
Asymmetric LSH (ALSH) for Sublinear Time

Maximum Inner Product Search (MIPS)

Anshumali Shrivastava
Department of Computer Science

Computing and Information Science
Cornell University

Ithaca, NY 14853, USA
anshu@cs.cornell.edu

Ping Li
Department of Statistics and Biostatistics

Department of Computer Science
Rutgers University

Piscataway, NJ 08854, USA
pingli@stat.rutgers.edu

Abstract
We present the first provably sublinear time hashing algorithm for approximate
Maximum Inner Product Search (MIPS). Searching with (un-normalized) inner
product as the underlying similarity measure is a known difficult problem and
finding hashing schemes for MIPS was considered hard. While the existing Lo-
cality Sensitive Hashing (LSH) framework is insufficient for solving MIPS, in this
paper we extend the LSH framework to allow asymmetric hashing schemes. Our
proposal is based on a key observation that the problem of finding maximum in-
ner products, after independent asymmetric transformations, can be converted into
the problem of approximate near neighbor search in classical settings. This key
observation makes efficient sublinear hashing scheme for MIPS possible. Under
the extended asymmetric LSH (ALSH) framework, this paper provides an exam-
ple of explicit construction of provably fast hashing scheme for MIPS. Our pro-
posed algorithm is simple and easy to implement. The proposed hashing scheme
leads to significant computational savings over the two popular conventional LSH
schemes: (i) Sign Random Projection (SRP) and (ii) hashing based on p-stable
distributions for L2 norm (L2LSH), in the collaborative filtering task of item rec-
ommendations on Netflix and Movielens (10M) datasets.

1 Introduction and Motivation

The focus of this paper is on the problem of Maximum Inner Product Search (MIPS). In this problem,
we are given a giant data vector collection S of size N , where S ⊂ R

D, and a given query point
q ∈ RD. We are interested in searching for p ∈ S which maximizes (or approximately maximizes)
the inner product qT p. Formally, we are interested in efficiently computing

p = argmax
x∈S

qTx (1)

The MIPS problem is related to near neighbor search (NNS), which instead requires computing

p = argmin
x∈S
∣∣q − x∣∣22 = argmin

x∈S
(∣∣x∣∣22 − 2qTx) (2)

These two problems are equivalent if the norm of every element x ∈ S is constant. Note that the
value of the norm ∣∣q∣∣2 has no effect as it is a constant and does not change the identity of argmax
or argmin. There are many scenarios in which MIPS arises naturally at places where the norms of
the elements in S have significant variations [13] and cannot be controlled, e.g., (i) recommender
system, (ii) large-scale object detection with DPM, and (iii) multi-class label prediction.

Recommender systems: Recommender systems are often based on collaborative filtering which
relies on past behavior of users, e.g., past purchases and ratings. Latent factor modeling based on
matrix factorization [14] is a popular approach for solving collaborative filtering. In a typical matrix
factorization model, a user i is associated with a latent user characteristic vector ui, and similarly,
an item j is associated with a latent item characteristic vector vj . The rating ri,j of item j by user i
is modeled as the inner product between the corresponding characteristic vectors.

1

In this setting, given a user i and the corresponding learned latent vector ui finding the right item j,
to recommend to this user, involves computing

j = argmax
j′

ri,j′ = argmax
j′

uT
i vj′ (3)

which is an instance of the standard MIPS problem. It should be noted that we do not have control
over the norm of the learned vector, i.e., ∥vj∥2, which often has a wide range in practice [13].

If there are N items to recommend, solving (3) requires computing N inner products. Recommen-
dation systems are typically deployed in on-line application over web where the number N is huge.
A brute force linear scan over all items, for computing argmax, would be prohibitively expensive.

Large-scale object detection with DPM: Deformable Part Model (DPM) based representation of
images is the state-of-the-art in object detection tasks [8]. In DPM model, firstly a set of part filters
are learned from the training dataset. During detection, these learned filter activations over various
patches of the test image are used to score the test image. The activation of a filter on an image patch
is an inner product between them. Typically, the number of possible filters are large (e.g., millions)
and so scoring the test image is costly. Recently, it was shown that scoring based only on filters with
high activations performs well in practice [7]. Identifying those filters having high activations on a
given image patch requires computing top inner products. Consequently, an efficient solution to the
MIPS problem will benefit large scale object detections based on DPM.

Multi-class (and/or multi-label) prediction: The models for multi-class SVM (or logistic regres-
sion) learn a weight vector wi for each of the class label i. After the weights are learned, given a
new test data vector xtest, predicting its class label is basically an MIPS problem:

ytest = argmax
i∈L

xT
test wi (4)

where L is the set of possible class labels. Note that the norms of the vectors ∥wi∥2 are not constant.
The size, ∣L∣, of the set of class labels differs in applications. Classifying with large number of possi-
ble class labels is common in multi-label learning and fine grained object classification, for instance,
prediction task with ∣L∣ = 100,000 [7]. Computing such high-dimensional vector multiplications for
predicting the class label of a single instance can be expensive in, e.g., user-facing applications.

1.1 The Need for Hashing Inner Products

Solving the MIPS problem can have significant practical impact. [19, 13] proposed solutions based
on tree data structure combined with branch and bound space partitioning technique similar to k-d
trees [9]. Later, the same method was generalized for general max kernel search [5], where the run-
time guarantees, like other space partitioning methods, are heavily dependent on the dimensionality
and the expansion constants. In fact, it is well-known that techniques based on space partitioning
(such as k-d trees) suffer from the curse of dimensionality. For example, [24] showed that techniques
based on space partitioning degrade to linear search, even for dimensions as small as 10 or 20.

