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Temperature data over the past five decades show faster warming
of the global land surface during the night than during the day1.
This asymmetric warming is expected to affect carbon assimilation
and consumption in plants, because photosynthesis in most plants
occurs during daytime and is more sensitive to the maximum daily
temperature, Tmax, whereas plant respiration occurs throughout
the day2 and is therefore influenced by bothTmax and theminimum
daily temperature, Tmin. Most studies of the response of terrestrial
ecosystems to climate warming, however, ignore this asymmetric
forcing effect on vegetation growth and carbon dioxide (CO2)
fluxes3–6. Here we analyse the interannual covariations of the
satellite-derived normalized difference vegetation index (NDVI,
an indicator of vegetation greenness) with Tmax and Tmin over the
Northern Hemisphere. After removing the correlation between
Tmax and Tmin, we find that the partial correlation between Tmax

and NDVI is positive in most wet and cool ecosystems over boreal
regions, but negative in dry temperate regions. In contrast, the
partial correlation between Tmin and NDVI is negative in boreal
regions, and exhibits a more complex behaviour in dry temperate
regions. We detect similar patterns in terrestrial net CO2 exchange
maps obtained from a global atmospheric inversion model.
Additional analysis of the long-term atmospheric CO2 concentra-
tion record of the station Point Barrow in Alaska suggests that the
peak-to-peak amplitude of CO2 increased by 236 11% for a11 6C
anomaly inTmax fromMay to September over lands north of 516N,
but decreased by 286 14% for a11 6Canomaly inTmin. These lines
of evidence suggest that asymmetric diurnalwarming, a process that
is currently not taken into account in many global carbon cycle
models, leads to a divergent response of Northern Hemisphere
vegetation growth and carbon sequestration to rising temperatures.
Bothmodelling and observational studies suggest that climatewarm-

ing will probably enhance vegetation growth in northern terrestrial
ecosystems, increasing carbon storage3–6. However,most of these studies
do not consider the potential effects of asymmetric daytime and night-
time warming. The increasing rate of global land-surface daily mini-
mum temperature (Tmin) over the past five decades is 1.4 times that of
daily maximum temperature (Tmax)

1. This asymmetric warming is
expected to affect carbon assimilation and consumptions in plants,
given that photosynthesis in most plants occurs during the daytime
and thus is more sensitive to Tmax, whereas plant respiration occurs
throughout the whole day2, and is therefore influenced by both Tmax

and Tmin.
A few field experiments have been conducted to study the effects of

asymmetric warming on ecosystems7,8. These and other direct field
observations9–11 reveal different effects of temperature during daytime
and night time on vegetation growth and CO2 fluxes. Yet the scarcity

and short duration of field experiments makes it difficult to assess the
large-scale response of vegetation to changes in Tmax and Tmin, which
may differ between regions and ecosystems7–10. In this study, we use 28
years of satellite-derived NDVI data, global time-varyingmaps of land
net CO2 exchange (NCE) fluxes from an atmospheric inversionmodel,
and in situ atmospheric CO2 concentration measurements, together
with Tmax and Tmin data (Methods) to study the spatial patterns of
covariations between interannual changes inTmin andTmax and changes
in the NDVI and NCE of northern ecosystems.
We first examine the linkage between Tmax or Tmin and growing-

