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Abstract

We provide analytic solutions for any asymmetric �rst-price auc-

tion, both with and without a minimum bid m, for two buyers hav-

ing valuations uniformly distributed on [v1; v1] and [v2; v2]. We show

that our solutions are consistent with the previously known subcases

(Griesmer et al., 1967 and Plum, 1992), which have v1 = v2. We also

show that the solution is continuous in v1; v1; v2; v2 and m. Several

interesting examples are presented, including a class where the two

bid functions are linear.

1 Introduction

While research on auctions, including asymmetric auctions, has grown signif-

icantly in recent years, there are still very few analytic solutions of �rst-price

auctions outside the symmetric case. Surprisingly, even what is possibly the

most natural environment to study has not been solved analytically, namely,

the uniform case with two buyers and private values drawn from indepen-

dent but asymmetric distributions. This is a fundamental case that would

�Dept. of Economics, University of Exeter, UK.
yThe Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel.

1



be useful to test conjectures, do comparative statics, or illustrate important

features of auction design.

There does exist a solution to a special case, which dates back to Gries-

mer et al. (1967), with distributions V1 � U [0; 1]; V2 � U [0; �] that has the
following equilibrium inverse-bid functions:1

v1(b) =
2b�2

�2 � b2(1� �2)
; v2(b) =

2b�2

�2 + b2(1� �2)
: (1)

However, this result has the restriction that the distribution of buyers�values

have the same lower end.2 This is a substantial assumption: it restricts the

asymmetry between the buyers to one dimension, namely, one distribution

being a �stretch� of the other while ignoring di¤erent aspects of strength

like �shifts�. For example, if the distribution of one buyer�s value is U [0; 1];

then the second buyer could be considered stronger for having U [0; 2] or for

having distribution U [1=2; 1]: In the �rst case (stretching), he is stronger

in the sense that he may have higher values (in [1; 2]), while in the second

case he is stronger in the sense that he cannot have low values (in [0; 1=2]).

These two notions of strength may yield di¤erent e¤ects on the equilibrium,

as was already observed by Maskin and Riley (2000). Likewise, the lack

of a minimum bid is yet another dimension missing in the existing results.

For instance, outside the symmetric case, linear bid functions can occur only

in the presence of a minimum bid. Also as we shall show, the presence of

a minimum bid may qualitatively a¤ect the equilibrium. For instance, the

two equilibrium bid functions may intersect both at the minimum bid and

at an internal point (see Example 1). This means that the bidding of the

buyers cannot be ordered such that one is more aggressive than the other.

Rather, one is more aggressive in a part of the common region of values while

the other buyer is more aggressive in the other region. This is despite the

fact that starting from the minimum bid, one buyer�s distribution of values

1For presentation purposes, we normalize the �rst bidder�s distribution to be on [0,1].
2This result was later used by Lebrun (1998, 1999), Maskin and Riley (2000), and

Cantillon (2002). Plum (1992) extends this analytic result to cover the power distribution

F1(x) = x
� and F2(x) =

�
x
�

��
. Note that these again have the same lower bound for the

support of the two distributions.
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stochastically dominates the other�s distribution. This is the �rst example

of such a phenomenon that we are aware of.

In this paper, we present analytic solutions for any asymmetric �rst-price

auction, both with and without a minimum bid m, for two buyers having

values uniformly distributed on [v1; v1] and [v2; v2]. We show that our solu-

tions are consistent with previously known solutions of auctions with uniform

distributions. As we explain later, our solution also covers the general case

of uniform distributions with atoms at the lower end of the interval.

The mathematical expressions change in the di¤erent regions of the pa-

rameters v1; v1; v2; v2 and m. While one change occurs when the mini-

mum bid ceases to bind, surprisingly, we �nd another change occurs when

m = maxfv1; v2g: Furthermore, as a function of the distributions, changes
occur when a distribution shrinks to a single point (that buyer�s value be-

comes commonly known) whereupon that buyer uses a mixed strategy in

equilibrium. We prove that despite these changes, the solutions are still con-

tinuous in the parameters. As far as we are aware of, this issue of continuity

was not addressed in this generality. A consequence of the continuity is that

the pro�ts are also continuous in the parameters.

Several interesting examples are presented, including a class where both

bid functions are linear. In particular, given any minimum bid m � 0; there
is a class of uniform distributions (where buyer 2�s distribution stochastically

dominates buyer 1�s distribution) for which the bid functions b1(v) = v
2
+ m

2

and b2(v) = v
2
+ m

4
form the equilibrium. This provides a handy textbook

example of linear equilibrium bidding in asymmetric auctions. Furthermore,

we characterize the environments with uniform distributions that yield linear

bid functions and provide a more general formula that becomes linear in those

environments.

Besides the challenge of obtaining analytic solutions to a rather wide class

of asymmetric �rst-price auctions, we hope that our results will improve our

understanding of auctions and serve as a useful tool for future research on

auctions. We also hope that this paper can help or at least inspire others to

�nd analytic solutions of other classes of auction models.

In Section 2, we describe the model and provide initial results about
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the equilibrium and boundary conditions. We then derive the di¤erential

equations resulting from the �rst-order conditions of the equilibrium and

appropriate boundary conditions. We show that this and the second-order

conditions can be reduced to a single di¤erential equation. In Section 3, we

make use of these results to provide solutions that are distinct on the various

regions of the parameters. In Section 4, we show that the solutions are

continuous in the parameters. Some examples are then provided in Section

5 along with a short discussion in Section 6. Several of the proofs are given

in the Appendix.

2 TheModel and the Equilibrium Conditions

We consider a �rst-price, independent, private-value auction for an indivisible

object with two buyers having two general uniform distributions: U [v1; v1]

for buyer 1 and U [v2; v2] for buyer 2 (where �1 < v1; v1; v2; v2 < 1, as
a uniform distribution has a �nite support). Without loss of generality, we

assume that v1 � v2:
As usual, we are interested in the Bayes-Nash equilibrium of this game

with incomplete information, that is, a pair of bidding strategies that are

best replies to each other, given the beliefs of the buyers about the values of

the object.