Locality Sensitive Hashing (LSH) [12] based randomized techniques are common and successful
in industrial practice for efficiently solving NNS (near neighbor search). Unlike space partitioning
techniques, both the running time as well as the accuracy guarantee of LSH based NNS are in a way
independent of the dimensionality of the data. This makes LSH suitable for large scale processing
system dealing with ultra-high dimensional datasets which are common in modern applications.
Furthermore, LSH based schemes are massively parallelizable, which makes them ideal for modern
“Big” datasets. The prime focus of this paper will be on efficient hashing based algorithms for
MIPS, which do not suffer from the curse of dimensionality.

1.2 Our Contributions

We develop Asymmetric LSH (ALSH), an extended LSH scheme for efficiently solving the approxi-
mate MIPS problem. Finding hashing based algorithms for MIPS was considered hard [19, 13]. We
formally show that, under the current framework of LSH, there cannot exist any LSH for solving
MIPS. Despite this negative result, we show that it is possible to relax the current LSH framework to
allow asymmetric hash functions which can efficiently solve MIPS. This generalization comes with
no extra cost and the ALSH framework inherits all the theoretical guarantees of LSH.

Our construction of asymmetric LSH is based on an interesting fact that the original MIPS problem,
after asymmetric transformations, reduces to the problem of approximate near neighbor search in

2

classical settings. Based on this key observation, we provide an example of explicit construction of
asymmetric hash function, leading to the first provably sublinear query time hashing algorithm for
approximate similarity search with (un-normalized) inner product as the similarity. The new ALSH
framework is of independent theoretical interest. We report other explicit constructions in [22, 21].

We also provide experimental evaluations on the task of recommending top-ranked items with col-
laborative filtering, on Netflix and Movielens (10M) datasets. The evaluations not only support our
theoretical findings but also quantify the obtained benefit of the proposed scheme, in a useful task.

2 Background

2.1 Locality Sensitive Hashing (LSH)

A commonly adopted formalism for approximate near-neighbor search is the following:

Definition: (c-Approximate Near Neighbor or c-NN) Given a set of points in a D-dimensional space
R

D, and parameters S0 > 0, δ > 0, construct a data structure which, given any query point q, does
the following with probability 1 − δ: if there exists an S0-near neighbor of q in P , it reports some
cS0-near neighbor of q in P .

In the definition, the S0-near neighbor of point q is a point p with Sim(q, p) ≥ S0, where Sim is the
similarity of interest. Popular techniques for c-NN are often based on Locality Sensitive Hashing
(LSH) [12], which is a family of functions with the nice property that more similar objects in the
domain of these functions have a higher probability of colliding in the range space than less similar
ones. In formal terms, considerH a family of hash functions mapping R

D to a set I .

Definition: (Locality Sensitive Hashing (LSH)) A family H is called (S0, cS0, p1, p2)-sensitive if,

for any two point x, y ∈ RD, h chosen uniformly fromH satisfies the following:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1
• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For efficient approximate nearest neighbor search, p1 > p2 and c < 1 is needed.

Fact 1 [12]: Given a family of (S0, cS0, p1, p2) -sensitive hash functions, one can construct a data

structure for c-NN with O(nρ logn) query time and space O(n1+ρ), where ρ = log p1

log p2

< 1.

2.2 LSH for L2 Distance (L2LSH)

[6] presented a novel LSH family for all Lp (p ∈ (0,2]) distances. In particular, when p = 2, this
scheme provides an LSH family for L2 distances. Formally, given a fixed (real) number r, we choose
a random vector a with each component generated from i.i.d. normal, i.e., ai ∼ N(0,1), and a scalar
b generated uniformly at random from [0, r]. The hash function is defined as:

hL2
a,b(x) = ⌊aTx + b

r
⌋ (5)

where ⌊⌋ is the floor operation. The collision probability under this scheme can be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) = Fr(d); Fr(d) = 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)

2/2) (6)

where Φ(x) = ∫ x

−∞
1√
2π

e−
x
2

2 dx is the cumulative density function (cdf) of standard normal dis-

tribution and d = ∣∣x − y∣∣2 is the Euclidean distance between the vectors x and y. This collision

probability Fr(d) is a monotonically decreasing function of the distance d and hence hL2
a,b is an LSH

for L2 distances. This scheme is also the part of LSH package [1]. Here r is a parameter. As argued

previously, ∣∣x−y∣∣2 =√(∣∣x∣∣22 + ∣∣y∣∣22 − 2xT y) is not monotonic in the inner product xT y unless the

given data has a constant norm. Hence, hL2
a,b is not suitable for MIPS.

The recent work on coding for random projections [16] showed that L2LSH can be improved when
the data are normalized for building large-scale linear classifiers as well as near neighbor search [17].
In particular, [17] showed that 1-bit coding (i.e., sign random projections (SRP) [10, 3]) or 2-bit
coding are often better compared to using more bits. It is known that SRP is designed for retrieving

with cosine similarity: Sim(x, y) = xT y

∣∣x∣∣2∣∣y∣∣2 . Again, ordering under this similarity can be very

different from the ordering of inner product and hence SRP is also unsuitable for solving MIPS.