season NDVI (April to October). There is a high positive correlation
between Tmax and Tmin (Supplementary Fig. 1), and we studied the
apparent responses of NDVI to Tmax and Tmin with partial correlation
analyses to remove the covariate effects between Tmax and Tmin (see
Methods).When the effects of growing-season Tmin, precipitation and
solar radiation are removed in the partial correlation, the individual
effect of growing-season Tmax interannual changes on interannual
NDVI shows remarkable spatial patterns (Fig. 1a, c). In most of the
boreal zone (.50uN), cold mountain regions (such as the Tibetan
plateau), and wet temperate regions (Japan and southern China),
growing-season NDVI is positively correlated with growing-season
Tmax, with statistical significance at the 0.05 level for about 15% of
the area north of 25uN (Supplementary Table 1). This relatively small
percentage of area showing significant relationships can be explained
by the nonlinear relationships between vegetation productivity and
climate variables12, the impact of non-growing-season factors such
as frost frequency and snow depth13,14, and the various factors control-
ling vegetation growth in different areas, which limit the prevalence
of one dominant environmental factor such as Tmax for vegetation
growth to only a small proportion of the entire study area. For example,
if we consider boreal regions where vegetation growth is limited by
temperature6,15,16, a significant positive partial correlation between
growing-season NDVI and Tmax is found in about 22% of the area
(Supplementary Table 1). This positive partial covariation between
growing-season Tmax and NDVI is particularly pronounced in north-
western North America and Siberia (Fig. 1a). In contrast, in drier
temperate regions (such as western China, central Eurasia, central
and southwesternNorthAmerica), interannualTmax anomalies exhibit
negative partial correlations with NDVI.
However, when the effects of growing-seasonTmax, precipitation, and

solar radiation are removed, the partial correlation between growing-
season Tmin and NDVI is found to be negative over most boreal and
wet temperate regions (Fig. 1b, d). In arid and semi-arid regions, par-
ticularly grasslands in centralNorthAmerica and temperateChina, the
growing-season NDVI is significantly positively correlated with Tmin

(Fig. 1b and Supplementary Table 2). These opposite responses of
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NDVI to Tmin between the wet and dry regions of the Northern
Hemisphere is supported by some previous studies. For instance, an
increase in Tmin was found to reduce rice yields by 10% per uC in the
Philippines10, but to enhance growth at a temperate dry grassland site
in China8.
To test the robustness of our analysis, we also applied an independ-

ent statistical test called the ridge regressionmethod17. The results show
spatial patterns of the NDVI response to Tmax and Tmin similar to
those obtained with a multiple-linear method (Supplementary Fig. 2).
Nevertheless, the absolute magnitude of the sensitivities of NDVI to
Tmax andTmin is smaller in the ridge regression results. Patterns for the
correlation between NDVI and Tmin or Tmax similar to those displayed
in Fig. 1 were also obtained when using different growing-season defi-
nitions (May–October and May–September; Supplementary Figs 3
and 4), and using other gridded data sets of solar radiation, precipita-
tion (or vapour pressure deficit as the moisture surrogate), instead of
the climate data set from the Climate Research Unit (CRU) of the
University of East Anglia, UK (Supplementary Figs 5–10). Finally, to
test for possible spurious spatial correlations patterns that could be due
to the spatial interpolation of meteorological station data in the CRU
gridded data set, we performed the same correlation analyses using

observed records from 1,736 individual meteorological stations avail-
able over the last three decades (Methods) and found the same pattern
as in Fig. 1 (see Supplementary Figs 11 and 12).
Covariance between climate variables, regressed with NDVI, espe-

cially between Tmax and Tmin (Supplementary Fig. 1), could affect the
interpretation of our partial correlation analyses. We therefore per-
formed reduced partial correlation analyses separately using either
Tmax, precipitation and solar radiation or Tmin, precipitation and solar
radiation. The results show that the reduced partial correlation coeffi-
cients between NDVI and Tmin (statistically controlling precipitation
and solar radiation, but notTmax) have the same sign as betweenNDVI
andTmax (statistically controlling precipitation and solar radiation, but
not Tmin), but with different strengths in most areas (Supplementary
Fig. 13). In boreal ecosystems, the NDVI–Tmax correlation is higher
than the NDVI–Tmin correlation, but in the dry temperate ecosystems
it is lower. This result again confirms a differential response to warm-
ing; for example, boreal ecosystems respond more to increases in Tmax

than to increases in Tmin.
Additionally, tominimize the effect of collinearity betweenTmax and

