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ASYMMETRIC EQUILIBRIUM CONFIGURATIONS
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UNDER SYMMETRIC DEAD LOADS

By

ANGELO MARCELLO TARANTINO

Abstract. Homogeneous deformations provided by the nonlinear equilibrium prob-
lem of symmetrically loaded isotropic hyperelastic cylindrical bodies are investigated.
Depending on the form of the stored energy function, the problem considered may admit
asymmetric solutions, besides the expected symmetric solutions. For general compress-
ible materials, the mathematical condition allowing the assessment of these asymmetric
solutions, which describe the global path of equilibrium branches, is given. Explicit
expressions for evaluating critical loads and bifurcation points are derived. Results and
basic relations obtained for general isotropic materials are then specialized for a Mooney-
Rivlin and a neo-Hookean material. A broad numerical analysis is performed and the
qualitatively more interesting asymmetric equilibrium branches are shown. The influence
of the constitutive parameters is discussed, and, using the energy criterion, a number of
considerations are carried out concerning the stability of the equilibrium solutions.

1. Introduction. Nonlinearities in finite elasticity often lead to multiple equilibrium
configurations and, under some circumstances, even in a symmetric layout it is possible
to observe an unexpected lack of symmetry of the deformation. A typical experimental
behavior of this kind was evidenced by Treloar [1]. In a biaxial stretching test, Treloar
stretched a square rubber membrane by equal in-plane biaxial loads applied perpendic-
ular to the membrane edges, and he observed that, when the load exceeds a certain
critical value, the membrane can be in equilibrium with unequal stable in-plane principal
stretches. Namely, during the deformation process, a homogeneous shape-change mode
of bifurcation (square to parallelogram) can occur.

Even from a theoretical point of view, the problem of the existence of asymmetric equi-
librium solutions generated by symmetric loads has received great attention. Kearsley
[2], analyzed membranes composed of incompressible Mooney-Rivlin material, finding
both symmetric and asymmetric solutions. MacSithigh [3] studied the same problem
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using a minimum energy approach. In order to study the stability of post-bifurcation
paths, Ogden [4] considered a local incremental bifurcation mode by looking for nontriv-
ial solutions to the equations of small deformations superposed on finite deformations.
Chen [5], [6] found conditions for the stability of equilibria in an arbitrary isotropic,
incompressible material, demonstrating that the same equilibrium states are at most
neutrally stable. More recently, some constitutive branching analyses, which show how
bifurcation depends on the form of the stored energy function, have been proposed by
Haslach [7] and Tarantino [8]. In [8], the equations governing the global development
of the asymmetric equilibrium branches for incompressible isotropic material have been
derived.

The corresponding plane deformation problem was studied again by Ogden [9], [10].
In particular, Ogden gave conditions, based on the local invertibility of the elastic stress-
deformation relations, to have a bifurcation from the primary path of equal stretch
equilibria.

In the present work, the symmetry-breaking phenomenon observed by Treloar is stud-
ied, considering general compressible isotropic cylindrical bodies subject to in-plane
equibiaxial dead-load tractions. The main purpose is to extend the analysis investigat-
ing symmetric and asymmetric solutions admitted by the nonlinear equilibrium problem.
Emphasis is placed on the search of equilibrium configurations characterized by lack of
uniqueness and on the pertinent bifurcation phenomena.

In Section 2, the finite plane deformation problem for a compressible, isotropic and
hyperelastic material is reported. In Section 3, the mathematical condition, in terms of
principal deformation invariants, for the computation of asymmetric solutions within the
class of homogeneous deformations is derived. Moreover, expressions for the evaluation
of critical loads and of the corresponding bifurcation points are obtained. Results and
basic equations derived for general isotropic materials are then specialized in Section
4 for a compressible Mooney-Rivlin material and in Section 5 for a compressible neo-
Hookean material. For different combinations of material parameters, explicit branches
of asymmetric equilibria are computed and the qualitatively more significant situations
are discussed and reported through a series of plots. Using the energy criterion, some
stability considerations about the equilibrium solutions are brought forward.

2. The boundary-value problem. In this work we consider homogeneous, hyper-
elastic and isotropic cylindrical bodies, under the plane deformation condition. Rectan-
gular Cartesian material coordinates (x1, x2, x3) are chosen to describe a body whose un-
deformed configuration is the closure of the regular cylindrical domain B = {x|(x1, x2) ∈
Ω, 0 < x3 < L} of the three-dimensional Euclidean space E. The deformed configuration
is given by the deformation ϕ : B̄ → V, and, hereinafter, F : B̄ → Lin+ indicates the
deformation gradient Dϕ.1

1V is the vector space associated with E and Lin+ is the set of all the (second-order) tensors with

positive determinant.
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For the cylindrical body B̄, a state of plane deformation parallel to the plane Ω(x1, x2)
is characterized by2

ϕα = ϕ̂α(x1, x2) and ϕ3 = x3.