3

3 Hashing for MIPS

3.1 A Negative Result

We first show that, under the current LSH framework, it is impossible to obtain a locality sensitive
hashing scheme for MIPS. In [19, 13], the authors also argued that finding locality sensitive hashing
for inner products could be hard, but to the best of our knowledge we have not seen a formal proof.

Theorem 1 There cannot exist any LSH family for MIPS.

Proof: Suppose there exists such hash function h. For un-normalized inner products the self similar-
ity of a point x with itself is Sim(x,x) = xTx = ∣∣x∣∣22 and there may exist another points y, such that

Sim(x, y) = yTx > ∣∣x∣∣22 + C, for any constant C. Under any single randomized hash function h,
the collision probability of the event {h(x) = h(x)} is always 1. So if h is an LSH for inner product
then the event {h(x) = h(y)} should have higher probability compared to the event {h(x) = h(x)},
since we can always choose y with Sim(x, y) = S0 + δ > S0 and cS0 > Sim(x,x) ∀S0 and c < 1.
This is not possible because the probability cannot be greater than 1. This completes the proof. ◻
3.2 Our Proposal: Asymmetric LSH (ALSH)

The basic idea of LSH is probabilistic bucketing and it is more general than the requirement of
having a single hash function h. The classical LSH algorithms use the same hash function h for both
the preprocessing step and the query step. One assigns buckets in the hash table to all the candidates
x ∈ S using h, then uses the same h on the query q to identify relevant buckets. The only requirement
for the proof of Fact 1, to work is that the collision probability of the event {h(q) = h(x)} increases
with the similarity Sim(q, x). The theory [11] behind LSH still works if we use hash function h1

for preprocessing x ∈ S and a different hash function h2 for querying, as long as the probability of
the event {h2(q) = h1(x)} increases with Sim(q, x), and there exist p1 and p2 with the required
property. The traditional LSH definition does not allow this asymmetry but it is not a required
condition in the proof. For this reason, we can relax the definition of c-NN without losing runtime
guarantees. [20] used a related (asymmetric) idea for solving 3-way similarity search.

We first define a modified locality sensitive hashing in a form which will be useful later.

Definition: (Asymmetric Locality Sensitive Hashing (ALSH)) A family H, along with the two

vector functions Q ∶ RD ↦ R
D′ (Query Transformation) and P ∶ RD ↦ R

D′ (Preprocessing
Transformation), is called (S0, cS0, p1, p2)-sensitive if, for a given c-NN instance with query q and
any x in the collection S , the hash function h chosen uniformly fromH satisfies the following:

• if Sim(q, x) ≥ S0 then PrH(h(Q(q))) = h(P (x))) ≥ p1
• if Sim(q, x) ≤ cS0 then PrH(h(Q(q)) = h(P (x))) ≤ p2

When Q(x) = P (x) = x, we recover the vanilla LSH definition with h(.) as the required hash
function. Coming back to the problem of MIPS, if Q and P are different, the event {h(Q(x)) =
h(P (x))} will not have probability equal to 1 in general. Thus, Q ≠ P can counter the fact that self
similarity is not highest with inner products. We just need the probability of the new collision event
{h(Q(q)) = h(P (y))} to satisfy the conditions in the definition of c-NN for Sim(q, y) = qT y. Note
that the query transformation Q is only applied on the query and the pre-processing transformation
P is applied to x ∈ S while creating hash tables. It is this asymmetry which will allow us to solve
MIPS efficiently. In Section 3.3, we explicitly show a construction (and hence the existence) of
asymmetric locality sensitive hash function for solving MIPS. The source of randomization h for
both q and x ∈ S is the same. Formally, it is not difficult to show a result analogous to Fact 1.

Theorem 2 Given a family of hash function H and the associated query and preprocessing trans-
formations P and Q, which is (S0, cS0, p1, p2) -sensitive, one can construct a data structure for

c-NN with O(nρ logn) query time and space O(n1+ρ), where ρ = log p1

log p2

.

3.3 From MIPS to Near Neighbor Search (NNS)

Without loss of any generality, let U < 1 be a number such that ∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S. If this is
not the case then define a scaling transformation,

S(x) = U

M
× x; M =maxxi∈S ∣∣xi∣∣2; (7)

4

Note that we are allowed one time preprocessing and asymmetry, S is the part of asymmetric trans-
formation. For simplicity of arguments, let us assume that ∣∣q∣∣2 = 1, the argmax is anyway inde-
pendent of the norm of the query. Later we show in Section 3.6 that it can be easily removed.

We are now ready to describe the key step in our algorithm. First, we define two vector transforma-
tions P ∶ RD ↦ R

D+m and Q ∶ RD ↦ R
D+m as follows:

P (x) = [x; ∣∣x∣∣22; ∣∣x∣∣42;; ∣∣x∣∣2m2]; Q(x) = [x; 1/2; 1/2;; 1/2], (8)

where [;] is the concatenation. P (x) appends m scalers of the form ∣∣x∣∣2i2 at the end of the vector x,
while Q(x) simply appends m “1/2” to the end of the vector x. By observing that

Q(q)TP (xi) = qTxi + 1

2
(∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2); ∣∣P (xi)∣∣22 = ∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m+12

we obtain the following key equality:

∣∣Q(q) − P (xi)∣∣22 = (1 +m/4) − 2qTxi + ∣∣xi∣∣2m+12 (9)

Since ∣∣xi∣∣2 ≤ U < 1, ∣∣xi∣∣2m+1 → 0, at the tower rate (exponential to exponential). The term
(1 +m/4) is a fixed constant. As long as m is not too small (e.g., m ≥ 3 would suffice), we have

argmax
x∈S

qTx ≃ argmin
x∈S
∣∣Q(q) − P (x)∣∣2 (10)

This gives us the connection between solving un-normalized MIPS and approximate near neighbor
search. Transformations P and Q, when norms are less than 1, provide correction to the L2 distance
∣∣Q(q) −P (xi)∣∣2 making it rank correlate with the (un-normalized) inner product. This works only

after shrinking the norms, as norms greater than 1 will instead blow the term ∣∣xi∣∣2m+12 .

