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Asymmetric Interactive Buckling of Thin-Walled Columns
with Initial Imperfections

M. Pignataro and A. Luongo

Dip. Ingegneria Strutturale e Geotecnica, Universita di Roma *La Sapienza’,
Rome, Italy

ABSTRACT

In this paper the effect of the interaction between two or more simultaneous
buckling modes on the postbuckling behaviour of uniformly compressed
thin-walled members (TWM) is analysed by means of the general theory of
elastic stability. The analysis is restricted to third-order terms of the energy
expansion and therefore can be fruitfully applied to the investigation of
structures with asymmetric postbuckling behaviour only. Initial imper-
fection effect is taken into account. A simplified procedure is suggested for
solving the nonlinear equations relative to the evaluation of the bifurcated
paths. By using the finite strip method an extensive parametric analysis is
performed. It is found that when the flexural-torsional (FT) buckling
interacts with a local symmetric and antisymmetric mode, sensitivity to initial
imperfections is remarkable and is comparable to the one arising from the
interaction between the Euler (E) and any local buckling.

I INTRODUCTION

The local and overall interaction buckling of elastic columns has extensively
been investigated in the field of cold formed steel structures. There exist a
number of significant papers on the subject which follow two different
approaches:

(1) Post-local buckling analysis is first performed and then overall
buckling is evaluated accounting for the reduction of the flexural
stiffnesses.



(i) Analysis of the postbuckling interaction is performed on the basis of
the general Koiter' theory.

Under the first category fall the papers by Wang and Pao,” Hancock,™
Bradford and Hancock® who make use of the concept of the effective width
to account for the postbuckling strength of the locally buckled component
plates. Both the empirical formula suggested by Winter and a nonlinear
finite strip analysis are employed.

The second approach is followed by Byskov and Hutchinson,® Sridharan
et al.,”" Pignataro et al."" In Ref. 6 a reformulation of Koiter’s theory on the
basis of the virtual work principle is proposed and general equilibrium
equations for single, simultaneous and nearly simultaneous buckling modes
are furnished. These equations are utilised in Refs. 7-10 in conjunction with
an innovative combination of the finite strip and finite element techniques
and are solved numerically for the case of nearly simultaneous modes in the
presence of initial imperfections. A similar approach is followed in Ref. 11
where a nontraditional finite strip technique has been developed through an
automatic procedure of algebraic manipulation.

In all previous works interaction between two buckling modes only has
been considered (single interaction). In a few recent papers" the problem
of multiple interaction involving an overall mode and several local modes
has been investigated.

In this paper a third-order analysis suitable for structures with asymmetric
postbuckling behaviour is performed on the basis of Koiter’s theory. It is
assumed that two (or more) buckling modes interact simultaneously. Initial
imperfections in the shape of the buckling mode associated with the
bifurcated path of steepest descent are considered. This permits the
avoidance of the numerical solution of a nonlinear system by solving a single
equation in closed form. A simplifying procedure has been successively
developed on the basis of sound physical assumptions which permit the
replacement of the nonlinear equilibrium system by a linear eigenvalue
problem.

A number of numerical results regarding angle sections and channels
simply supported at the ends under uniform compression have been
obtained. In contrast with previous achievements it is shown that local-FT
interaction can be equally detrimental as the local-E one whenever two local
modes are present, the one symmetric, the other one antisymmetric.

2 STRUCTURAL MODEL AND POSTBUCKLING ANALYSIS

Let us consider the TWM as a plate assemblage and refer to a single plate of
length /, width b and thickness 7 uniformly compressed by the stress V., in the



longitudinal direction x. The total potential energy is then
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where E is the Young’s modulus, v the Poisson’s ratio and A a load
parameter. For the strain measures we assume
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where u, v are the in-plane displacement components in the x, y directions,
and w is the lateral displacement.

If initial imperfections &, ¥, w are present and assuming the plate to be
stress free in the imperfect unloaded state, the total potential energy ¢ is
modified by the addition of the extra contribution
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where only linear terms in the initial displacements have been retained. The
total energies ® and V¥ of the TWM are obtained by summing all contri-
butions (1), (3) from single plates.



