 0.208 0.135 0.213 0.028b 
∀τ	 0.298 0.624 0.258 0.972 0.449 0.674 0.163 0.124 

C. Unemployment Outflow (ΔOUT)	
	 ΔFSI to ΔOUT	 GPU to ΔOUT	 EPU to ΔOUT	 VIX to ΔOUT	
τ	 SAV	 AS	 SAV	 AS	 SAV	 AS	 SAV	 AS	

0.1	 0.551 0.618 0.107 0.466 0.101 0.247 0.725 0.230 
0.2	 0.545 0.556 0.562 0.303 0.652 0.551 0.455 0.393 
0.3	 0.315 0.416 0.399 0.090c 0.663 0.124 0.534 0.247 
0.4	 0.365 0.393 0.096c 0.163 0.371 0.354 0.472 0.781 
0.5	 0.309 0.281 0.022b 0.157 0.084c 0.388 0.242 0.455 
0.6	 0.287 0.663 0.281 0.820 0.354 0.955 0.309 0.466 
0.7	 0.331 0.871 0.399 0.770 0.365 0.691 0.270 0.635 
0.8	 0.567 0.607 0.573 0.584 0.618 0.933 0.410 0.579 
0.9	 0.860 1.000 0.860 1.000 0.933 0.831 0.326 1.000 
∀τ	 0.337 0.742 0.191 0.399 0.393 0.725 0.466 0.770 

Notes: We calculate the subsampling p-values for the test in Equation (8) of Granger-non-causality from the 
four uncertainty measures to changes in the unemployment level (ΔULV) in Table 6.A, in the unemployment 
inflow (ΔINU) in Table 6.B, and in the unemployment outflow (ΔOUT) in Table 6.C. SAV is the symmetric 
absolute value model of Equation (9). AS is the asymmetric slope model of Equation (10). The notation a, b, 
and c indicate rejection of 𝐻F at the 1%, 5%, and 10% levels, respectively. The subsample size used to calculate 
the test statistic is b	= 46. The row “∀τ” shows the subsampling p-values for the test in Equation (8) considering 
all quantiles of	ΔULV, ΔINU, and ΔOUT for Tables 6.A, 6.B, and 6.C, respectively. 

Table 7. Out-of-Sample Forecast Performance Tests 
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 τ =	0.1 τ =	0.3 τ =	0.5 τ = 0.7 τ =	0.9 
 DM CW DM CW DM CW DM CW DM CW 

Additional Predictability to ΔULVt 
ΔFSIt-1 0.806 0.606 0.848 0.595 0.836 0.633 0.857 0.662 0.878 0.299 
GPUt-1 0.000a 0.000a 0.006a 0.000a 0.716 0.247 0.997 0.974 1.000 1.000 
EPUt-1 0.000a 0.000a 0.008a 0.001a 0.794 0.374 0.999 0.992 1.000 1.000 
VIXt-1 0.422 0.198 0.040b 0.011b 0.016b 0.000a 0.003a 0.000a 0.000a 0.000a 

Additional Predictability to ΔINUt 
ΔFSIt-1 0.692 0.273 0.830 0.565 0.789 0.698 0.479 0.261 0.626 0.228 
GPUt-1 0.000a 0.000a 0.996 0.990 0.804 0.662 0.999 0.996 1.000 1.000 
EPUt-1 0.005a 0.003a 0.813 0.716 0.550 0.420 0.999 0.996 1.000 1.000 
VIXt-1 0.012b 0.007a 0.206 0.147 0.738 0.523 0.438 0.210 0.303 0.125 

Additional Predictability to ΔOUTt 
ΔFSIt-1 0.917 0.836 0.300 0.213 0.161 0.080 0.746 0.616 0.433 0.354 
GPUt-1 0.000a 0.000a 0.034b 0.007a 0.813 0.765 1.000 1.000 1.000 1.000 
EPUt-1 0.000a 0.000a 0.100 0.038b 0.945 0.930 1.000 1.000 1.000 1.000 
VIXt-1 0.783 0.579 0.914 0.834 0.854 0.822 0.307 0.085c 0.000a 0.000a 
Notes: This table displays the p-values of the modified version of the test of Diebold and Mariano (1995) developed 
by Harvey et al. (1997) (DM) and the test of Clark and West (2007). For both tests, the null hypothesis states that 
the quantile-forecasts errors of the QAR(1) model and the augmented model including a lagged uncertainty index 
are equal. The notation a, b, and c indicate rejection of the null hypothesis at the 1%, 5%, and 10% significance 
levels, respectively. We consider 120 recursive monthly out-of-sample quantile forecasts for ΔULV, ΔINU, and 
ΔOUT. We consider the quantiles τ={0.1, 0.3, 0.5, 0.7, 0.9}. The first forecast date is September 1, 2008, and we 
recursively update the sample at each monthly forecast. 
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Figure 1. Unemployment Series 
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Figure 2. Estimated Quantile-Regression Coefficients, β(τ), of the Lagged Uncertainty 
Indices  
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Figure 2. (continued) 

	