3.4 Fast Algorithms for MIPS

Eq. (10) shows that MIPS reduces to the standard approximate near neighbor search problem which

can be efficiently solved. As the error term ∣∣xi∣∣2m+12 < U2
m+1

goes to zero at a tower rate, it quickly
becomes negligible for any practical purposes. In fact, from theoretical perspective, since we are
interested in guarantees for c-approximate solutions, this additional error can be absorbed in the
approximation parameter c. Formally, we can state the following theorem.

Theorem 3 Given a c-approximate instance of MIPS, i.e., Sim(q, x) = qTx, and a query q such
that ∣∣q∣∣2 = 1 along with a collection S having ∣∣x∣∣2 ≤ U < 1 ∀x ∈ S. Let P and Q be the vector

transformations defined in (8). We have the following two conditions for hash function hL2
a,b (5)

1) if qTx ≥ S0 then Pr[hL2
a,b(Q(q)) = hL2

a,b(P (x))] ≥ Fr(√1 +m/4 − 2S0 +U2m+1)
2) if qTx ≤ cS0 then Pr[hL2

a,b(Q(q)) = hL2
a,b(P (x))] ≤ Fr(√1 +m/4 − 2cS0)

where the function Fr is defined in (6).

Thus, we have obtained p1 = Fr(√(1 +m/4) − 2S0 +U2m+1) and p2 = Fr(√(1 +m/4) − 2cS0).
Applying Theorem 2, we can construct data structures with worst case O(nρ logn) query time
guarantees for c-approximate MIPS, where

ρ = logFr(√1 +m/4 − 2S0 +U2m+1)
logFr(

√
1 +m/4 − 2cS0)

(11)

We need p1 > p2 in order for ρ < 1. This requires us to have −2S0 + U2
m+1 < −2cS0, which boils

down to the condition c < 1− U2
m+1

2S0

. Note that U2
m+1

2S0

can be made arbitrarily close to zero with the

appropriate value of m. For any given c < 1, there always exist U < 1 and m such that ρ < 1. This
way, we obtain a sublinear query time algorithm for MIPS.

We also have one more parameter r for the hash function ha,b. Recall the definition of Fr in Eq. (6):

Fr(d) = 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)2/2). Thus, given a c-approximate MIPS instance, ρ

5

00.20.40.60.81
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ*
S

0
 = 0.9U

S
0
 = 0.5U

0.6
0.7

0.8

00.20.40.60.81
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ

S
0
 = 0.5U

0.6

S
0
 = 0.9U

0.8

0.7

m=3,U=0.83, r=2.5

Figure 1: Left panel: Optimal values of ρ∗ with respect to approximation ratio c for different S0.
The optimization of Eq. (14) was conducted by a grid search over parameters r, U and m, given S0

and c. Right Panel: ρ values (dashed curves) for m = 3, U = 0.83 and r = 2.5. The solid curves are
ρ∗ values. See more details about parameter recommendations in arXiv:1405.5869.

is a function of 3 parameters: U , m, r. The algorithm with the best query time chooses U , m and r,
which minimizes the value of ρ. For convenience, we define

ρ∗ = min
U,m,r

logFr(√1 +m/4 − 2S0 +U2m+1)
logFr(√1 +m/4 − 2cS0) s.t.

U2
m+1

2S0

< 1 − c, m ∈ N+, 0 < U < 1. (12)

See Figure 1 for the plots of ρ∗. With this best value of ρ, we can state our main result in Theorem 4.

Theorem 4 (Approximate MIPS is Efficient) For the problem of c-approximate MIPS with ∣∣q∣∣2 =
1, one can construct a data structure having O(nρ∗ logn) query time and space O(n1+ρ∗), where
ρ∗ < 1 is the solution to constraint optimization (14).

3.5 Practical Recommendation of Parameters

Just like in the typical LSH framework, the value of ρ∗ in Theorem 4 depends on the c-approximate
instance we aim to solve, which requires knowing the similarity threshold S0 and the approximation
ratio c. Since, ∣∣q∣∣2 = 1 and ∣∣x∣∣2 ≤ U < 1, ∀x ∈ S , we have qtx ≤ U . A reasonable choice of the
threshold S0 is to choose a high fraction of U, for example, S0 = 0.9U or S0 = 0.8U .

The computation of ρ∗ and the optimal values of corresponding parameters can be conducted via a
grid search over the possible values of U , m and r. We compute ρ∗ in Figure 1 (Left Panel). For
convenience, we recommend m = 3, U = 0.83, and r = 2.5. With this choice of the parameters,
Figure 1 (Right Panel) shows that the ρ values using these parameters are very close to ρ∗ values.