To study the postbuckling behaviour of the perfect structure we express
the bifurcated path v = v(A) by a series expansion in terms of a parameter
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where A, is the critical load and v is a displacement vector measured from the
fundamental path. The coefficients of the series expansions (4) are deter-
mined by solving an eigenvalue problem and a second-order perturbation
equation. In the case of r buckling modes v,; associated with the same value
A. we have for the general solution to the eigenvalue problem v, = v, v,
where the summation convention with respect to repeated indices has been
adopted. Without any loss in generality these modes can be orthonormal-
ised according to II;' v, v;; = §;, where §; is the Kronecker delta and [1¥
collects all quadratic terms of the elastic contribution to the potential energy
®. By requesting 15 vi = 1 the condition v, = 1 follows. The coefficients
v; and A, are determined by the nonlinear system

Ajvivit By, =0 (ijk=1,._..n (5)
where
Ay = P'vivyvy By =20 vivy (6)

a prime denoting Fréchet differentiation and ®; = [d®"/dA], - ,,.

For the analysis of the imperfect structure we assume for the initial
displacements i = £u* where £ is the amplltude and u* denotes the
imperfection shape which is selected as u* = vv,, v/ being the set of
coefficients corresponding to the postbuckling path of steepest descent of
the perfect structure. In this case the snapping load is furnished by
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for Af >0 and p£<0 or vice versa. In egn (7) A} = max|A,| and
p= V! (v vi) IND! (v;vy)* where a tilde denotes differentiation with
respect to u.

For a TWM, under the assumption of free transverse expansion, one
obtains B; = —2§;/A. and p = 1. By eliminating ¢ from eqns (4) the
equilibrium path is obtained

A Vp
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vp being a displacement component of a selected point P of the TWM, v}, the
contribution to v, from the ith buckling mode, and # a dimension of the
cross-section. The snapping load (7) simplifies to
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where @ is a component of the displacement of the point P due to initial
imperfections.

3 SIMPLIFIED ANALYSIS

Let us consider the case of multiple interaction between one overall mode
(Eulerian or flexural-torsional) and m local modes and assume that (i) in the
local modes joints do not translate so that only lateral displacements of the
plate components are possible, (ii) in the overall mode the TWM buckles as
a shear indeformable beam with free transverse expansion. Then, by
referring indices i = 1 to overall mode and i > 1 to local modes, A;; = 0 for
i,j,k>1land

A =f Et(u,wi wie )dS (k= 1,2,.. . .m+1) (11)
N

where S is the middle surface of the TWM. Under the assumption that the
displacement functions are described by sinusoidal laws in the longitudinal
direction (simply supported edges with free warping) the dominant
coefficients obtained by eqn (11) are those for which the number of
longitudinal halfwaves n; is of the order of n,. For |n,—n,|>>0 the
corresponding coefficients are much smaller and in particular they can be
neglected if they are of the type A, for n,>> 1. Equations (5) then
simplify to

A
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(A —=8mv, =0 (j,k=2.3,...m+1) (12),
where
Ay
= 13
"= o (13)

Note that A;;; = 0 because of hypothesis (ii).



Equation (12), is a linear eigenvalue problem whose solution furnishes m
real eigenvalues. Denoting by 7,, v{" the Ath solution, the corresponding
values of v{" and A" can be obtained by solving eqns (12), and (13) giving

1 ALY
) - U (14)

e V3 Ae V3

As a first illustration of the theory let us consider the case of simple
interaction (m = 1). Equation (12), furnishes n = A5, and therefore from
eqns (14) and (11) the simple formula

% :% . whdS (15)
follows with v, = =/2/3. The coefficients v, obtained in this case show
that, along the bifurcated path, 4 of the energy II;' v; is associated with the
overall mode and ; with the local mode. This comes from the fact that the
buckling modes have been orthonormalised with respect to the quadratic
operator [1; .

If the cross-section has one axis of symmetry, u,., is a symmetric or
antisymmetric function according to whether the overall buckling is
Eulerian or flexural-torsional, respectively. Consequently A,/A. # 0 in the
E-local interaction and A\,/A. = 0 in the FT-local interaction both for
symmetric and antisymmetric local modes.

As a second illustration of the theory let us now examine the case of the
overall-local-local buckling interaction. The eigenvalue problem (12), is

A= A vy 0
- (16)
A A= 2 0
which leads to the following cases:

(1) A F 0, the three buckling modes are coupled and there are two
postbuckling equilibrium paths;

(i) A = 0, Aip # A # 0, the overall mode couples with the local
mode 2 or 3 and two postbuckling paths occur with (A/
)\c)max = maX(Alzz, A133)/\/§2

(ili) A, = 0, A, = A # 0, the three buckling modes are coupled and
there are an infinite number of postbuckling paths since in our
approximate analysis the ratio »,/v, is indeterminate;

(iv) Ay = A = Ay = 0, third-order analysis furnishes A, /A. = 0 and
postbuckling paths can be determined only by fourth-order analysis.