We allow for the possibility of a minimum bid m; which is assumed to be

�nite, to ensure that bids are bounded from below. The fact that the bids are

bounded from below implies that no buyer wins by bidding less than v1 (the

argument here is similar to the one made in Kaplan and Wettstein, 2000).3

In particular, in equilibrium, there is no bid b lower than v1. Consequently,

we shall assume from now on and without loss of generality that m � v1:
3The argument is along the following lines and by contradiction. Assume that there is

a minimum bid m and that bidding below v1 has strictly positive probability of winning.
From this, bidders must have strictly positive pro�ts for all values including v1. Take b

�

as the minimum possible equilibrium bid. The bidder bidding b� must have no chance of
winning since if not a slight increase in bid would yield a discrete jump in probability of
winning. Since he has no chance of winning by bidding b�, it follows that the bidder has
zero expected pro�ts, providing a contradiction.
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Notice that when m � minfv1; v2g, we have the trivial equilibrium of at

most one buyer placing a bid at m. In addition, if v2 � 2v1 � v1, then any
Nash equilibrium must have buyer 2 always bidding v1 (and hence always

winning the object at price v1). Such an equilibrium re�ects what Maskin

and Riley (2000) refers to as the Getty e¤ect where one bidder (the J. Paul

Getty Museum) is so dominant that it always wins (in art auctions). The

elimination of these trivial cases implies the following:

Lemma 1 The set of parameters v1; v2; v1; v2; and m for which non-trivial

equilibria may exist is de�ned by the following constraints:

(i) v1 < v1;

(ii) v1 � v2 < v2;

(iii) v2 < 2v1 � v1;
(iv) m < minfv1; v2g:

In this set, we now look for strictly monotone, di¤erentiable equilibrium

bid functions b1(v) and b2(v). Denote the inverses of these bid functions as

v1(b) with support [b1; b1] and v2(b) with support [b2; b2]. Assume that (in

equilibrium) a buyer with zero probability of winning bids his value (this

includes any value below m).4

Lemma 2 The interval of equilibrium bids (a subinterval of [bi; bi]) in which
buyer i has a strictly positive probability of winning in equilibrium is the same

for both buyers.

Proof. Denote the interval of equilibrium bids in which buyer i has a

strictly positive probability of winning as (ci; ci]: (Note that the lower end of

4Without this assumption a bidder with value v; who in equilibrium has zero probability
of winning, can sometimes bid more than his value. Formally, this could still be part of a
Bayes-Nash equilibrium and have a di¤erent allocation than other Bayes-Nash equilibria.
Such equilibria can be eliminated, for example, by a trembling-hand argument, i.e., by
assuming that each bidder i bids with positive density on [vi; vi]. While a bidder bidding
below his value when he has zero probability of winning can also be supported in a Bayes-
Nash equilibrium, the allocation is the same as the Bayes-Nash equilibrium where he bids
his value. For simplicity, we may eliminate such equilibria.
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the interval is open since the bid function of either buyer is strictly increas-

ing.) First, observe that due to independence of the value distributions, in

equilibrium when a buyer bids ba he wins with a (weakly) higher probability

than when he bids bb � ba. This implies ci = bi: Furthermore, increasing

probability and continuity of the bid function imply that in equilibrium the

set of bids used by a particular buyer with which he has a strictly positive

probability of winning is indeed an interval. In addition, b1 = b2: Otherwise,

if bi > bj, then there would be a small enough amount for buyer i (of value

vi) to lower his bid from bi without lowering his probability of winning. Since

ci = bi; we have c1 = c2:

Finally, we show that c1 = c2. First note that for any bid above ci; buyer

i has a positive probability of winning; hence, there is a positive probability

that bj � ci. Assume by contradiction that ci < cj. By de�nition, bj > cj

with positive probability. It follows by continuity of buyer j�s bid function

that j bids bj; where ci < bj < cj; with strictly positive probability: Consider

a bid b0j such that ci < b0j < cj. By continuity of buyer i�s bid function

between ci and ci; there is a positive measure of bi for which ci � bi < b0j: In
other words, buyer j has a strictly positive probability of winning with bid

bj in contradiction to the de�nition of cj: Hence, c1 = c2.

In view of Lemma 2, denote by (b; b] the region of equilibrium bids where

if a buyer submits a bid, he has a strictly positive probability of winning

in equilibrium. From our assumption that in equilibrium a buyer with zero

probability of winning bids his value, it follows that bi(vi) = vi for vi < b and

by continuity bi(b) = b (if b � vi):

Lemma 3 In equilibrium, v1 = b1 � maxfb2;mg = b; and

b = maxfv1 + v2
2

;mg: (2)

Proof. Since any bid b is such that b � v1 and no one bids above his

value we have b1 = v1. Consequently, b1 � b2 and b1 � maxfb2;mg: We now
show that b = maxfb2;mg by �rst showing that b � maxfm; b2g and then
showing that b � maxfm; b2g.
To show b � maxfm; b2g; let us �rst show that b � maxfm; b1; b2g: In
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fact, b < m is impossible since this would imply that a bid strictly less than

the minimum bid m has a strictly positive probability of winning. Since

by de�nition (b; b] is a subinterval of both [b1; b1] and [b2; b2], it follows that

bi � b for i = 1; 2, completing the proof of b � maxfm; b1; b2g: Since b1 � b2;
this also yields b � maxfm; b2g:
Now let us show b � maxfm; b2g: By contradiction assume that b >

maxfm; b2g: Since b1 � b2; by continuity of buyer 1�s bid function, for some
value, buyer 1 bids b01 such that b > b

0
1 > maxfm; b2g: However, by continuity

of buyer 2�s bid function, buyer 2 bids b2 such that b01 > b2 > maxfm; b2g
with strictly positive probability. This implies that buyer 1 wins with strictly

positive probability when bidding b01; in contradiction to the de�nition of b.

Now we solve for b in terms v1 and v2 when m = v1. In the interval [b; b],

buyer 2 with value v2 solves the following maximization problem:

max
b
(
v1(b)� v1
v1 � v1

)(v2 � b):

Below b buyer 1 bids his value, and thus buyer 2 with value v2(b) must not

bene�t from bidding less than b:

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b:

This is true only if b � v1+v2(b)

2
: Similarly, buyer 2 with value v2(b) does not

bene�t from bidding more than b:

(b� v1)(v2(b)� b) � (v1(b)� v1)(v2(b)� b); 8 b � b: (3)

However, since v1(b) � b; we have

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b: (4)

This can happen only if b � v1+v2(b)

2
; therefore b = v1+v2(b)

2
: Since m = v1;

we have b2 � v1 = m, which implies that b = maxfm; b2g = b2; and hence
v2(b) = v2(b2) = v2: Thus,

b =
v1 + v2
2

: (5)
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With a minimum bidm, by de�nition b � m: If m � v1+v2
2
; (5) still holds.