Tmin in a multiple linear regression statistical model, we also replaced
them with their average (Tmean5 (Tmax1Tmin)/2) and difference
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Figure 1 | The response of growing-season (fromApril toOctober)NDVI to
changes in growing-season maximum temperature (Tmax) and minimum
temperature (Tmin) in the Northern Hemisphere. a, Spatial distribution of
the partial correlation coefficient R between growing-season NDVI and Tmax

after controlling for Tmin, precipitation and solar radiation. b, Spatial
distribution of R between growing-season NDVI and Tmin after controlling for
Tmax, precipitation and solar radiation. The labels on the colour bars in a and
b,R560.51,R560.40,R560.34 andR560.27 correspond to the 1%, 5%,
10% and 20% significance levels, respectively. Among the five night-time
warming experiments sites marked in b, the results of four sites—Mols in
Denmark (pentagram), Clocaenog in United Kindom (square), Garraf in Spain
(circle) and Duolun in China (cross)—are consistent with the result of the
partial correlation analysis between NDVI and Tmin (Supplementary Table 2;
the site of Oldebroek in the Netherlands was marked by a diamond in b).

c, Percentage of pixels with dominant (positive pixels.50% or negative pixels
.50%) partial correlation between NDVI and Tmax (shown in a) in each 5 uC
interval of mean annual temperature and 100-mm interval of mean annual
precipitation climate space. d, Same as c but for the partial correlation between
NDVI and Tmin shown in b. The right colour bars in c and d indicate the
fraction of pixels with dominant partial correlation between growing-season
NDVI and Tmax/Tmin, and the numbers in each interval climate space of c and
d indicate the percentage of pixels with significant partial correlation (for
example, if the percentage of pixels with positive partial correlation exceeds
50%, the space is blue and the number is the percentage of pixels with positive
and significant partial correlation, but if the percentage of pixels with positive
partial correlation is less than 50%, the space is brown and the number is the
percentage of pixels with negative and significant partial correlation).
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(DTR5Tmax2Tmin) and performed the samepartial correlation ana-
lysis. The results show that boreal NDVI positively correlates with
Tmean and DTR; whereas dry temperate NDVI exhibits negative rela-
tionships with Tmean and DTR (Supplementary Fig. 14). This is con-
sistent with the results of partial correlation analysis with Tmax, Tmin,
precipitation and solar radiation (Fig. 1). A statistical blind test also
shows that the regression or partial correlation method used in our
study correctly captures a relationshipbetweenNDVI andTmaxorTmin

if there is one (see Supplementary Information). Splitting the temper-
ature signal intoTmax and Tmin thus helps the process interpretation of
these results.
Second, we analysed how variations in Tmax and Tminmay influence

interannual anomalies in the seasonal cycle of net CO2 fluxes of north-
ern ecosystems using the atmospheric CO2 record of the stations of
Point Barrow in Alaska (71uN) and Mauna Loa in Hawaii (19uN)
(Methods). We found that the interannual variation in the amplitude
of the detrended CO2 seasonal cycle (AMP) at Point Barrow does not
significantly correlate with theTmean ofMay–September averaged over a
broadboreal latitudinal zonal band (51u–90uN) (R520.03,P5 0.897);
all variables were detrended and effects of precipitation and solar radi-
ation were removed in the partial correlation analysis. This weak cor-
relation ofAMPwithTmean, however,masks its significant but opposite
correlations with Tmax and Tmin. Indeed, multiple linear regression
analyses, using AMP at Point Barrow as the dependent variable and
detrended precipitation, solar radiation, Tmax or Tmin as independent
variables, show that AMP responds positively to positive Tmax anom-
alies by 3.86 1.9 p.p.m. per uC (236 11% of peak-to-peakAMPper uC
ofTmax) (R5 0.38,P5 0.048), but negatively topositiveTmin anomalies
by24.86 2.4 p.p.m. per uC (2286 14% of peak-to-peak AMP per uC
of Tmin (R520.38, P5 0.047); Fig. 2 and Supplementary Table 3). At
Mauna Loa, no significant partial correlation is obtained between inter-
annual AMP variations and either the correspondingTmax (R520.02,
P5 0.866) or the corresponding Tmin (R5 0.02, P5 0.893) variations
(Fig. 2), possibly owing to themixed temperature effects across different
temperate regions (Fig. 1).
Last, we investigated the covariance between the interannual anom-