TABLE 1
Coefficients A for Overall-local Interaction

Local modes
Overall

modes Any Symm.-symm. Symm.-ant. Ant.-ant.

. Al 0
Eulerian Ai}i i 0 An+0 A =10 A #0

=9
Flex.-tors. Az Az =0 Aps ¥+ 0 Apy =10

Apz =10

If the cross-section has one axis of symmetry, one can easily show by using
eqn (16) and invoking geometric considerations that the coefficients A,
take the values displayed in Table 1. It is apparent that Euler buckling can
interact with two local modes both symmetric or antisymmetric. On the
other hand the flexural-torsional mode interacts only with a symmetric and
an antisymmetric local mode. In this case \\/A, = = A/ V3 and v, =
+ v, = + 1/2/3. It should be borne in mind, however, that A, is very small
if |n, — n;| >> 0 and consequently the coupling is weak.

4 DISCRETE MODEL

A thin-walled member can be considered as a prismatic shell made of plates
(finite strips) rigidly connected along nodal lines which are assumed con-
tinuously supported at the ends. By introducing an orthogonal cartesian
reference frame X, Y, Z with the X-axis parallel to the nodal lines, we may
describe the position of the generic nth nodal line by assigning the dis-
placement components U,(X), V.(X), W,(X) in the X,Y,Z directions,
respectively, and the rotation 0,(X). In order to obtain a discrete solution
to our analysis we express these functions as series expansions suitable to
satisfy the end conditions

Uyx) = Y U,,kcoskWTx, V(x) = Y Visink

TX
k=1 k=1 I
X

, (7)

r ] m r
W, (x) = ) W,ysin k= 0,() = ¥ Osink
k=1 k=1

having assumed that the X and x coordinates coincide.
Let us now consider the generic finite strip and express the local



displacement components as a function of the local nodal parameters
through the relationships

w(e,) = Y AO)w+fr)unlosk T
=1
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Ineqns (18) the fi(y)’s (i = 1.. . .,6)are linear or cubic polynomials and the
coefficients uy, Vi, - . ., O represent the displacement amplitudes along
the longitudinal sides of the strip associated with the kth harmonic. The strip
displacement parameters {u,} = {uavawaOs}® (i = 1,2) are correlated
with those of the adjacent nodal lines {U,} = {Uy Vo W, O} " through the
relationship {u,} = [R]{U.} where [R] is the rotation matrix. This permits
one to ensure compatibility between the plate edges and the nodal lines. By
introducing eqns (18) into eqns (1) and (3) through the kinematic relation-
ships (2) and summing the contributions from all strips the discretised
counterparts of the functionals ®;’ appearing in the eigenvalue problem and
of " are obtained in terms of the nodal parameters.

5 NUMERICAL RESULTS

The finite strip method has been utilised to investigate the critical and
postcritical behaviour of simply supported stiffened angle sections and
channels under uniform compression. Figure 1 shows the cross-sections of
the TWM investigated, whose geometry is described by the dimensionless
parameters

Lo b d 19
@ = ,B—h. Y=g = (19)
/ being the TWM length.
In what follows we define the critical stress
= E 2 .
P (20
=k =)

where, in general, k depends on the four parameters (19). Besides, for the
evaluation of the slope p of the bifurcated path, the displacement v;
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Fig. 1. Cross-sections geometry.

appearing in eqn (8) is identified with the displacement of point P (Fig. 1) in
the Z-direction for the angle section and in the Y-direction for the channels.

5.1 Stiffened angle section

Figure 2 shows the dependence of k on ¢/ for an angle section with 8 = 0-6
andy = 0-01 for different values of 8, ¢ being the halfwavelength of the local
buckling mode. It is seen that the curves for & larger than a certain value,
exhibit a minimum around c¢/h = 1 corresponding to the lowest local
buckling. The overall critical stress is obtained by correspondence of ¢ = /
and 1t is, in general, of the flexural-torsional type. As /[— = it approaches
zero and becomes of the Euler type. It may happen that for a TWM of fixed
length for increasing & overall critical stress is first smaller, then equal and
finally larger than the local critical stress. Figure 3 shows the dependence of
k on 8 fory = 0-01 and a number of values of 8 and «. The three rising paths
refer to the overall buckling (flexural-torsional). The relevant critical stress
depends essentially on «, while the dependence on g is restricted within the
narrow dashed areas (0-3=p8=1). The three nearly horizontal curves
describe the local buckling whose critical stress is independent of «. Points
of intersections of the two families of curves characterise interaction.