3.6 Removing the Condition ∣∣q∣∣2 = 1
Changing norms of the query does not affect the argmaxx∈C q

Tx. Thus in practice for retrieving top-
ranked items, normalizing the query should not affect the performance. But for theoretical purposes,
we want the runtime guarantee to be independent of ∣∣q∣∣2. We are interested in the c-approximate
instance which being a threshold based approximation changes if the query is normalized.

Previously, transformations P and Q were precisely meant to remove the dependency on the norms
of x. Realizing the fact that we are allowed asymmetry, we can use the same idea to get rid of the
norm of q. Let M be the upper bound on all the norms or the radius of the space as defined in
Eq (7). Let the transformation S ∶ RD

→ R
D be the ones defined in Eq (7). Define asymmetric

transformations P ′ ∶ RD
→ R

D+2m and Q′ ∶ RD
→ R

D+2m as

P ′(x) = [x; ∣∣x∣∣22; ∣∣x∣∣42;; ∣∣x∣∣2m2 ; 1/2; ...1/2]; Q′(x) = [x; 1/2;; 1/2; ∣∣x∣∣22; ∣∣x∣∣42;; ∣∣x∣∣2m2],
Given the query q and data point x, our new asymmetric transformations are Q′(S(q)) and
P ′(S(x)) respectively. We observe that

∣∣Q′(S(q)) − P ′(S(x))∣∣22 = m

2
+ ∣∣S(x)∣∣2m+12 + ∣∣S(q)∣∣2m+12 − 2qtx × (U2

M2
) (13)

Both ∣∣S(x)∣∣2m+12 , ∣∣S(q)∣∣2m+12 ≤ U2
m+1

→ 0. Using exactly same arguments as before, we obtain

6

Theorem 5 (Unconditional Approximate MIPS is Efficient) For the problem of c-approximate

MIPS in a bounded space, one can construct a data structure having O(nρ∗
u logn) query time and

space O(n1+ρ∗
u), where ρ∗u < 1 is the solution to constraint optimization (14).

ρ∗u = min
0<U<1,m∈N,r

logFr(
√

m/2 − 2S0 (U2

M2
) + 2U2m+1)

logFr(
√

m/2 − 2cS0 (U2

M2
))

s.t.
U (2

m+1−2)M2

S0

< 1 − c, (14)

Again, for any c-approximate MIPS instance, with S0 and c, we can always choose m big enough
such that ρ∗u < 1. The theoretical guarantee only depends on the radius of the space M .

3.7 A Generic Recipe for Constructing Asymmetric LSHs

We are allowed any asymmetric transformation on x and q. This gives us a lot of flexibility to con-
struct ALSH for new similarities S that we are interested in. The generic idea is to take a particular
similarity Sim(x, q) for which we know an existing LSH or ALSH. Then we construct transforma-
tions P and Q such Sim(P (x),Q(q)) is monotonic in the similarity S that we are interested in.
The other observation that makes it easier to construct P and Q is that LSH based guarantees are
independent of dimensions, thus we can expand the dimensions like we did for P and Q.

This paper focuses on using L2LSH to convert near neighbor search of L2 distance into an ALSH
(i.e., L2-ALSH) for MIPS. We can devise new ALSHs for MIPS using other similarities and hash
functions. For instance, utilizing sign random projections (SRP), the known LSH for correlations,
we can construct different P and Q leading to a better ALSH (i.e., Sign-ALSH) for MIPS [22]. We
are aware another work [18] which performs very similarly to Sign-ALSH. Utilizing minwise hash-
ing [2, 15], which is the LSH for resemblance and is known to outperform SRP in sparse data [23],
we can construct an even better ALSH (i.e., MinHash-ALSH) for MIPS over binary data [21].

4 Evaluations

Datasets. We evaluate the proposed ALSH scheme for the MIPS problem on two popular collabo-
rative filtering datasets on the task of item recommendations: (i) Movielens(10M), and (ii) Netflix.
Each dataset forms a sparse user-item matrix R, where the value of R(i, j) indicates the rating
of user i for movie j. Given the user-item ratings matrix R, we follow the standard PureSVD pro-
cedure [4] to generate user and item latent vectors. This procedure generates latent vectors ui for
each user i and vector vj for each item j, in some chosen fixed dimension f . The PureSVD method

returns top-ranked items based on the inner products uT
i vj , ∀j. Despite its simplicity, PureSVD

outperforms other popular recommendation algorithms [4]. Following [4], we use the same choices
for the latent dimension f , i.e., f = 150 for Movielens and f = 300 for Netflix.

4.1 Ranking Experiment for Hash Code Quality Evaluations

We are interested in knowing, how the two hash functions correlate with the top-10 inner products.
For this task, given a user i and its corresponding user vector ui, we compute the top-10 gold
standard items based on the actual inner products uT

i vj , ∀j. We then compute K different hash
codes of the vector ui and all the item vectors vjs. For every item vj , we compute the number of
times its hash values matches (or collides) with the hash values of query which is user ui, i.e., we

compute Matchesj = ∑K
t=1 1(ht(ui) = ht(vj)), based on which we rank all the items.

Figure 2 reports the precision-recall curves in our ranking experiments for top-10 items, for com-
paring our proposed method with two baseline methods: the original L2LSH and the original sign
random projections (SRP). These results confirm the substantial advantage of our proposed method.