Thus, the components of the deformation gradient F are independent of x3 and found
to be

Fαβ = ϕα,β(x1, x2), Fα3 = F3γ = 0, F33 = 1. (1)

Using (1) and denoting by w = ŵ(I1, I2, I3) the stored energy function3, where the
variables

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = δ2 = λ2

1λ
2
2λ

2
3, (2)

are the principal invariants of the left Cauchy-Green deformation tensor B = FFT and
λi are the principal stretches, the nonvanishing components of the Piola-Kirchhoff stress
tensor TR assume the following form (TRα3 = TR3β = 0):

TRαβ = γ0F
−T
αβ + γ1Fαβ , (3a)

TR33 = 2w1 + 2hw2 + 2w3j
2, (3b)

where

γ0(I1, I2, I3) = 2j2(w2 + w3), γ1(I1, I2, I3) = 2(w1 + w2), (4)

with j = λ1λ2, h = λ2
1 + λ2

2 and wi = ∂w/∂Ii.
The boundary-value problem may now be formulated by considering a cylindrical body

with a unit square cross section Ω = {(x1, x2) : |xα| < 1/2}, stretched and maintained
in equilibrium by tensile surface forces applied uniformly and orthogonally to the four
sides. We restrict our attention to dead loads, namely to the simplest kind of applied
forces characterized by densities per unit area in the reference configuration that do not
depend on the deformation. The boundary-value problem, therefore, consists in finding
the solutions ϕα of the equilibrium equations (in the absence of the body forces)

TRαβ,β = 0, for all xα ∈ Ω, (5)

supplemented by the boundary conditions

TRαβnβ = snα, for |xα| = 1/2, (6)

where s is an assigned positive constant and nα are the components of the outward unit
normal to ∂Ω. Solutions to the above problem are sought in the class of homogeneous
deformations, namely in the set of deformations with constant deformation gradient, with
special attention to those equilibrium configurations characterized by lack of uniqueness.

2In the sequel, the range of Greek indices is {1, 2} and that of Latin indices is {1, 2, 3}.
3We assume that the stored energy function is smooth enough, bounded below and satisfies the

growth conditions [5], [14]: w(F) → ∞ as both detF → 0+ and ‖F‖ → ∞. These hypotheses are crucial

for the existence of (at least) a homogeneous solution.
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3. Symmetric and asymmetric solutions. A homogeneous deformation trivially
satisfies the field equations (5) and produces a constant stress field that must fulfill the
boundary conditions (6). Introducing (3a) into (6), the following set of equations is
obtained:

γ0

j
ϕ2,2 + γ1ϕ1,1 = s, −γ0

j
ϕ2,1 + γ1ϕ1,2 = 0,

−γ0

j
ϕ1,2 + γ1ϕ2,1 = 0,

γ0

j
ϕ1,1 + γ1ϕ2,2 = s. (7)

With the polar decomposition of the deformation gradient Fαβ , the deformation may be
regarded as resulting from two (constant) stretchings (λ1, λ2) along the principal axes
parallel to the plane Ω (pure deformation), followed by a rigid-body rotation (angle θ)
of these axes around the principal axis x3 normal to Ω. Unlike the case studied in [8],
the orientation of the principal axes is kept unspecified. Therefore, denoting by φ the
angle that the first principal axis forms with the x1-axis, the in-plane components of the
deformation gradient are expressed as

[F ]αβ =
[

cos θ sin θ

− sin θ cos θ

] [
cos φ sin φ

− sin φ cos φ

] [
λ1 0
0 λ2

] [
cos φ − sin φ

sin φ cos φ

]
,

and the system (7) can be rewritten as follows:(
γ1 −

γ0

j

)
(λ1 − λ2) cos(2φ + θ) = 0, (8a)

(
γ1 −

γ0

j

)
(λ1 − λ2) sin(2φ + θ) = 0, (8b)

(
γ1 +

γ0

j

)
(λ1 + λ2) cos θ = 2s, (8c)

(
γ1 +

γ0

j

)
(λ1 + λ2) sin θ = 0. (8d)

As suggested by (8c), to have bounded values of the stretches, the quantity
(
γ1 + γ0

j

)
must be different from zero. Since the stretches are strictly positive scalars, from (8d), we
then have sin θ = 0, that is θ = kπ , with k = 0,±1,±2, . . . . The body may thus undergo
rotations that are multiples of 180◦ about the principal axis x3 parallel to the generators
of B. For odd values of k, the tensile dead loads are converted to compressive forces.
Such an inversion of sign is allowed by the mathematical idealization of dead loading,
according to which the forces preserve their orientation during rotation. Equation (8c),
with cos kπ = ±1, provides a relation which links the intensity of the external loads
with the principal stretches. Since the two trigonometric functions sin(2φ + kπ) and
cos(2φ + kπ) cannot vanish simultaneously, equations (8a) and (8b) supply two classes
of solutions:

λ1 − λ2 = 0, (9)

γ1 −
γ0

j
= 0. (10)
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For both sets of solutions, the angle φ remains undetermined, as a result of the complete
symmetry of the problem.