If m � v1+v2
2
; then we have b = m (the �rst constraint (3) from above is not

necessary and the second constraint (4) is satis�ed). Therefore,

b = maxfv1 + v2
2

;mg:

2.1 The di¤erential equations

In the interval [b; b], the functions v1(b) and v2(b) must satisfy (by the �rst-

order conditions of the maximization problems)

v01(b)(v2(b)� b) = v1(b)� v1; (6)

v02(b)(v1(b)� b) = v2(b)� v2:

Let us look now at the boundary conditions. As we noted above, b belongs

to [v1; v1]: Furthermore, ifm � v2; then b = m. We must have, in equilibrium,
the following:

B1 v1(b) = b (recall that a buyer bids his value when his probability of

winning is zero).

B2 v2(b) = maxfv2;mg (this is the minimum value that gives buyer 2 a

positive probability of winning).

B3 v1(b) = v1 and v2(b) = v2 (the highest bid of each buyer is reached for

his highest value.)

Adding the equations in (6) together yields

v01(b)v2(b) + v
0
2(b)v1(b) = [(v1(b) + v2(b)� (v1 + v2))b]0:

By integrating, we have

v1(b) � v2(b) = b(v1(b) + v2(b))� (v1 + v2) � b+ c: (7)
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Lemma 4 The upper bound of the bid functions, b; is given by

b =
v1 � v2 � c

(v1 � v1) + (v2 � v2)
; (8)

where

c =

(
(v1+v2)

2

4
if v1+v2

2
� m;

(v1 + v2)m�m2 otherwise.
(9)

Proof. Substituting the lower boundary condition B1 into (7) yields

v2(b)b = b(v2(b) + b)� (v1 + v2)b+ c:

This simpli�es to

c = (v1 + v2)b� b2:

From (2), we have (9). (Note that c, as a function ofm, reaches its maximum

at m =
v1+v2
2
.) Using B3 and (7) we have

v1 � v2 = b(v1 + v2)� (v1 + v2) � b+ c;

which yields (8).

2.1.1 Reduction to a single di¤erential equation.

We can use (7) to �nd v2(b) in terms of v1(b) as follows:

v2(b) =
bv1(b)� (v1 + v2)b+ c

v1(b)� b
: (10)

We can then rewrite the di¤erential equation (6) as

v01(b) � (
bv1(b)� b(v1 + v2) + c

v1(b)� b
� b) = v1(b)� v1

or

v01(b) � (�b(v1 + v2) + c+ b2) = (v1(b)� v1)(v1(b)� b): (11)

Equations (9) and (11) and boundary condition v1(b) = v1 are used to �nd

a solution for v1(b): With the solution of v1(b), equations (9) and (10) are
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then used to �nd v2(b). Although the di¤erential equation is derived from

the �rst-order conditions, any solution to it also satis�es the second-order

conditions (see Appendix A.1), and hence is an equilibrium bid function.

This is the method we follow to �nd the equilibrium bid functions in the

next section.

3 Solutions

3.1 Auction without a minimum bid

The auction without a minimum bid has the same solution as an auction

with a minimum bid m that satis�es m � v1+v2
2
.

Proposition 1 When m � (v1+v2)=2; the equilibrium inverse bid functions
are given by

v1(b) = v1 +
(v2 � v1)2

(v2 + v1 � 2b)c1e
v2�v1

v2+v1�2b + 4(v2 � b)
; (12)

v2(b) = v2 +
(v2 � v1)2

(v1 + v2 � 2b)c2e
v1�v2

v1+v2�2b + 4(v1 � b)
(13)

where

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) ; (14)

c2 =

(v2�v1)2
v2�v2

+ 4(b� v1)
�2(b� b)

e
v1�v2
2(b�b) (15)

and

b =
v1 + v2
2

; b =
v1 � v2 � (v1+v22

)2

(v1 � v1) + (v2 � v2)
: (16)

Proof. In solving di¤erential equation (11), we �rst have (by (9) and
(8)) c = (v1+v2)

2

4
and

b =
v1 � v2 � (v1+v22

)2

(v1 � v1) + (v2 � v2)
:
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Rewrite equation (11) as

v01(b) � (v1 + v2 � 2b)2 = 4(v1(b)� v1)(v1(b)� b):

De�ne now � � v1 + v2 � 2v1 = v2 � v1; x � b� v1 and D(x) such that

v1(b) =
�2

D(x)
+ v1: (17)

We then have v01(x) = � �2

D(x)2
D0(x), and equation (11) becomes

D0(x) � (�� 2x)2 = 4(D(x)x� �2);
D0(x) � (�� 2x)2 = 4D(x)x� 16x(�� x)� 4(�� 2x)2;

(D0(x) + 4) � (�� 2x)2 = 4x(D(x)� 4(�� x));

D0(x) + 4

D(x)� 4(�� x) =
4x

(�� 2x)2

=
2�

(�� 2x)2 �
2

�� 2x:

By integrating both sides, we obtain

ln(D(x)� 4(�� x)) = �

�� 2x + ln(�� 2x) + ln c1;

and taking the exponent of both sides yields

D(x)� 4(�� x) = (�� 2x)c1e
�

��2x ;

D(x) = (�� 2x)c1e
�

��2x + 4(�� x): (18)

The upper boundary condition v1(b) = v1 determines c1: When b = b, we

have x = x � b� v1. From our de�nition we have D(x) = �2

v1�v1
: Hence the

boundary condition becomes

c1 =

�2

v1�v1
� 4(�� (b� v1))
(�� 2(b� v1))

e
� �
��2(b�v1) ;
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which can be rewritten as (recall that in this case b = v1+v2
2
)

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) :

Note that this depends only on the constants of the game vi; vi, since

b� v2 =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v2

and

b� b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v1 + v2

2
:

Equations (12) and (14) are obtained from equations (17) and (18) and the

de�nitions of �; x. Finally, equations (13) and (15) are obtained from equa-

tions (12) and (14), respectively, by reversing the roles of v1; v1 with those

of v2; v2.

3.2 A limit case where buyer 2�s value is known (con-

tinuity as v2 �! v2)

As a test of the above result let us relate it to the asymmetric situation

treated by Kaplan and Zamir (KZ) (2000) (see also Martínez-Pardina, 2006),

namely, the situation in which the value of one of the two buyers is common

knowledge. For simplicity, we normalize this situation to [v1; v1] = [0; 1] and

v2 = v2 = � where 0 < � < 2 (when � > 2; the equilibrium is that buyer 2

bids 1 and wins with certainty).5

For this situation, KZ found that in the equilibrium of the �rst-price

auction, buyer 1�s inverse bid function is

v1(b) =
�2

4(� � b) ; (19)

5When buyer 1�s value is commonly known, the equilibrium is trivial in that buyer 2
wins the auction at buyer 1�s value. (In this special situation, we also have to relax the
assumption of buyer 1 bidding his value when he doesn�t win to obtain an equilibrium.)
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while buyer 2, whose value is known to be �; uses a mixed strategy given by

the following cumulative probability distribution (with support from b = �
2

to b = � � �2

4
) :

F (b) =
(2� �)�
2(2b� �)e

� �
2b���

2
��2 : (20)

Let us view this situation as a limiting case of our model where [v1; v1] =

[0; 1],[v2; v2] = [�; � + "]; and " ! 0. This may be viewed as a continu-

ity property of the solution as v2 �! v2. To see that, we �rst write the

probability distribution of the bids of buyer 2, which is

P (b2(V2; ") � b) = P (V2 � v2(b; ")) =
v2(b; ")� �

"
:

(We use V2 for the random value of buyer 2, denote bi(v; ") as the bid function

for bidder i when the distribution is [�; � + "], and denote vi(b; ") as the

respective inverse bid function.)