4.2 LSH Bucketing Experiment

We implemented the standard (K,L)-parameterized (where L is number of hash tables) bucketing
algorithm [1] for retrieving top-50 items based on PureSVD procedure using the proposed ALSH
hash function and the two baselines: SRP and L2LSH. We plot the recall vs the mean ratio of inner
product required to achieve that recall. The ratio being computed relative to the number of inner
products required in a brute force linear scan. In order to remove the effect of algorithm parameters
(K,L) on the evaluations, we report the result from the best performing K and L chosen from
K ∈ {5,6, ...,30} and L ∈ {1,2, ...,200} for each query. We use m = 3, U = 0.83, and r = 2.5 for

7

0 20 40 60 80 100
0

5

10

15

Recall (%)

P
re

ci
si

on
 (

%
)

Movielens

Top 10, K = 16

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

10

20

30

Recall (%)

P
re

ci
si

on
 (

%
)

Movielens

Top 10, K = 64

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Movielens

Top 10, K = 256

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

2

4

6

8

10

Recall (%)

P
re

ci
si

on
 (

%
)

NetFlix

Top 10, K = 16

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

5

10

15

20

Recall (%)

P
re

ci
si

on
 (

%
)

NetFlix

Top 10, K = 64

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

NetFlix

Top 10, K = 256

Proposed
L2LSH
SRP

Figure 2: Ranking. Precision-Recall curves (higher is better), of retrieving top-10 items, with the
number of hashes K ∈ {16,64,256}. The proposed algorithm (solid, red if color is available) sig-
nificantly outperforms L2LSH. We fix the parameters m = 3, U = 0.83, and r = 2.5 for our proposed
method and we present the results of L2LSH for all r values in {1,1.5,2,2.5,3,3.5,4,4.5,5}.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
M

ul
tip

lic
at

io
ns Top 50

Movielens

Proposed
SRP
L2LSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
M

ul
tip

lic
at

io
ns Top 50

Netflix

Proposed
SRP
L2LSH

Figure 3: Bucketing. Mean number of inner products per query, relative to a linear scan, evalu-
ated by different hashing schemes at different recall levels, for generating top-50 recommendations
(Lower is better). The results corresponding to the best performing K and L (for a wide range of K
and L) at a given recall value, separately for all the three hashing schemes, are shown.

our hashing scheme. For L2LSH, we observe that using r = 4 usually performs well and so we show
results for r = 4. The results are summarized in Figure 3, confirming that the proposed ALSH leads
to significant savings compared to baseline hash functions.

5 Conclusion

MIPS (maximum inner product search) naturally arises in numerous practical scenarios, e.g., col-
laborative filtering. This problem is challenging and, prior to our work, there existed no provably
sublinear time hashing algorithms for MIPS. Also, the existing framework of classical LSH (locality
sensitive hashing) is not sufficient for solving MIPS. In this study, we develop ALSH (asymmetric
LSH), which generalizes the existing LSH framework by applying (appropriately chosen) asymmet-
ric transformations to the input query vector and the data vectors in the repository. We present an
implementation of ALSH by proposing a novel transformation which converts the original inner
products into L2 distances in the transformed space. We demonstrate, both theoretically and em-
pirically, that this implementation of ALSH provides provably efficient as well as practical solution
to MIPS. Other explicit constructions of ALSH, for example, ALSH through cosine similarity, or
ALSH through resemblance (for binary data), will be presented in followup technical reports.

Acknowledgments

The research is partially supported by NSF-DMS-1444124, NSF-III-1360971, NSF-Bigdata-
1419210, ONR-N00014-13-1-0764, and AFOSR-FA9550-13-1-0137. We appreciate the construc-
tive comments from the program committees of KDD 2014 and NIPS 2014. Shrivastava would also
like to thank Thorsten Joachims and the Class of CS6784 (Spring 2014) for valuable feedbacks.

8

References

[1] A. Andoni and P. Indyk. E2lsh: Exact euclidean locality sensitive hashing. Technical report,
2004.

[2] A. Z. Broder. On the resemblance and containment of documents. In the Compression and
Complexity of Sequences, pages 21–29, Positano, Italy, 1997.

[3] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages
380–388, Montreal, Quebec, Canada, 2002.

[4] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-
n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pages 39–46. ACM, 2010.

[5] R. R. Curtin, A. G. Gray, and P. Ram. Fast exact max-kernel search. In SDM, pages 1–9, 2013.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn. Locality-sensitive hashing scheme based
on p-stable distributions. In SCG, pages 253 – 262, Brooklyn, NY, 2004.

[7] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast, accurate
detection of 100,000 object classes on a single machine. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pages 1814–1821. IEEE, 2013.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(9):1627–1645, 2010.

[9] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis.
IEEE Transactions on Computers, 23(9):881–890, 1974.

[10] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of ACM, 42(6):1115–
1145, 1995.

[11] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing
the curse of dimensionality. Theory of Computing, 8(14):321–350, 2012.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, Dallas, TX, 1998.

[13] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient retrieval of recommendations in a matrix
factorization framework. In CIKM, pages 535–544, 2012.

[14] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

[15] P. Li and A. C. König. Theory and applications b-bit minwise hashing. Commun. ACM, 2011.

[16] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding for random projections. In ICML, 2014.

[17] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding for random projections and approximate
near neighbor search. Technical report, arXiv:1403.8144, 2014.