Table 2 collects results relative to postbuckling analysis and furnishes the
values of the slope u of the bifurcated path (eqn (8)). Results of the second
last column have been obtained by solving the nonlinear eqn (5) where all
coefficients have been calculated by means of the finite strip technique. By
using the approximate formulae (12) the last column results are derived. It is
seen that the largest difference between ‘exact’ and ‘approximate’ results
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Fig. 2. Angle section: critical stress versus dimensionless wavelength.

TABLE 2
Angle Section: FT-local Interaction (y = 0-01)

5 @ 1PaE v v u

Eqgn (5) Eqn(12)

0-15 6-2 0-460 0-560 +(0-828 10-108 9-853

A=03 " o30 135 0447 0529 0842 2:971 2:923

g6 015 65 0446 0555 +0-832 5402 5302
0-30 140 0442 0536 0844 1432 1447

=10 0I5 69 0380 — — — —
0-30 155 0375 0572 =0-820  0:0002 00002
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Fig. 3. Angle section: critical stress versus stiffener rigidity.

does not exceed 3% and therefore approximate theory can be used for
practical purposes. This is also apparent from the values of v, which are
nearly constant and approximately equal to :.

By table inspection ane can see that for increasing 8, u decreases and
approaches zero for 8 = 1 (symmetric cross-section) according to previous
qualitative analysis (Section 3). Note that for 8 = 1, § = 0-15, a = 69
there is no coupling. Finally in Fig. 4 the snapping load A, against the initial
imperfections amplitude &;/h has been plotted. It is apparent that the more
asymmetric the cross-section the higher the sensitivity to initial imper-
fections.

5.2 Stiffened channel: single interaction

In a previous work"” the buckling behaviour of lipped and web-reinforced
channels has been investigated. By inspection of qualitative results relative
to local buckling (Fig. 5) one can see that, according to the size of the
stiffeners, single and multiple interactions may occur both for symmetric
and antisymmetric local buckling.

Results relative to FT-local interaction show that the slope of the
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Fig. 4. Angle section: snapping load versus initial imperfection amplitude.

bifurcated path is approximately zero according to simplified analysis. On
the other hand the E-local interaction is responsible for high imperfection
sensitivity. This is apparent from Tables 3 and 4 where numerical results are
displayed. In Table 3, relative to E-local interaction for a web-stiffened
channel, it is noted that there is a jump in the value of u from 1-35 to 14-56
when the local mode changes from symmetric into antisymmetric around
8 = 0-06. The slopes of the equilibrium paths of the unstiffened and stiffened
channels have opposite signs. In particular the load is decreasing along the
equilibrium path if the displacement causes compression on the web
(unstiffened channel: negative w) or on the flanges (stiffened channels:
positive w). This can be explained from a mechanical point of view by
considering that buckling is initiated by the web in unstiffened channels and
the flanges in stiffened channels, respectively. Therefore any further dis-
placement which increases pressure on the webs (in one case), or on the
flanges (in the other case), is associated with a load decrement.
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Fig. 5. Stiffened channel: critical stress versus stiffener rigidity.

TABLE 3
Web-stiffened Channel: E-local Interaction (8 = 0-3,y = 0:01)
) a c/h 1P o JE V) v; n
Eqn(5) Eqn(12)
Loc. 0-00 14-2 1-09 0-393 0-630 =0-776 —-0-734 —0-723
symm. 0-04 11-3 1-88 0-583 0-461 =*0-887 0-630 0-625
0-06 93 2:33 0-795 0-457 =*0-890 1-352 1-316
Loc. 0-07 8-6 0-66 0-884 0-558 =*=0-830 14-560 14-600
antisymm. 0-10 85 0-65 0-885 0-557 =0-830 15-020 15-000




TABLE 4
Lipped Channel: E-local Interaction (8 = 0-3,y = 0-01)

) « clh WodE 1y i) m

Egn(5) Eqgni{ili

0-00 14:2 1-09 0-393 0-630  =0-776 0734 {723
L 0-04 14-4 0-85 0-490 0-585 0811 —3-945 3-903
W(:ﬁ'm 0-08 15-1 0-76 0-534 0-588  =0-808 —4-156 4172
o ’ 0-10 15-7 0-79 0-511 0-584 0812 —4-114  —3090

0-30 18-0 0-72 0-510 0-572  =(0-820 --4-436 4365

Table 4 is concerned with the E-local interaction analysis of a lipped
channel. It is to be noted that w is always negative. This is in accord with
previous explanation since buckling is initiated by compression webs. Note
also that for increasing 8, u rapidly approaches an asymptotic value which
remains however much below the maximum observed in Table 3.

