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We investigate the fluid flow through a cascade of bifurcations by direct simulation of the 2D
Navier-Stokes equations. We show that, for a fully symmetric tree withn generations (n $ 3d,
the flow distribution becomes significantly heterogeneous at an increased Reynolds number. W
develop a binary tree model and find that the distribution of flow at the outlet branches can b
described by a self-affine landscape, with a self-affine exponenta ­ 0.9 for the human lung. We
suggest that the asymmetric flow occurring in symmetric branched structures may be important bo
for the morphogenesis of the bronchial tree, and for its functioning during inspiration. [S0031-
9007(98)06724-6]

PACS numbers: 87.45.–k, 47.55.Mh
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Fluid flow in branching geometries is related to man
phenomena in physics, geology, and biology. Examp
range from fluid flow through porous media [1,2] to res
piration [3] and blood circulation [4]. In particular, the
mechanism of flow bifurcation plays a crucial role in th
functioning of the respiratory and circulatory systems. T
classical theoretical approach schematizes the flow w
a set of equivalent linear impedances. When applied
steady or periodic flow through symmetric airway bifurca
tions, these models predict a perfectly homogeneous
synchronous flow distribution at the outlet branches [5
However, the contribution of inertia on momentum tran
port can have a significant influence on the properties
flow through branched structures, as has been shown
perimentally [6–10]. Despite recent numerical work [11
there has been no quantitative study in trees larger th
three generations.

Here we simulate the quasisteady inspiration process
the bronchial tree. We consider a 2Dsymmetriccascade of
rectangular channels with branching angles of 30± between
the axis of the parent and daughter generations, as we
realistic physiological dimensions from lung morpholog
to define the channel length and width (Fig. 1a) [5]. B
cause of the symmetry with respect to the axis of the fi
generation channel (trachea), the flow field in only half
the domain needs to be calculated. The fluid mechan
in the branched structure is based on the steady-state f
of the Navier-Stokes and continuity equations for m
mentum and mass conservation. In all simulations,
consider air with densityr ­ 1.225 kg m23 and viscos-
ity m ­ 1.7894 3 1025 kg m21 s21 flowing through the
system at a constant flow rate with nonslip boundary co
ditions at the entire solid-fluid interface. In addition, w
assume a uniform velocity profile at the inlet of the fir
generation channel, whereas at the outlets of the last g
eration branches, we impose a constant reference pres
[12]. The Reynolds number is Re; rVdym, whered is a
0031-9007y98y81(4)y926(4)$15.00
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characteristic length (the width of the first generation cha
nel) andV is the inlet velocity.

We solve the Navier-Stokes and continuity equations f
the velocity and pressure fields by discretization, using th
control volume finite-difference technique [13]. The cre
ation of structured grids comprising quadrilateral elemen
is difficult due to the complex geometry of a binary tre
structure. Hence, we use an unstructured mesh, based
triangular grid elements of a Delaunay network [14]. W
find that a total of 17 864 cells generates satisfactory r
sults when compared with numerical meshes of small
resolution. We then consider the integral form of the gov
erning equations at each triangular element of the nume
cal grid to produce a set of coupled nonlinear algebra
equations, which we pseudolinearize and solve [13]. W
achieve a converged solution when the sum of normaliz
momentum and mass residuals falls below1023 [15].

We perform fluid flow simulations in a five-generation
tree for Re ranging from 150 to 4800. This range co
responds to breathing flow rates that are physiologica
relevant [3]. We find that the flow distribution throughou
the airways is quite uniform at low Reynolds numbers (se
Fig. 1a). In this situation the system displays linear be
havior, as expected from the analogy between fluid flow
a cascade of branches and electrical transport in a netw
of ideal resistors [2]. At high Re, however, the nonlinea
contribution from the inertial terms becomes relevant. A
shown in Fig. 1b (for Re­ 4800), inertial forcesbreak
the symmetryof the flow distribution down in the tree
structure. Visual inspection reveals that the flow partition
ing between any two daughter branches favors the bran
which is aligned with their grandparent branch (branch lo
cated two generations above in the same cascade).