alies of NCE (positive values indicating net CO2 uptake by ecosystems)
and those of Tmax and Tmin using NCE gridded estimates from a global
atmospheric inversion over the last three decades18. For the boreal
region (.50uN), the inversion-based NCE from May to September is
found to respond positively to positive anomalies of Tmax, with a sensi-
tivity of 1.16 0.6 PgofCper uC(R5 0.37,P5 0.059), andnegatively to

positive anomalies of Tmin, with a sensitivity of 21.76 0.7 Pg of
C per uC (R520.45, P5 0.021; Fig. 3 and Supplementary Table 4)
(1 Pg5 1015 g). These relationships are qualitatively similar to the ones
found between AMP versus Tmax and Tmin in the boreal zone. In the
temperate latitude band (25u–50uN), the inversion-based NCE from
May to October is not significantly correlated with either Tmax

(R5 0.11, P5 0.604) or Tmin (R520.24, P5 0.238) (Fig. 3). Similar
patterns were also obtained when using the inversion with flat prior
information (Supplementary Fig. 15). Note that inversion NCE uncer-
tainties are large at the grid-point scale, and that individual grid point
NCE estimates are correlated with each other. The spatial distribution
of the response of inversion NCE to Tmax and Tmin over the climatic
dimensions (Supplementary Figs 16 and 17) is comparable with that
derived from the (independent)NDVI (Fig. 1c and d). Interestingly, the
geographical area where the growing-season NCE positively correlates
withTmax (Supplementary Figs 16 and 17) is less extensive than the area
where growing-season NDVI positively correlates with Tmax (Fig. 1).
This could be explained by a concurrent increase of soil organic matter
decomposition induced by warming in boreal and temperate regions
where water is readily available.
In summary, our analyses of several data streams consistently point

out that interannual changes in growing-season Tmax and Tmin have
regionally opposite effects on NDVI (greenness) and NCE. Daytime
positive Tmax anomalies correlate positively with enhanced photosyn-
thetic activity (NDVI) and NCE over wet and cool ecosystems, but
have negative effects in dry temperate regions. These regionally con-
trasting effects of Tmax interannual variations on interannual vegeta-
tion greenness and growing-season CO2 uptake are most probably
associated with different ecophysiological responses. In boreal regions,
photosynthetic activity and NCE are subject to temperature limitation
but less subject to water limitation6,15,16. Rising Tmax has been observed
to enhance photosynthetic enzyme activity19, to increase soil nitrogen
mineralization and availability20, and to extend the growing season21.
In contrast, in dry temperate regions where soil water limitation can
limit vegetation growth, daytime warming can reduce photosynthetic
activity through enhanced evaporation, and reduced soil water content8.
The hypothesis that a drop in topsoil water content (SWC) below a
critical stress level in dry temperate regions is associated with warmer
Tmax during the growing season is consistent with the negative partial
correlation coefficients between growing-season Tmax and SWC
retrieved from multiple microwave satellite sounders over 1988–2007
(ref. 22) (Fig. 4a, Supplementary Figs 18–21).
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Figure 2 | Tmax and Tmin sensitivity of annual AMP at Point Barrow and
Mauna Loa stations. The Tmax (red) and Tmin (green) sensitivity of AMP at
each station was estimated based on a multiple linear regression analysis using
detrended AMP as the dependent variable and the detrended precipitation,
solar radiation, Tmax and Tmin during the corresponding season (May–
September for Point Barrow station andMay–October for Mauna Loa station)
over a broad region surrounding each station by620 degrees of latitude (51u–
90uN for Point Barrow and 1u S–39uN for Mauna Loa) as the independent
variables. **Statistically significant at the 95% (P, 0.05) level. The error bars
are standard errors of the mean of the corresponding parameters.
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Figure 3 | Tmax and Tmin sensitivity of a global atmospheric inversion
model estimated NCE in boreal and temperate regions. Using an approach
similar to that of Fig. 2, we calculated the sensitivity of corresponding season
NCE in boreal (50u–90uN) and temperate (25u –50uN) regions to changes in
Tmax and Tmin (May–September for boreal regions and May–October for
temperate regions). The Tmax (red) and Tmin (green) sensitivity of NCE was
calculated based on a multiple linear regression analysis using detrended NCE
as the dependent variable and the detrended corresponding precipitation, solar
radiation, Tmax and Tmin as the independent variables. *Statistically significant
at the 90% (P, 0.1) level; **Statistically significant at the 95% (P, 0.05) level.
The error bars are standard errors of the mean of the corresponding parameters.
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Night-time warming can influence vegetation productivity in two
oppositeways: via enhanced autotrophic respiration, and indirectly via
stimulationof plant photosynthesis during the following daytime through
decreasing frost risk13,23, and physiological regulatory mechanisms8,11,19,24.
Leaf carbohydrates synthesizedduring the daytimewere observed tobe
consumed more quickly during warmer nights because of enhanced
leaf respiration19,24, which depletes foliar carbohydrates and may pro-
duce a rebound effect of compensatory stimulated photosynthesis dur-
ing the following day8,19. This mechanism could partly explain the
positive partial correlation between NDVI and Tmin in temperate
grassland regions8. In contrast, the observed decrease in vegetation
activity associated with warmer Tmin in boreal and in wet temperate
regions implies that the negative impact of increased autotrophic res-
piration is more dominant in these regions, but further studies are
needed to support these inferences. In addition, changes in Tmin could
influence vegetation productivity through shifting competitive inter-
actions among C3 and C4 plants in semi-arid biomes with warm sum-
mer conditions9.
The asymmetrical response of terrestrial ecosystems to daytime