In both tables the last column collects results of the approximate analysis
(eqns (12)). As in the previous case they are in good agreement with those
obtained by solving the nonlinear eqns (5).

Finally in Fig. 6 the ultimate load A, versus the initial imperfections
amplitude has been represented. It is clear that the most severe situation is
determined by the simultaneous occurrence of Eulerian and local anti-
symmetric buckling modes in web-reinforced channels since sensitivity to
initial imperfections is more pronounced.

5.3 Stiffened channel: multiple interaction

A number of cases of multiple interaction have been investigated for
stiffened channels. Due to the difficulties in solving nonlinear algebraic
equations and encouraged by the good results previously obtained, use is
made of the approximate equations (12).

Table 5 furnishes the coefficients A, relative to the interaction between
the Euler and two local symmetric buckling modes of a lipped channel
sketched in the picture. It is seen that the two off-diagonal terms are very
small in comparison with the main diagonal ones, due to the fact that the
wavelengths of the two local modes are very different. This implies that the
three modes interaction is weak in comparison with the two modes
interaction.

Table 6 collects the A ;s relative to the interaction between the Euler and
three local modes sketched in the picture of a web-reinforced channel. The
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Fig. 6. Stiffened channel: snapping load versus initial imperfection amplitude

TABLE 5
Lipped Channel: E-local Symm.—local Antisymm. [nteraction
{a = 307.8 = 06,y = 0:01.3 = 0:065)
j Aljk Local mode clh
2 0-052 0-19107* 341
3 0-19107* —0-038 0-88




TABLE 6
Web-stiffened Channel: E-local Symm.—-local Antisymm. Interaction
(o = 28:6,8 = 0:6,y = 0:01,5 = 0-08)

] Ak Local mode cth

2 0-0180 ~0-0009 0 j 2-18

3 00923 0 E 0-73

5 092 .
4 Symm. 0092 1 c’ ) 073
TABLE 7
Web-stiffened Channel: FT—local Symm.—local Antisymm. Interaction
(a = 286.8 = 0-6.y = 0-01.5 = 0-08)

J Anjk Local mode clh
2 0 0-094 C_ 124
3 0-094 0 1-24

term Ap; is much smaller than the main diagonal ones for the reasons
illustrated above. Terms A and A vanish since interaction between a
symmetric and an antisymmetric mode is involved. As a result there exists a
single interaction between the Euler and the antisymmetric mode and a
weak multiple interaction between the Euler and the two symmetric local
modes. Both interactions are characterised by an approximately equal slope
of the bifurcated paths.

Results relative to FT-local symmetric-local antisymmetric interaction for
a web-reinforced channel are given in Table 7. In contrast with the two



previous results the dominant terms are the off-diagonal ones so that only
multiple interaction occurs. This is due to the fact that the two local modes
have the same wavelength. The slope of the bifurcated path u = 9-40 is
obtained having assumed as v, the displacement of the point P in Fig. 1(b) in
the Z-direction. Note that this value of u is of the order of the largest ones
obtained in the E-local interaction and therefore represents the same level
of risk for the TWM.

6 CONCLUSIONS

On the basis of the general theory of elastic stability, third-order post-
buckling analysis in the presence of two or more simultaneous buckling
modes has been performed on TWM under uniform compression by means
of the finite strip method. The initial imperfections effect is taken into
account. An approximate procedure for the evaluation of v; and A, has been
suggested which furnishes results in good agreement with the ones inherent
to the solution of nonlinear algebraic equations. For cross-sections with an
axis of symmetry this analysis allows prediction of situations in which
interaction occurs by invoking purely geometric considerations. In contrast
with results previously achieved it is found that flexural-torsional buckling
may cause serious detrimental effects whenever interaction occurs between
a local symmetric and an antisymmetric mode. A number of numerical
results have been obtained for stiffened and unstiffened channels and an
angle section which confirm the theoretical predictions.

The present analysis has to be completed by including fourth-order terms
of the energy expansion in order to investigate postbuckling behaviour of
TWM in cases where third order (asymmetric) interaction is weak.
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