Proposition 2 The equilibrium in KZ is a limit of our solution in the fol-

lowing sense:

(i) The limit of buyer 1�s bid function is that in KZ, namely,

lim
"!0

v1(b; ") =
�2

4(� � b) :

(ii) The bid distribution of buyer 2 approaches the mixed bidding strategy in

KZ, i.e.,

lim
"!0

v2(b; ")� �
"

= F (b);

where F(b) is given by (20).

Proof. First, we observe that for [v1; v1] = [0; 1] and v2 = v2 = � we

obtain from our above equations for b and b ((5) and (16)) the correct range

of bids: b = �
2
and b = � � �2

4
. Next, notice that b > b whenever � � �2

4
> �

2

(i.e., � < 2). Assuming that this is indeed the case, we have a range of

bids even when one buyer�s value is known with near certainty. (This makes

sense since it converges to a mixed-strategy equilibrium.) Now, using the
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analytic solution for buyer 1�s inverse bid function, (12) and (14), with the

distributions of [v1; v1] = [0; 1],[v2; v2] = [�; � + "], we have

v1(b; ") =
�2

(� � 2b)c1e
�

��2b + 4(� � b)
;

c1(") =
�2 � 4(� � b)
(� � 2b)

e
� �

��2b ;

where b = b(") = �+"��2

4

1+"
:

We have

lim
"!0

v1(b; ") =
�2

(� � 2b) lim"!0 c1(")e
�

��2b + 4(� � b)
=

�2

4(� � b) ;

since

lim
"!0

c1(") = lim
"!0

�2 � 4(� � b("))
(� � 2b("))

e
� �

��2b(") = 0:

Furthermore, using the analytic solution for buyer 2�s inverse bid function,

(13) and (15), we have

v2(b; ") =
�2="�

4��+�
"

1
2
��1

�
(� � 2b) e�

�
��2b e�

2
2�� � 4b

: (21)

And �nally it can be veri�ed (by straightforward calculation using (21) and

(20)) that indeed

lim
"!0

v2(b; ")� �
"

= F (b):

3.3 Auction with a minimum bid

When the minimum bid is binding, as in the case wherem > (v1+v2)=2; equa-

tion (9) becomes c = (v1+v2)m�m2 and (8) becomes b = v1�v2�(v1+v2)m+m2

(v1�v1)+(v2�v2)
.

Also, since v1 � v2, we have m > v1. Now, we can rewrite the di¤erential
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equation (11) as

v01(b) � (b�m)(b+m� v1 � v2) = (v1(b)� v1)(v1(b)� b): (22)

Notice that since b � m and 2m > v1 + v2; the coe¢ cient of v
0
1(b) on the

left-hand side of the above equation is positive. This leads to the following

proposition:

Proposition 3 The equilibrium inverse bid function for buyer 1 with mini-

mum bid m such that m > (v1 + v2)=2 and m 6= v2 is given by

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) c1

;

(23)

where

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
: (24)

Buyer 2�s inverse bid function v2(b) is obtained from v1(b) by interchanging

the roles of v1; v1 and v2; v2: The bounds of the bid functions are b = m and

b =
v1�v2�(v1+v2)m+m2

(v1�v1)+(v2�v2)
:

Proof. The derivation of this solution of equation (22) is given in Ap-
pendix A.2.

3.3.1 Special case when v1 = v2 = 0 (with and without minimum
bids):

Corollary 1 The equilibrium inverse bid function for buyer 1 with minimum
bid m and v1 = v2 = 0 is given by

v1(b) =
m2

b+
p
b2 �m2c1

;

15



c1 = �
(v1 �m)(v2)

�
(m+v1)(m+v2)
(v1�m)(v2�m)

�1=2
v1(m+ v2)

:

Proof. Substituting v1 = v2 = 0 into the solution, equations (23) and

(24) yields the result.

This is a special case that comes directly from substitution in our formula

of Proposition 3. We are not aware of this solution elsewhere. Now we show

that this solution agrees with other results. Taking limm!0 v1(b) and applying

L�Hopital�s rule yields

v1(b) =
2bv21v

2
2

v21v
2
2 + b

2(v22 � v21)
:

Reversing the roles of v1 and v2 gives us

v2(b) =
2bv21v

2
2

v21v
2
2 � b2(v22 � v21)

:

Setting v1 = 1 and v2 = � to �nd v1(b) and v2(b) yields equation (1), which

is the result in Griesmer et al. (1967).

Furthermore, setting v1 = v2 = 1 yields the symmetric case with a mini-

mum bid:

v1(b) =
m2

b+
p
b2 �m2c1

;

c1 = �
(1�m) (m+1)

(1�m)

(m+ 1)
= �1:

The limit as m! 0 is v1(b) = 2b; which agrees with the standard result.

3.4 The case when m = v2

Looking at the solution for the case of a minimum bid, the expressions (m�
v1) and (m� v2) appear in the denominator (in the constant). Since we are
in the case where m > (v1 + v2)=2 and v2 � v1; we have m = v1 only when

v1 = v2 = m, which reduces to the case of no minimum bid. We are left to

check the limit of our solution with a minimum bid as m = v2:
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Proposition 4 The equilibrium inverse bid function for buyer 1 with mini-

mum bid m such that m = v2 and v2 > v1 is given by

v1(b) = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i (25)

where

c =
(v1 � v2) (v2 � v1)
(v1 � v1) (b� v2)

� log
�
b� v1
b� v2

�
=

(v1 � v1 + v2 � v2) (v2 � v1)
(v1 � v1) (v2 � v2)

� log
�
(v2 � v1) (v1 � v1)
(v2 � v2) (v1 � v2)

�
: (26)

Again, the buyer 2�s function v2(b) is obtained from v1(b) by interchanging

the roles of v1; v1 and v2; v2: The bounds of the bid functions are b = m and

b =
v1�v2�v1�v2

(v1�v1)+(v2�v2)
.