versus night-time temperature anomalies found in this study suggests

that most of the currently used global carbon cycle models using daily
temperature forcingmay neglect an essential process. If the night-time
warming trend observed over the last five decades continues to be
faster than that of daytime warming1, the model using average daily
temperature may overestimate the increase of boreal vegetation pro-
ductivity by the end of this century25. Arguably, many terrestrial eco-
system models26,27 using daily or monthly temperature data as input
will not capture the response of vegetation to asymmetric diurnal
temperature changes, indicating the importance of understanding
the diurnal cycle of CO2 and energy fluxes in land biosphere models.
This understanding could be achieved by pattern analysis of existing
eddy-covariance flux measurements28, targeted ecosystem manipula-
tive experiments under controlled and different Tmin and Tmax condi-
tions, as well as by mesocosm studies.

METHODS SUMMARY
Satellite derived NDVI data were used to investigate the effects of daytime and
night-time warming on the vegetation activity of Northern Hemispheric ecosys-
tems. Then NCE values simulated from an inversion model, as well as from
atmospheric CO2 concentrations at Point Barrow and Mauna Loa stations, were
used to investigate the response of the carbon balance to changes inTmax andTmin.
Finally, the response of satellite-derived surface SWC to Tmax and Tmin were
analysed to understand the mechanisms of asymmetric effects of daytime and
night-time warming on Northern Hemisphere vegetation activity and carbon
cycle. We applied a partial correlation analysis to statistically remove the effects
of other factors, such as precipitation and solar radiation (all variables detrended);
and the results were verified with those from another independent statistical
method, ridge regression.