We investigate the development of this flow nonunifor
mity by gradually increasing Re and computing the flow
rates at the outlets of the eight branches on the left si
of the fifth generation. Figure 2 shows how these outl
© 1998 The American Physical Society
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FIG. 1. (a) Contour plot of the stream function in a five
generation tree for low Reynolds number conditions (Re­
150). The tangents to the streamlines are parallel to t
velocity vectors. For a given generation, the larger the numb
of streamlines in a branching element, the higher the flu
(b) Same as in (a), but for high Reynolds number conditio
(Re ­ 4800). The distribution of streamlines at the outle
branches is uniform at low Re, but highly nonuniform at hig
Re. The width of the first channel isd ­ 1.8 cm and the length
is l ­ 12 cm.

fluxes—normalized by the total flux penetrating the sy
tem—become more heterogeneous as Re increases.
normalized flow rates at outlets 5 and 10 are substantia
increased by inertial effects.

Both Re and the branching angleu influence the distri-
bution of flow. To demonstrate this, we carried out simu
lations with a tree of only three generations (see Fig. 3
Figure 4 shows, for two different values ofu, the depen-
dence on Re of the ratioG1yG0 of the fluxes at the internal
and external outlets of the third generation branches. F
fixed branching angle and channel dimensions, both cur
show a gradual increase ofG1yG0 with Re. Furthermore,
the value ofG1yG0 is larger foru ­ 30± than foru ­ 60±.

It would be interesting to study the effect of flow asym
metry on a large branching structure, but computation
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FIG. 2. Flux distribution at the outlet branches of a five
generation tree for Re­ 150 (circle), 300 (square), 600
(triangle), 1200 (full circle), 2400 (full square), and 4800
(full triangle). The inset compares the fluid flow simulations
(Re ­ 1200, circle) and the binary tree model (p ­ 0.58, full
circle).

limitations do not permit a direct solution of the Navier-
Stokes equations. We therefore introduce a binary tre
model to describe the role of inertia on fluid transpor
in a self-similar branching system. We assume that ea
airway forms an angle of6u, in degrees, with its par-
ent. Also we assume that Re is sufficiently large for th
flow partitioning to be approximately constant throughou
the tree (e.g., the curveu ­ 60± for Re . 400 in Fig. 4).
Hence, the flow rates in any two daughter branches d
vide in a fixed proportionpyq, wherep 1 q ­ 1, and
p . q. We model inertia by assigning the larger facto
p to the flow of the daughter branch which is aligned with
its grandparent.

In order to treat the binary tree model analytically, we
number all branches in generationn from 0 to 2n21 2 1.
Thus, branchk in generationn 2 1 bifurcates to branches
2k and 2k 1 1 in generationn. Branch 2k forms an
angle2u and branch2k 1 1 forms angle1u with their
parent, so branch2k (even) is aligned with its grandparent
if k is odd, and branch2k 1 1 (odd) is aligned with its
grandparent ifk is even. Hence, a branch will be aligned
with its grandparent if the two last digits in its binary
representation are different. For a three-generation tre
the branches should have flowsqy2, py2, py2, andqy2,
corresponding to the binary codes 00, 01, 10, and 1
respectively. By induction, for a tree withn generations,
the flow in branchk is

Gsn, kd ­
1
2

psskdqn222sskd, (1)

wheresskd is the number of “switches” from 1 to 0 and
from 0 to 1 in the binary representation ofk with n 2 1
digits. In a seven-generation tree, branches 21 and
will have the maximum flow ofp5y2 because their binary
representations, 010101 and 101010, respectively, bo
have five switches.
927
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FIG. 3. (a) Contour plot of the stream function in a three
generation tree with branching angleu ­ 30± and Re­ 1200.
(b) Same as in (a) but foru ­ 60±. Note that the number of
streamlines and thus the fluxes at outlets 1 and 2 are large
(a) than in (b). Also shown is the binary representation of ea
outlet branch.