Proof. See the Appendix A.3.

3.5 A limit case as v2 �! v2 with a minimum bid.

In this section, we check for continuity at the limit case when buyer 2�s value

is commonly known. This is an extension of the case treated in Section 3.2 in

the presence of a minimum bid. We again use the normalization in Section

3.2, that is, [v1; v1] = [0; 1] and v2 = �; v2 = � + ": From substituting these

into equations (23) and (24), it is clear that c1(")! 0; therefore

lim
"!0

v1(b; ") =
m(� �m)
� � b :

To �nd v2(b; "); we again use (23) and (24) (but the roles of v1; v1 and

v2; v2 reversed). Hence,

v2(b; ") = � +
m(m� �)

b+ (b�m)
m��
2m�� (b+m� �)

m
2m�� c2(")

;

17



where

c2(") = �
(� + "�m)

�
(m+")(m��+1)
(1�m)(��m)

� m��
2m��

"(m� � + 1) :

As in Section 3.2, buyer 2�s strategy goes to a mixed strategy with cumulative

distribution

lim
"!0

v2(b; ")� �
"

=
m

( m(m��+1)
(1�m)(��m))

m��
2m��

m��+1 (b�m)
m��
2m�� (b+m� �)

m
2m��

=
((1�m)(� �m))

m��
2m�� (m(m� � + 1))

m
2m��

(b�m)
m��
2m�� (b+m� �)

m
2m��

:

The following proposition shows us that the limit equals the equilibrium

when "! 0.6

Proposition 5 The limit of our solution with a minimum bid is an equilib-

rium when buyer 2�s value is known with a minimum bid. Namely,

lim
"!0

v1(b; ") =
m(� �m)
� � b � v1(b)

and

lim
"!0

v2(b; ")� �
"

=
((1�m)(� �m))

m��
2m�� (m(m� � + 1))

m
2m��

(b�m)
m��
2m�� (b+m� �)

m
2m��

� G(b)

form the unique equilibrium when buyer 2�s value is known where buyer 1

has inverse bid function v1(b) and buyer 2 bids with a mixed-strategy given

by the cumulative distribution G(b).

Proof. The limits were shown above. To show that v1(b) and G(b) is in
fact the unique equilibrium when buyer 2�s value is known, we proceed to

�nd this equilibrium directly. Since buyer 2 bids a mixed strategy, he must

6Also when m ! �(< 1); the solution approaches the equilibrium that buyer 2 stays
out of the auction and buyer 1 wins the auction (for all values above m). Also, when
m! �=2, this goes to the solution in Section 3.2 (when the minimum bid is not binding).

18



be indi¤erent to every point in his support including the minimum bid m:

The following formula represents this.

v1(b)(� � b) = m(� �m):

Hence, we have

v1(b) =
m(� �m)
� � b : (27)

If the cumulative distribution of buyer 2�s mixed strategy is G(b), then the

�rst-order conditions of buyer 1 yields

G0(b)(v1(b)� b) = G(b):

By rewriting this equation and substituting for v1(b) using equation (27), we

have
G0(b)

G(b)
=

1

v1(b)� b
=

� � b
m(� �m)� b (� � b) :

We can solve this di¤erential equation through the following steps:Z
G0(b)

G(b)
db =

Z
� � b

m(� �m)� b (� � b)db =
Z

� � b
(b+m� �)(b�m)db;

ln(G(b)) =
(� �m) ln(b�m)�m ln(b+m� �)

2m� � + c;

G(b) = c2(b�m)
��m
2m�� (b+m� �)

� m
2m��

:

Note that for b; we have

v1(b)(� � b) = m(� �m) = (� � b);

which implies

b = � �m(� �m):

This determines c2 by using the equality G(b) = 1:

1 = c2(b�m)
��m
2m�� (b+m� �)

� m
2m��
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Rewriting this gives us the expression for c2:

c2 = ((1�m)(� �m))�
��m
2m�� (m(m+ 1� �))

m
2m��

:

We note that when m! �(< 1); the solution approaches the equilibrium

that buyer 2 stays out of the auction and buyer 1 wins the auction (for all

values above m). Also, it can be shown that when m ! �=2, this goes to

the solution in Section 3.2 (when the minimum bid is not binding).

4 Continuity of the Equilibrium

In this section, we prove the following proposition.

Proposition 6 The equilibrium bid functions are continuous in the parame-
ters v1; v1; v2; v2 and m:

Proof. We shall prove the continuity of the inverse bid functions since
this implies the continuity of the equilibrium bid functions. In Sections 3.2

and 3.5, we proved continuity when v2 ! v2 with and without a binding

minimum bid m. When v1 ! v1 (and m � v1), the solution goes to the

equilibrium where buyer 2 is bidding v1 and winning the auction:

Outside of these cases, we have found the equilibrium bid functions on

four regions of the minimum bid m:

(1) For m � (v1 + v2)=2: This was the case of �no minimum bid�, that

is, the minimum bid is not binding in equilibrium. This equilibrium, given

in equations (12) and (14), thus does not depend on m.

(2) For m > (v1 + v2)=2 and m 6= v2. The minimum bid is binding in

equilibrium, and this equilibrium depends on m. It is given in equations (23)

and (24).

(3) Form > (v1+v2)=2 andm = v2: This equilibrium is listed in equations

(25) and (26).

(4) For vi � m � vj: Buyer j bids m for all m � vj while buyer i bids his
value vi.
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Within each of these regions the solution is continuous in v1; v1; v2; v2;

and m. Hence, to check the continuity of the equilibrium, we need to check

continuity between regions in the following cases:

(A) between regions 1 and 2. (m = (v1 + v2)=2):

(B) between regions 2 and 3. (m = v2 and m > (v1 + v2)=2).

(C) between regions 2 and 4. (m = minfv1; v2g):
We do this as follows.