Full Methods and any associated references are available in the online version of
the paper.
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Figure 4 | The response of growing-season (April–October) SWC to
changes in growing-season Tmax and Tmin in the Northern Hemisphere.
a, Spatial distribution of the partial correlation coefficient R between growing-
season SWC and Tmax. b, Spatial distribution of the partial correlation
coefficient R between growing-season SWC and Tmin. R between growing-
season SWC and Tmax or Tmin was calculated using the same approach for
estimating R between growing-season NDVI and Tmax or Tmin in Fig. 1. The
labels on the colour bars in a and b, R560.61, R560.48, R56 0.41 and
R560.33 correspond to the 1%, 5%, 10% and 20% significance levels,
respectively. Compared to the daytime warming effects, night-time warming
exhibits a smaller negative correlation with SWC. The areas with positive
correlation between SWC and Tmin is 59% (significant over 6% of the areas).
The observed positive correlation between Tmin and SWC, particularly over the
boreal and wet temperate regions, could be attributed in part to a decrease in
evapotranspiration driven by a decrease in vegetation photosynthetic activity
(or leaf area index), because higher Tmin is generally accompanied by lower
growing-season NDVI over these regions (Fig. 1).
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METHODS
Satellite NDVI measurements. NDVI is defined as the ratio of the difference
between near-infrared reflectance and red visible reflectance to their sum, and is a
remote-sensed vegetation index widely used as an indicator of vegetation gross
primary productivity4,5. The NDVI third-generation (NDVI3g) data used in this
study were from the Global Inventory Monitoring and Modelling Studies
(GIMMS) group derived from the NOAA/AVHRR land data set, at a spatial
resolution of 83 8 km2 and 15-day interval, for the period January 1982 to
December 2009 (ref. 29). The GIMMS-NDVI data set has been widely used for
detecting vegetation growth change5,29.
Atmospheric CO2 measurements at two long-term monitoring stations.
Weekly and monthly averaged atmospheric CO2 concentrations at Point Barrow
and Mauna Loa stations, based on continuous in situ observations, were obtained
from the Earth System Research Laboratory of the National Oceanic and Atmos-
pheric Administration (NOAA) (http://www.esrl.noaa.gov/gmd/ccgg/globalview).
AtmosphericCO2 concentration in situ station samples atPointBarrowandMauna
Loa cover the period 1979–2009 and 1959–2009, respectively.
NCE distribution from an atmospheric inversion. We use a global Bayesian
inversion of NCE (a positive value indicates carbon uptake) over the past three
decades18. Weekly CO2 fluxes are estimated on each grid-point of a 3.75u32.5u
(longitude–latitude) global grid throughout the 29 years18. The inversion of NCE
accounts for a priori time and space error correlations of NCE fluxes defined over
land from themisfit between eddy-covariance observations andmodel simulations18,
andbasedonmore than128 individual atmosphericCO2measurements from flask
and continuous-atmospheric-measurement sites (list in ref. 18). This inversion
has been chosen because (1) NCE fluxes are estimated at relatively high spatial
resolution for a global inversion, thus reducing the risk of spatial aggregation
errors, (2) it is informed by high-temporal-resolution CO2measurements instead
ofmonthly smoothed data, and (3) it covers a longer period than the TRANSCOM
inversions30, with 1981 as the beginning of the assimilation period. In addition, an
inversion of NCE with a climatology of model simulations of NCE (without any
interannual variations) as prior information over land was also used (Supplemen-
tary Fig. 15).
Climate data. The monthly Tmin, Tmax and precipitation data sets with spatial
resolution of 0.5u used in this study are theCRUTS3.1 climate data sets31, covering
NDVI, atmospheric CO2 concentration and inversed CO2 surface flux time series
period (1959–2009). The CRU TS3.1 climate data sets are interpolated from
meteorological stations based on spatial autocorrelation functions31,32. Because
of the high spatial correlation in the interpolated CRU data sets32, we also tested
the robustness of our results with observed climate records from 1,736 individual
meteorological stations (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/).
Solar radiation was obtained from the CRU–NCEP data set (the period 1901–

2009),which isbasedon the combinationof theCRUTS3.1climatedata set covering
the period 1901–2009 and the NCEP reanalysis covering the period 1948–2009
(http://nacp.ornl.gov/thredds/fileServer/reccapDriver/cru_ncep/analysis/readme.htm).
To assess whether the relationships between vegetation production and Tmax and
Tmin are robust across different data sets, we also used two satellite-based solar
radiation data sets—ISCCP33 and the NASA/GEWEX Surface Radiation Budget,
http://gewex-srb.larc.nasa.gov/common/php/SRB_data_products.php—covering
the period 1984–2007, three precipitation data sets—GPCP34, GPCC (http://
gpcc.dwd.de) and precipitation from ref. 35—and the vapour pressure deficit
calculated from CRU TS 3.1 (ref. 36).
Soil water content data.Daily SWCdata (m3m23) with spatial resolution of 0.25u
over theperiod1988–2007wasderived from the Special SensorMicrowave/Imager
satellite using the Land Parameter Retrieval Model, which solves simultaneously
for the SWC and vegetation optical depth22. This data set has been validated
extensively over a large variety of land surfaces of sparse to moderate vegetation,
showing good agreement with in situ observations37.
Analyses. Several of the environmental variables tested as predictors of NDVI or
NCE covary with one another. This covariance needs to be carefully dealt with
when we want to detect the relationship between the dependent variable and one
particular independent variable. In evaluating the relationship between NDVI or
NCE and Tmax or Tmin, we used partial correlation analyses to exclude the con-
founding effects of other variables. Partial correlation analysis is a widely applied
statistical tool to isolate the relationship between two variables from the confound-
ing effects of many correlated variables15,38,39.
To verify the asymmetric diurnal warming effect on vegetation growth derived