[18] B. Neyshabur and N. Srebro. A simpler and better lsh for maximum inner product search
(mips). Technical report, arXiv:1410.5518, 2014.

[19] P. Ram and A. G. Gray. Maximum inner-product search using cone trees. In KDD, pages
931–939, 2012.

[20] A. Shrivastava and P. Li. Beyond pairwise: Provably fast algorithms for approximate k-way
similarity search. In NIPS, Lake Tahoe, NV, 2013.

[21] A. Shrivastava and P. Li. Asymmetric minwise hashing. Technical report, 2014.

[22] A. Shrivastava and P. Li. An improved scheme for asymmetric lsh. Technical report,
arXiv:1410.5410, 2014.

[23] A. Shrivastava and P. Li. In defense of minhash over simhash. In AISTATS, 2014.

[24] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In VLDB, pages 194–205, 1998.

9

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner
Product Search (MIPS)

Anshumali Shrivastava

Department of Computer Science

Computing and Information Science

Cornell University

Ithaca, NY 14853, USA

anshu@cs.cornell.edu

Ping Li

Department of Statistics and Biostatistics

Department of Computer Science

Rutgers University

Piscataway, NJ 08854, USA

pingli@stat.rutgers.edu

Abstract
Recently we showed that the problem of Max-

imum Inner Product Search (MIPS) is efficient

and it admits provably sub-linear hashing al-

gorithms. In [23], we used asymmetric trans-

formations to convert the problem of approxi-

mate MIPS into the problem of approximate near

neighbor search which can be efficiently solved

using L2-LSH. In this paper, we revisit the prob-

lem of MIPS and argue that the quantizations

used in L2-LSH is suboptimal for MIPS com-

pared to signed random projections (SRP) which

is another popular hashing scheme for cosine

similarity (or correlations). Based on this obser-

vation, we provide different asymmetric transfor-

mations which convert the problem of approxi-

mate MIPS into the problem amenable to SRP

instead of L2-LSH. An additional advantage of

our scheme is that we also obtain LSH type space

partitioning which is not possible with the exist-

ing scheme. Our theoretical analysis shows that

the new scheme is significantly better than the

original scheme for MIPS. Experimental evalu-

ations strongly support the theoretical findings.

In addition, we also provide the first empirical

comparison that shows the superiority of hashing

over tree based methods [21] for MIPS.

1 Introduction

In this paper, we revisit the problem of Maximum Inner

Product Search (MIPS), which was studied in our recent

work [23]. In this work we present the first provably fast

algorithm for MIPS, which was considered hard [21, 15].

Given an input query point q ∈ RD , the task of MIPS is to

find p ∈ S, where S is a giant collection of size N , which

maximizes (approximately) the inner product qT p:

p = argmax
x∈S qTx (1)

The MIPS problem is related to the problem of near neigh-

bor search (NNS). For example, L2-NNS

p = argmin
x∈S ∣∣q − x∣∣22 = argmin

x∈S (∣∣x∣∣22 − 2qTx) (2)

or, correlation-NNS

p = argmax
x∈S

qTx∥q∥∥x∥ = argmax
x∈S

qTx∥x∥ (3)

These three problems are equivalent if the norm of ev-

ery element x ∈ S is constant. Clearly, the value of the

norm ∣∣q∣∣2 has no effect for the argmax. In many scenarios,

MIPS arises naturally at places where the norms of the el-

ements in S have significant variations [15]. As reviewed

in our prior work [23], examples of applications of MIPS

include recommender system [16, 5, 15], large-scale object

detection with DPM [9, 7, 14, 14], structural SVM [7], and

multi-class label prediction [21, 15, 25].

Asymmetric LSH (ALSH): Locality Sensitive Hashing

(LSH) [13] is popular in practice for efficiently solving

NNS. In our prior work [23], the concept of “asymmet-

ric LSH” (ALSH) was formalized and one can transform

the input query Q(p) and data in the collection P (x) in-

dependently, where the transformations Q and P are dif-

ferent. In [23] we developed a particular set of transfor-

mations to convert MIPS into L2-NNS and then solved the

problem by standard hashing i.e. L2-LSH [6]. In this pa-

per, we name the scheme in [23] as L2-ALSH. Later we

showed in [24] the flexibility and the power of the asym-

metric framework developed in [23] by constructing a prov-

ably superior scheme for binary data. Prior to our work,

asymmetry was applied for hashing higher order similar-

ity [22], sketching [8], hashing different subspaces [3], and

data dependent hashing [20] which unlike locality sensi-

tive hashing do not come with provable runtime guarantees.

Explicitly constructing asymmetric transformation tailored

for a particular similarity, given an existing LSH, was the

first observation made in [23] due to which MIPS, a sought

after problem, became provably fast and practical.

It was argued in [17] that the quantizations used in tradi-

tional L2-LSH is suboptimal and it hurts the variance of the

hashes. This raises a natural question that L2-ALSH which

uses L2-LSH as a subroutine for solving MIPS could be

suboptimal and there may be a better hashing scheme. We

provide such a scheme in this work.

Our contribution: Based on the observation that the quan-

tizations used in traditional L2-LSH is suboptimal, in this

study, we propose another scheme for ALSH, by devel-

oping a new set of asymmetric transformations to convert

MIPS into a problem of correlation-NNS, which is solved

by “signed random projections” (SRP) [11, 4]. The new

scheme thus avoids the use of L2-LSH. We name this new

scheme as Sign-ALSH. Our theoretical analysis and exper-

imental study show that Sign-ALSH is more advantageous

than L2-ALSH for MIPS.