(A) Continuity at m = (v1 + v2)=2

Since form � (v1+v2)=2 the equilibrium does not depend onm, continu-
ity is established by proving that the inverse bid function v1(b) given by (23)

approaches that given by (12) as m approaches the critical value (v1+ v2)=2

from above. First, we verify that

lim
m&(v1+v2)=2

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2) =
1

2
e
� v2�v1
2b�v1�v2 (2b�v1�v2);

lim
m&(v1+v2)=2

�
(m� v2 + v1 � v1)(m� v1 + v2 � v2)

(v1 �m)(v2 �m)

� m�v1
(m�v1)+(m�v2)

= e
2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1) :

Using these in our solution for v1(b) and c1 in equations (23) and (24), we

have

lim
m&(v1+v2)=2

v1(b) = v1+

lim
m&(v1+v2)=2

(m� v1)(m� v2)

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

= v1 +
�(v2 � v1)2=4

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

;

(28)

lim
m&(v1+v2)=2

c1 = �
(2v1 � (v1 + v2))(v2 � v2)e

2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1)

(v1 � v1)(2v2 � (v1 + v2))
: (29)
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We now see that, indeed, this limit yields the equilibrium bid functions for

the case of no minimum bid. Note that the range of bids is as follows:

b =
v1 + v2
2

; b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
:

Notice that by (5) and (16) we have b� b = 1
4

(2v1�v2�v1)(2v2�v2�v1)
(v1+v2)�(v1+v2)

and that

(v2 � v1)2
v1 � v1

+ 4(b� v2) =
(v2 � v2)(2v1 � (v1 + v2))
(v1 � v1) (v1 � v1 + v2 � v2)

:

Using these two in equations (28) and (29) yields the equilibrium bid function

without a minimum bid; namely, it establishes the equality between (28), (29)

and (12), (14), respectively.

(B) Continuity at m = v2 (in the region m > (v1 + v2)=2)
To prove continuity at m = v2, we have to show that the limit of the

functions in (23) and (24) as m! v2 converges to the functions in (25) and

(26) in Proposition 4. This we prove in Appendix A.4, which completes our

proof of the continuity in m:

(C) Continuity at m = minfv1; v2g (between regions 2 and 4).
Here we examine the case where v1 � v2: In region 2, when m ! v2; by

equation (24), c1 ! �1: By examining equation (23). The only way that
v1(b) > v1 is for b ! m: Similarly, we can show the same for v2(b) when

v1 � v2:
We note that continuity of the bid functions in the parameters also implies

that the pro�ts are continuous in the parameters (if v1 < v1 and v2 < v2).
7

To see this notice that given this continuity of the bid functions in the

parameters, a discrete change in the pro�ts requires both an atom in the

distribution of equilibrium bids and that this atom transverses the mini-

mum bid. An atom in the distribution of equilibrium bids can only occur if

minfv1; v2g < m < maxfv1; v2g: In such a case, the atom is always at m and

thus the atom doesn�t transverse m.
7The reason why we need v1 < v1 and v2 < v2 is, for instance, if v1 < v2 = v2, there

will be a discrete jump in pro�ts as we lower m from above v2 to below v2:
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5 Some New Examples

In this section, we provide a few examples of interest that were not solved

analytically before. In looking at these examples, we note the minimum bid

m provides a way to model distributions of values with atoms at the lower

end of the intervals. In fact, when Vi � U [vi; vi] and m is in (vi; vi); then this

is equivalent to a distribution with an atom �i =
(m�vi)
(vi�vi)

at m and a uniform

distribution on [m; vi] with the remaining probability.8

Thus, our analytic solution for the general uniform case with a minimum

bid also covers the case of two buyers with distributions that are uniform

on intervals with either (or both) having an atom at the lower end of the

interval.

In this section, we generate examples using the solution with a minimum

bid given by equations (23) and (24).

Example 1 v1 = 0; v2 = 1; m = 2; v2 = 3; v1 = 4: Here, we have

v1(b) =
2

b� 1 + (b� 2) 23 (b+ 1) 13 c1
; c1 =

(10)
2
3

(�4) ;

v2(b) =
2

b+ (b� 2) 13 (b+ 1) 23 c2
+ 1; c2 =

2 (10)
1
3

(�5) :

8In the distribution with atoms, we have to relax the assumption that a buyer bids his
value when he has zero probability of winning.
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Figure 1: Solution when v1 = 0; v2 = 1;m = 2; v2 = 3; v1 = 4. The thick

line is v1(b).

We note that the conditional distribution of V1 above the minimum bid

m = 2 stochastically dominates that of V2. Nevertheless, there is no dom-

inance of the bid functions in this region (see Figure 1). As a matter fact,

this is the �rst case of intersecting bid functions that we are aware of.

It is interesting to compare this with the same conditional value distri-

butions above 2 (without the atoms at m = 2), namely, V1 � U [2; 4] and

V2 � U [2; 3]: This is given in Figure 2 (and it is a shift of the Griesmer et

al.,1967, result).
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Figure 2: Solution when v1 = 2; v2 = 2; v2 = 3; v1 = 4. The thicker line is
v1(b).

As we see, the presence of a minimum bid, even though it is at the center

of both distributions, changes the equilibrium qualitatively by introducing

the crossing of the bid functions. This example generalizes to the whole range

of minimum bids.

Example 2 v1 = 0; v2 = 1; 1=2 < m < 3; v2 = 3; v1 = 4:

By (23) and (24), we have

v1(b) =
m(m� 1)

b� 1 + (b�m)
m

2m�1 (b+m� 1)
m�1
2m�1 c1

;

c1 = �
(4�m)( (m+3)(m+2)

(3�m)(4�m))
m

2m�1

2(m+ 2)
;

b =
v1 � v2 +m2 �m(v1 + v2)
(v1 + v2)� (v1 + v2)

=
12 +m2 �m

6
;

v2(b) = 1 +
m(m� 1)

b+ (b�m)
m�1
2m�1 (b+m� 1)

m
2m�1 c2

;

c2 = �
2(3�m)

�
(m+2)(m+3)
(3�m)(4�m)

� m
2m�1

m+ 3
:

We have found by numerical computation of the solution that the crossing

occurs for all values of m in the range.

In the following example we characterize a family of auctions with uniform

distributions with linear equilibrium bid functions.

Example 3 v1 = 0; v1 = m+ z; v2 = 3m=2; v2 = 3m=2 + z (where z > 0):
Here we obtain from (23) and (24) that

v1(b) = 2(b�m) +m = 2b�m;
v2(b) = 2(b�m) + 3m=2 = 2b�m=2;

b1(v) =
v

2
+
m

2
; b2(v) =

v

2
+
m

4
:
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Figure 3: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 4. The thicker

line is v1(b).

Notice that these bid functions are independent of z and linear. Further-

more, the measure of values where a bid is submitted above the minimum

is the same for both buyers, namely, z. Also notice that when m ! 0; this

goes to the standard symmetric uniform case of uniformly distributed values

on [0; z].

It turns out that linear bid functions appear only in this special case, as

we see in the following proposition.

Proposition 7 The bid functions are linear if and only if m = (2v2+ v1)=3

(the minimum bid is two-thirds of the way from the lower end of the support

of buyer 1�s values to the lower end of the support of buyer 2�s values) and

v1 � m = v2 � v2 (the range of values above the minimum bid is the same

length for both buyers).