from partial correlation analysis, we also performed a ridge regression analysis17.
Ridge regression is a linear regularizationmethod and constrained linear inversion
method, which reduces the size of the regression coefficients by introducing a
constant in the minimized residual equation17. The analysis was performed in
the R package lm.ridge with an HKB estimate of the ridge constant (ref. 40,
http://astrostatistics.psu.edu/su07/R/html/MASS/html/lm.ridge.html). We also

performed the partial correlation analysis by replacing Tmax and Tmin with their
average (Tmean5 (Tmax1Tmin)/2) and difference (DTR5Tmax2Tmin). Addi-
tionally, we conducted reduced partial correlation analyses in which the depend-
ent variables were correlated twice: once against Tmax, precipitation and solar
radiation, and once against Tmin, precipitation and solar radiation.

We used averages of monthly NDVI data during the growing season to study
the response of vegetation growth to temperature. To match NDVI data (8 km
spatial resolution)with climate data (0.5u spatial resolution), we averagedmonthly
NDVI data corresponding to each climate data set pixel. Monthly NDVI was
obtained by choosing the monthly maximum value, which can further eliminate
the disturbance from cloud, atmosphere and changes in solar altitude angle4,5.
Following a previous study5, growing season is defined as the period from April
to October. We also used different growing-season definitions (from May to
October and from May to September) in the Supplementary Information. The
sensitivity of growing-season NDVI to changes in Tmax and Tmin was estimated
based on multiple linear regression analysis using growing-season NDVI as
the dependent variable and the corresponding precipitation, solar radiation,
Tmax, and Tmin as independent variables (all variables detrended). Similarly, we
also calculated the sensitivity of growing-seasonNCE and SWC to changes inTmax

andTmin. After aggregation of daily SWC data intomonthlymeans, the sensitivity
of growing-season SWC to changes in Tmax and Tmin was calculated only in those
pixels where SWC was recorded at least three months during the growing season.
The average number of days with available daily SWC data per month during the
growing season for each pixel was shown in Supplementary Fig. 22.

We used the curve-fitting procedures (CCGVU program)41 to extract the
detrended seasonal cycle from the monthly atmospheric CO2 concentration
record at Point Barrow and Mauna Loa stations. The annual maximum concen-
trations in the mean seasonal cycle were recorded at May for both Point Barrow
and Mauna Loa, whereas the annual minimum concentrations in the mean sea-
sonal cycle were recorded at August/September and September/October for Point
Barrow andMauna Loa, respectively. AMP is calculated as the difference between
the annual maximum and minimum concentrations for each station. The tem-
perature sensitivity of AMP at each station was estimated based onmultiple linear
regression analysis using detrended AMP as the dependent variable and the
detrended precipitation, solar radiation, Tmax and Tmin during the corresponding
season (from May to September for Point Barrow station and from May to
October for Mauna Loa station) over a broad region surrounding each station
by620 degrees of latitude as independent variables. The regional climate variables
were weighted by mean annual MODIS net primary production over 2000–2009
(ref. 42) to focus on the vegetated areas. Using a similar approach, we also calcu-
lated the sensitivity of corresponding season NCE in boreal (50u–90uN) and
temperate (25u–50uN) regions to changes in Tmax and Tmin (May–September
for boreal regions and May–October for temperate regions). The uncertainties
of the sensitivity were estimated based on the standard errors of the corresponding
parameters.
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