Equation (9) represents the symmetric solutions. The sought homogeneous defor-
mations transform (homothetically) the unit square cross section Ω of the undeformed
cylindrical body into another square. In particular, the strain ellipse degenerates into a
circle and every direction is principal.

On the other hand, Equation (10) constitutes a condition, in terms of principal in-
variants, which allows unequal values of the principal stretches (asymmetric solutions,
λ1 �= λ2). In this case, given the arbitrariness of the angle φ, the initial square cross
section is transformed into a parallelogram.

The equilibrium problem admits (at least) one solution of the first class, whereas the
existence of other solutions belonging to the second class depends on the specific form of
the stored energy function.

Through (4), the condition (10) for a general compressible material can be expressed
by

w1 + (1 − j)w2 − jw3 = 0. (11)

From a mechanical point of view, the more interesting roots of this equation, if they exist,
are obviously the asymmetric ones. In this circumstance, applying (11), it is possible to
obtain the global development of asymmetric equilibrium branches. With (4), (8c) gives
the intensity of the external loads needed to produce the homogeneous deformation with
principal stretches λ1 and λ2:

s = ±(λ1 + λ2) [w1 + (1 + j)w2 + jw3] . (12)

In particular, introducing (11) into (12), the intensity of the external loads along any
asymmetric equilibrium branch can be evaluated. In this case, (12) reduces to

s = ±2(λ1 + λ2)[w1 + w2]. (13)

At a bifurcation point λ1 = λ2 = λCR and the relations (11) and (13) become

w1 + (1 − λ2
CR)w2 − λ2

CRw3 = 0, (14)

sCR = ±4λCR[w1 + w2], (15)

where wi now depend on λCR.

4. Application to compressible Mooney-Rivlin materials. The stored energy
function of compressible Mooney-Rivlin materials has the following form [11]:

w = aI1 + bI2 + G(δ), (16)

with a > 0 and b > 0. The following expression, proposed by Ciarlet and Geymonat [15],
is chosen for the function G(δ):

G(δ) = cδ2 − d ln δ, (17)

with c > 0 and d > 0.
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Fig. 1. Plot of the external load versus the in-plane stretch λ1 = λ2

Through (16) and (17), the above relations (11) and (12) furnish

−2(a + b)λ1λ2 + 2(b + c)λ2
1λ

2
2 − d = 0, (18)

s = ±1
2

λ1 + λ2

λ1λ2

{
2(a + b)λ1λ2 + 2(b + c)λ2

1λ
2
2 − d

}
. (19)

Depending on the numerical values of the four material constants, (18) may provide
asymmetric solutions. To simplify the parametric analysis, (18) and (19) are rewritten
in dimensionless form dividing through by the constant b ( �= 0):

(ā + c̄ + 2) + (ā + 1)λ1λ2 − (c̄ + 1)λ2
1λ

2
2 = 0, (20)

s̄ = ±λ1 + λ2

λ1λ2

{
−(ā + c̄ + 2) + (ā + 1)λ1λ2 + (c̄ + 1)λ2

1λ
2
2

}
, (21)

where ā = a/b, c̄ = c/b and s̄ = s/b. To have vanishing stresses when λ1 = λ2 = 1,
the dimensionless constants of (20) and (21) have been normalized using the following
relation:

d̄ = d/b = 2(ā + c̄ + 2). (22)

In order to show a typical stress-deformation relation for a cylindrical body composed
of compressible Mooney-Rivlin material, Equation (21) is plotted in Figure 1, for the
special case λ1 = λ2 (primary path), choosing ā = 1 and the following three values for
c̄ : 0.1, 1 and 10.

Having selected the two ratios ā and c̄, the implicit Equation (20) provides the branches
of the asymmetric equilibrium, along which the initial square cross section of the cylindri-
cal body is deformed into a parallelogram. Taking into account the whole range of values
for the two material parameters, equilibrium solutions exhibit qualitative properties that
can be described by means of diagrams like that shown in Figure 2. Such a diagram is
plotted for a specific value of ā, and each single curve refers to a particular value of c̄.
A single point (λ1, λ2) of each curve represents an equilibrium configuration of the body
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Fig. 2. Branches of asymmetric equilibria on the (λ1, λ2)-plane, with
ā = 1

Fig. 3. Plot of surface c̃, with ā = 1

under a prescribed load. Changing the loading parameter s̄, the point moves along the
same curve and, in general, different equilibrium points of a single curve may correspond
to the same value of s̄. The bisector λ1 = λ2, which represents the universal symmetric
solutions, is also reported.