Proof. See the Appendix A.5.
We note that in this class of auctions, the revenue for the �rst-price

auction is

RFP =
12m2 + 15mz + 4z2

12(m+ z)
;

26



and the revenue for the second-price auction is

RSP =

(
m3+42m2z+60mz2+16z3

48z(m+z)
if z > m=2;

2m2+2mz+z2

2(m+z)
if z � m=2:

In both cases, the �rst-price auction has higher revenue (it is higher by
m2(6z�m)
48z(m+z)

when z > m=2 and by (3m�2z)z
12(m+z)

when z � m=2):
The following example helps illustrate the Proposition 7 by demonstrating

that linearity is lost by stretching the upper range.

Example 4 v1 = 0; v1 = 3; v2 = 4; v2 = 6; m = 2: Here we obtain

v1(b) =
8(b� 1)

(8 + b(b� 4)) ;

v2(b) = 3 +
10(b� 2)

(4 + 2b� b2) :

By inverting the functions, we get the following non-linear bid functions (see

Figure 4):

b1(v) =
2
�
2 + v �

p
4 + 2v � v2

�
v

;

b2(v) =
v � 8 +

p
5
p
8� 4v + v2

(v � 3) :

65432
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Figure 4: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 6. The thicker

line is v1(b).

6 Concluding Remarks

In this paper, we have analytically solved the general uniform case for two

bidders. The uniform distribution is one of the simplest and, in addition to

knowing of the existence of the equilibrium, have an explicit analytic expres-

sion of the bid functions. In particular, it is useful in comparative statics

as well as in detecting interesting features of asymmetric auctions. A future

direction of research would be to search for analytic solutions for other en-

vironments, such as extending our solution to N bidders. Another direction

of research, would be to �nd environments where simple solutions exist: the

simplest being of course the linear solution. We have work in progress that

shows that a linear solution exists when the values are drawn from power

distributions (not necessarily the same) and any risk aversions (also not nec-

essarily the same). This expands recent independent derived results of Cheng

(2005) and Kirkegaard (2006). Together these should provide a useful set of

examples for researchers and students as well as suggest a set of parameters

for additional experiments (see Güth et al., 2005) on asymmetric auctions.
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A Appendix

A.1 Proof that second order conditions are satis�ed

Here we show that second-order conditions are satis�ed for our solution.

(This is adapted from Wolfstetter, 1996.) Buyer j with value v and bid b has

probability of winning Pwinj(b) and expected pro�t �j(v; b); where

�j(v; b) = Pwinj(b)(v � b):

De�ne bj(v) as a bid function that is monotonic and solves the �rst-

order conditions, namely, �jb(v; b) = 0: Assume that these bid functions are

monotonic. Then, second-order conditions are satis�ed. Since �jb(v; b) =

Pwinj0(b)(v � b)� Pwinj(b), we have

�jbv(v; b) = Pwin
j0(b) > 0: (30)

Take b� = bj(v�): If bb < b�, then by monotonicity of the bid function, webv � (bj)
�1
(bb) < v�. Hence, by (30) we have �jb(v

�; b) > �jb(bv; b) for all b.
This includes �jb(v

�;bb) > �jb(bv;bb) = 0. Thus, �jb(v;bb) > 0 for all bb < bj(v):

Likewise, �jb(v;bb) < 0 for all bb > bj(v): Hence, second-order conditions are

satis�ed (as long as our solution is monotonic).

A.2 Proof of Proposition 3: solution with minimum

bids

The solution that we presented with minimum bids is

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
m�v2

(m�v1)+(m�v2) c1

;

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
:
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To derive this solution we divide both sides of equation (22) by

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
m�v2

(m�v1)+(m�v2)

to obtain

v01(b)

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

=

(v1(b)� b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

: (31)

The RHS can be broken into two expressions:

1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

+

(v1 � b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

:

Observe thatZ
1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

db =

1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2)

� v2 � b
(m� v1)(m� v2)

+ C

and

R 2664
v01(b)

(v1 (b)�v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)
�

(v1�b)

(v1 (b)�v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)

3775 db =
� 1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2)
� 1
v1(b)�v1

+ C:

Hence, we can integrate (31). From this we can obtain v1(b) as in (23),

and the expression for c1 is obtained by the boundary condition B3.
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A.3 Proof of Proposition 4: solution when m = v2

The di¤erential equation for this case is obtained by substituting m = v2 in

equation (22):

v01(b) � (b� v2)(b� v1) = (v1(b)� v1)(v1(b)� b):

Dividing both sides by (b� v2)2(b� v1)(v1(b)� v1)2 and rewriting yields

v01(b)

(b� v2)(v1(b)� v1)2
� (v1(b)� b)
(b� v2)2(b� v1)(v1(b)� v1)

= 0:

By further rewriting, we have�
1

v2 � v1

�2�
1

b� v2
� 1

b� v1

�
+

�
1

v2 � v1

��
� 1

(b� v2)2

�
+

�
v01(b)(b� v2) + (v1(b)� v1)
(v1(b)� v1)2(b� v2)2

�
= 0:

Now by integration, we derive the solution:�
1

v2 � v1

�2
(log(b� v2)� log(b� v1))+

1

(v2 � v1) (b� v2)
� 1

(v1(b)� v1)(b� v2)
= c1:

Rewriting this yields

1

v2 � v1

�
�
�
b� v2
v2 � v1

�
log

�
b� v1
b� v2

�
+ 1� c

(v2 � v1)
(b� v2)

�
=

1

(v1(b)� v1)
;

where c = c1 � (v2 � v1)
2 : Rearranging yields

v1(b) = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i :
Using boundary condition B3, v1(b) = v1; we have

v1 = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i ;
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which implies

c =
(v1 � v2) (v2 � v1)
(v1 � v1) (b� v2)

� log
�
b� v1
b� v2

�
:

Substituting b = v1�v2�v1�v2
(v1�v1)+(v2�v2)

yields

c =
(v1 � v1 + v2 � v2) (v2 � v1)

(v1 � v1) (v2 � v2)
� log

�
(v2 � v1) (v1 � v1)
(v2 � v2) (v1 � v2)

�
:

Thus, we have v1(b) and c equivalent to those in equations (26) and (25).