For the flow field calculations we need only to analyz
the flow distribution through one-half, due to the symme
try of the tree. Thus, for generationn, we can normalize
the flow G in branchk by the factorpn22y2 and define

FIG. 4. Dependence of the flux ratioG1yG0 on the Reynolds
number Re in three-generation trees for two different values
the branching angleu.
928
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the steplike flux function,

gsxd ­

µ
q
p

∂n222sskd
for

k
2n22 # x ,

sk 1 1d
2n22 , (2)

where k ­ 0, 1, . . . , s2n22 2 1d. In this way, gsxd is a
well-defined right-continuous function forn $ 3. For
instance, the maximum flowgmax ­ 1 will be located at
x ­ 2y3 since its binary representation is 0.1010101 .
which has the maximum possible number of switches
the sequence [16]. In the limitn ! `, we find

gsxd ­

µ
q
p

∂m

gs2mxd for 0 # x ,
1

2m
, (3)

which implies that the landscape (see Fig. 5) generat
from the fluxes at the outlets of the ramified structure
self-affine,gsxd ~ b2agsbxd, with an exponent [17]

a ­ logspyqdy log2 . (4)

Using the values ofp andq reported in Ref. [18], we find
a ­ 0.9 for the human lung anda ­ 1.6 for the more
asymmetric dog lung.

The binary tree model provides insight on the effect o
inertia on the flow distribution at the tree periphery. Th
self-affine structure of flow partitioning indicates a het
erogeneous flow distribution; we expect that this featu
does not depend on the approximations in the binary tr
model, namely, constant angles and constantp along the
tree [19]. The exponenta is useful in quantifying the ef-
fect of asymmetry due to flow partitioning in large trees.

Concerning possible physiological implications, we
note that our model predicts that, during inspiration, th
amount of oxygen delivered to the periphery of the lun
is very heterogeneous. The exact distribution depends
a weighted cumulative sum of the angles along which th
air must travel from the top of the tree toward the alveo
where gas exchange occurs. On the other hand, the ti
constant inequalities along the airways are believed to
relatively small in the normal lung and hence the flow
distribution should be uniform and primarily determined
by the distribution of local compliances [20].

FIG. 5. Distribution of normalized fluxesgsxd defined in
Eq. (2) as a function of the normalized branch numberx at
the outlets of an 11-generation tree with a partitioning facto
p ­ 0.6, calculated using the binary tree model.
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The expectation of a uniform lung ventilation seem
therefore to be in contradiction with our results. We em
ployed in our simulation a symmetric binary tree, where
the geometrical structure of the tracheobronchial tree
highly asymmetric with respect to both angles and diam
ters of the daughter branches. It is known that the deg
of asymmetry is larger in the shortest paths towards the
riphery [21]. The shortest pathways occur in the directio
of the lateral surface sides and the apex of the lung, wh
the angles are large and the flow is subject to many chan
of direction. Moreover, in the Horsfield tree model, the d
ameters of the branches in the shortest pathways decre
rapidly, leading to smaller size subtrees [21]. Thus, w
suggest that flow asymmetry due to inertial effects is com
pensated by structural asymmetry. Accordingly, the ce
tral airways (airways with a diameter larger than abo
3 mm) that receive the smaller flows serve correspon
ingly smaller alveolar regions—allowing for a homo
geneous ventilation, as required for normal lung functio

We note that even though additional work with thre
dimensional tree models is needed to provide more qu
titative predictions about the flow distribution during in
spiration, our results still allow us to draw some importa
physiological conclusions. First, the fact that asymme
ric flow distribution occurs even in a symmetric structur
serves to justify previous lung flow models (see [18] an
references therein) which must “build in” asymmetry i
the flow partitioning in order to obtain results comparab
with morphometric data. Second, our result could al
have implications for lung morphogenesis. It was argu
in Ref. [22] that the asymmetric structure of the lung
solely due to geometrical constraints, but our study su
gests a possible different origin for this structure, sin
the asymmetry of the bronchial tree can be influenced
the fluid flow asymmetry combined with the requiremen
of homogeneous ventilation.
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