All curves describing the branches of asymmetric equilibria have the same hyperbola-
like form (cf. Figure 2). Increasing c̄, these hyperbolas translate toward the limiting
curve (c̄ → ∞)

λ2
1λ

2
2 − 1 = 0, (23)

which is plotted in Figure 2 with a dashed line. Note that such a limiting curve de-
scribes the equilibrium solutions for incompressible materials. To better understand the
modifications that the branches of the asymmetric equilibria undergo when the material
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Fig. 4. Branches of asymmetric equilibria on the (λ1, λ2)-plane, with
c̄ = 1

parameter c̄ is changed, 3D graphics may be employed such as in Figure 3. In this figure,
the surface, obtained from Equation (20) keeping ā fixed,

c̃(λ1, λ2; ā) =
ā + 2 + (ā + 1)λ1λ2 − λ2

1λ
2
2

λ2
1λ

2
2 − 1

, (24)

is plotted. The curves of Figure 2 can be obtained as contour lines slicing the surface c̃

through horizontal planes. Since the surface c̃ is a monotonically decreasing function, its
intersection with horizontal planes cannot yield more than a single open-curve solution,
for each pair of assigned parameters ā and c̄.

The influence of the material parameter ā is shown in Figure 4, where the branches
of asymmetric equilibria are drawn for a fixed value of the parameter c̄: as ā increases,
the curves drift away from the origin.

The bifurcation points, that is, the intersections of asymmetric equilibrium branches
with the bisector, can be found by sectioning the surface c̃ with the vertical plane λ1 = λ2.
In this way, an equation that relates the material parameters and the critical stretch λCR

is obtained:

c̃(λCR; ā) =
ā + 2 + (ā + 1)λ2

CR − λ4
CR

λ4
CR − 1

. (25)

Equation (25) is plotted in Figure 5 for ā = 0.1, 1 and 10.
According to the energy criterion of stability analysis, an equilibrium configuration un-

der assigned dead loads is said to be (locally) stable if the corresponding deformation is a
(relative) minimizer of the total energy. Although a complete stability analysis is not per-
formed in this section, contour lines for the specific energy e(λ1, λ2) = w̃(λ1, λ2)−TR ·F
are shown in the neighborhoods of the asymmetric equilibrium solutions.4 These contour
lines are plotted in Figure 6 for the case with ā = 1 and c̄ = 1. The location of mini-
mum points on the first segment of the bisector states that the symmetric solutions are
initially stable. Increasing the loading parameter s, the bifurcation point λbif = 1.4142

4The reader may find a detailed stability analysis, for example, in the paper by Chen [6].
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Fig. 5. Bifurcation points: Plot of Equation (25) for ā = 0.1, 1 and 10

Fig. 6. Stability considerations: Plot of the specific energy e(λ1, λ2)
with ā = 1 and c̄ = 1

is arrived at. Beyond this point, the asymmetric equilibria are stable and the symmetric
equilibria, as indicated by the saddle-like shape of the surface energy, become unstable.
Therefore, when s > sbif = 11.3137|b|, chances of observing a deformed cylindrical body
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Fig. 7. Branches of asymmetric equilibria on the (λ1, λ2)-plane: Plot
of Equation (26) for ã = 0.1, 1 and 5

with square cross section practically vanish. Indeed, at any imperceptible disturbance,
one of the two symmetric principal stretches increases and the other decreases. Deforma-
tion loses its symmetry and the shape of the cross section (randomly) turns into one of
the two possible parallelograms, assuming a stable equilibrium configuration. It is worth
noticing that this particular case of a nonlinear cylindrical body in tension shows strong
qualitative analogies with Euler’s beam, namely, with a slender beam in compression.

5. Application to compressible neo-Hookean materials. Setting b = 0 in the
equations of Section 4, the case of compressible neo-Hookean materials can be obtained
straightforwardly. In particular, (20), (21) and (22) reduce to

ã(λ1λ2 + 1) − λ2
1λ

2
2 + 1 = 0, (26)

s̄ = ±λ1 + λ2

λ1λ2

{
ã(λ1λ2 − 1) + λ2

1λ
2
2 − 1

}
, (27)

d̃ = 2(ã + 1), (28)

where ã = a/c, d̃ = d/c and s̃ = s/c. Equation (26), for the sole material parameter
ã, is plotted in Figure 7. As is evident from the diagram, the asymmetric equilibrium
solutions have again a hyperbola-like form, showing a qualitative trend very similar to
that of compressible Mooney-Rivlin materials. Moreover, identical considerations about
the stability of each single branch hold.

Finally, it is important to observe that, unlike what was shown in this section, the
analogous problem, formulated for a body composed of neo-Hookean material under
plane stress conditions, does not admit asymmetric solutions [8].
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