A.4 Proof of Continuity when m! v2

Starting with equations (23) and (24), denote

A(m) = (m� v1)(m� v2);

B(m) = (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) ;

C(m) = � (v1 �m)(v2 � v2)
(v1 � v1)(m� v1 + v2 � v2)

;

D(m) =

�
(b�m)(m� v2 + v1 � v1)(m� v1 + v2 � v2)

(v1 �m)(v2 �m)

� m�v1
(m�v1)+(m�v2)

:

Thus,

v1(b) = v1 +
A(m)

b� v2 +B(m)C(m)D(m)
:

Since B(v2)C(v2)D(v2) = � (b� v2) as m! v2; we get
A(m)

b�v2+B(m)C(m)D(m)
! 0

0
; so we need to use L�Hopital�s rule, which yields

lim
m!v2

v1(b) = v1 +
A0(m)

B0(m)C(m)D(m) +B(m)C 0(m)D(m) +B(m)C(m)D0(m)

����
m=v2

:

(32)

Step 1. Finding A0(v2):
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A0(m) = (m� v1) + (m� v2); which implies that

A0(v2) = v2 � v1: (33)

Step 2. Finding B0(v2)C(v2)D(v2):

B(m) = (b+m� v1� v2)
(m�v2)

(m�v1)+(m�v2) � f(m)g(m). By this de�nition, we
have f(v2) = b � v1; g(v2) = 0, f 0(m) = 1; and g0(v2) = 1

v2�v1
: Recall that�

f(m)g(m)
�0
= f (m)g(m)

h
log (f (m)) g0 (m) + g (m) f

0(m)
f(m)

i
; hence, B0(v2) =

log(b�v1)
v2�v1

:

We also have C(v2) = � (v1�v2)(v2�v2)
(v1�v1)(v2�v1)

and D(v2) =
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)
:

Thus,

B0(v2)C(v2)D(v2) = �
log (b� v1)
v2 � v1

(b� v2) : (34)

Step 3. Finding B(v2)C 0(v2)D(v2):
We have C 0(v2) =

(v2�v2)(v1�v1+v2�v2)
(v1�v1)(v2�v1)2

and B(v2) = 1: Thus,

B(v2)C
0(v2)D(v2) =

(v1 � v1 + v2 � v2)
(v2 � v1)

�
b� v2
v1 � v2

�
: (35)

Step 4. Finding B(v2)C(v2)D0(v2):

Similarly to Step 2,D(m) =
�
(b�m)(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

�

f (m)g(m) : By simple substitution, we have f(v2) =
�
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)

�
;

g(v2) = 1; and g
0(v2) = � 1

v2�v1
:

Since f (m) = (b�m)(m�v2+v1�v1)(m�v1+v2�v2)
(v1�m)(v2�m) ; we can take the log of both

sides and then the derivative w.r.t. m. This evaluated at m = v2 yields

f 0 (v2)

f (v2)
=

1

v1 � v1
+

1

v2 � v1
+

1

v1 � v2
+

1

v2 � v2
� 1

b� v2
:

Again, recall that
�
f(m)g(m)

�0
= f (m)g(m)

h
log (f (m)) g0 (m) + g (m) f

0(m)
f(m)

i
;
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hence, we have

D0(v2) =

�
(b� v2)(v1 � v1)(v2 � v1)

(v1 � v2)(v2 � v2)

�24 � log � (b�v2)(v1�v1)(v2�v1)(v1�v2)(v2�v2)

�
1

v2�v1
+ 1

v1�v1
+

1
v2�v1

+ 1
v1�v2

+ 1
v2�v2

� 1
b�v2

35 :
This implies that

B(v2)C(v2)D
0(v2) = 1+ (b� v2)

24 log
�
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)

�
1

v2�v1
� 1
v1�v1

� 1
v2�v1

� 1
v1�v2

� 1
v2�v2

35 : (36)

Step 5. FindingB0(v2)C(v2)D(v2)+B(v2)C 0(v2)D(v2)+B(v2)C(v2)D0(v2):

By (34), (35), and (36), we now have

B0(v2)C(v2)D(v2) +B(v2)C
0(v2)D(v2) +B(v2)C(v2)D

0(v2) =

� log (b� v1)
v2 � v1

(b� v2) +
(v1 � v1 + v2 � v2)

(v2 � v1)

�
b� v2
v1 � v2

�
+

1 + (b� v2)
�
log

�
(b� v2)(v1 � v1)(v2 � v1)

(v1 � v2)(v2 � v2)

�
1

v2 � v1
� 1

v1 � v1
� 1

v2 � v1
� 1

v1 � v2
� 1

v2 � v2

�
=

1+(b�v2)
�
log

�
(b� v2)(v1 � v1)(v2 � v1)
(b� v1) (v1 � v2)(v2 � v2)

�
1

v2 � v1
� 1

v1 � v1
� 1

v2 � v2

�
:

(37)

Step 6. Finding v1(b):
By substituting of (33) and (37) into (32), we have

limm!v2v1(b) = v1+
v2 � v1

1 + (b� v2)
h
log
�
(b�v2)(v1�v1)(v2�v1)
(b�v1)(v1�v2)(v2�v2)

�
1

v2�v1
� 1

v1�v1
� 1

v2�v2

i :
This is equivalent to equation (25) after substituting the expression for c

by equation (26).
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A.5 Proof of Proposition 7: Linear Solutions

We know in the symmetric case that linear bid functions are possible for the

uniform distribution. Here we ask what conditions are necessary for linear

solutions to exist in general (for the uniform asymmetric case)?

Recall our two di¤erential equations from the �rst-order conditions (6):

v01(b)(v2(b)� b) = v1(b)� v1;
v02(b)(v1(b)� b) = v2(b)� v2:

Assume that there is a linear solution for both inverse bid functions:

vi(b) = �ib+ �i where �i > 0:

This implies that

v0i(b) = �i:

Substituting this into the above two di¤erential equations yields

�1(�2b+ �2 � b) = �1b+ �1 � v1;
�2(�1b+ �1 � b) = �2b+ �2 � v2:

Since this is true for all b, the derivative of both sides must also be equal.

Hence,

�1(�2 � 1) = �1; �2(�1 � 1) = �2:

This implies that �1 = �2 = 2: Substituting this into the equations yields

2�2 = �1 � v1; 2�1 = �2 � v2:

Combining these equations shows that

�1 = �
1

3
v1 �

2

3
v2:

By boundary condition B1, v1(b) = b; we have b = 2b+�1: This implies that

�1 = �b and b = 1
3
v1 +

2
3
v2: Since b > (v1 + v2)=2; it must be, by (2), that
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there is a binding minimum bid m = b.

Now rewriting, m = 1
3
v1 +

2
3
v2 yields m � v1 = 2(v2 � m) (or v2 =

3
2
m� 1

2
v1): Finally, we use the upper boundary conditions in B3 to �nd that

v1 = 2b�m;

v2 = 2b�m=2� v1=2:

Elimination of b implies that v1 = v2 + v1=2 �m=2 (or v1 �m = v2 � v2):
Thus, if we de�ne z such that v1 = m+ z; we have v2 = 3

2
m+ z � v1=2:

37