For inner products asymmetry is unavoidable. In case of

L2-ALSH, due to asymmetry, we loose the capability to

generate LSH like random data partitions for efficient clus-

tering [12]. We show that for inner products with Sign-

ALSH there is a novel formulation that allows us to gen-

erate such partitions for inner products. With existing L2-

ALSH such formulation does not work.

Apart from providing a better hashing scheme, we also pro-

vide comparisons of the Sign-ALSH with cone trees [21].

Our empirical evaluations on three real datasets show that

hashing based methods are superior over the tree based

space partitioning methods. Since there is no existing com-

parison of hashing based methods with tree based methods

for the problem of MIPS, we believe that the results shown

in this work will be very valuable for practitioners.

2 Review: Locality Sensitive Hashing (LSH)

The problem of efficiently finding nearest neighbors has

been an active research since the very early days of com-

puter science [10]. Approximate versions of the near neigh-

bor search problem [13] were proposed to break the linear

query time bottleneck. The following formulation for ap-

proximate near neighbor search is often adopted.

Definition: (c-Approximate Near Neighbor or c-NN)

Given a set of points in a D-dimensional space R
D, and

parameters S0 > 0, δ > 0, construct a data structure which,

given any query point q, does the following with probabil-

ity 1 − δ: if there exists an S0-near neighbor of q in S, it

reports some cS0-near neighbor of q in S.

Locality Sensitive Hashing (LSH) [13] is a family of func-

tions, with the property that more similar items have a

higher collision probability. LSH trades off query time with

extra (one time) preprocessing cost and space. Existence

of an LSH family translates into provably sublinear query

time algorithm for c-NN problems.

Definition: (Locality Sensitive Hashing (LSH)) A family

H is called (S0, cS0, p1, p2)-sensitive if, for any two points

x, y ∈ RD, h chosen uniformly from H satisfies:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1
• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For efficient approximate nearest neighbor search, p1 > p2
and c < 1 is needed.

Fact 1: Given a family of (S0, cS0, p1, p2) -sensitive hash

functions, one can construct a data structure for c-NN

with O(nρ logn) query time and space O(n1+ρ), where

ρ = log p1

log p2
< 1.

LSH is a generic framework and an implementation of LSH

requires a concrete hash function.

2.1 LSH for L2 distance

[6] presented an LSH family for L2 distances. Formally,

given a fixed window size r, we sample a random vector a

with each component from i.i.d. normal, i.e., ai ∼N(0,1),
and a scalar b generated uniformly at random from [0, r].
The hash function is defined as:

hL2
a,b(x) = ⌊aTx + br

⌋ (4)

where ⌊⌋ is the floor operation. The collision probability

under this scheme can be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) (5)

= 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)

2/2) = Fr(d)
where Φ(x) = ∫ x

−∞ 1√
2π

e−x
2

2 dx and d = ∣∣x − y∣∣2 is the

Euclidean distance between the vectors x and y.

2.2 LSH for correlation

Another popular LSH family is the so-called “sign random

projections” [11, 4]. Again, we choose a random vector a

with ai ∼ N(0,1). The hash function is defined as:

hSign(x) = sign(aTx) (6)

And collision probability is

Pr(hSign(x) = hSign(y)) = 1 − 1

π
cos−1 (xT y∥x∥∥y∥) (7)

This scheme is known as signed random projections (SRP).

3 Review of ALSH for MIPS and L2-ALSH

In [23], it was shown that the framework of locality sen-

sitive hashing is restrictive for solving MIPS. The inherent

assumption of the same hash function for both the transfor-

mation as well as the query was unnecessary in the classi-

cal LSH framework and it was the main hurdle in finding

provable sub-linear algorithms for MIPS with LSH. For the

theoretical guarantees of LSH to work there was no require-

ment of symmetry. Incorporating asymmetry in the hashing

schemes was the key in solving MIPS efficiently.

Definition [23]: (Asymmetric Locality Sensitive Hashing

(ALSH)) A family H, along with the two vector func-

tions Q ∶ RD ↦ R
D′ (Query Transformation) and P ∶

R
D ↦ R

D′ (Preprocessing Transformation), is called(S0, cS0, p1, p2)-sensitive if for a given c-NN instance with

query q, and the hash function h chosen uniformly fromH

satisfies the following:

• if Sim(q, x) ≥ S0 then PrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 then PrH(h(Q(q)) = h(P (x))) ≤ p2

Here x is any point in the collection S.

Note that the query transformation Q is only applied on

the query and the pre-processing transformation P is ap-

plied to x ∈ S while creating hash tables. By letting

Q(x) = P (x) = x, we can recover the vanilla LSH. Us-

ing different transformations (i.e., Q ≠ P), it is possible

to counter the fact that self similarity is not highest with

inner products which is the main argument of failure of

LSH. We just need the probability of the new collision

event {h(Q(q)) = h(P (y))} to satisfy the conditions of

definition of ALSH for Sim(q, y) = qT y.

Theorem 1 [23] Given a family of hash function H and

the associated query and preprocessing transformations P

and Q, which is (S0, cS0, p1, p2) -sensitive, one can con-

struct a data structure for c-NN with O(nρ logn) query

time and space O(n1+ρ), where ρ = logp1

logp2
.

[23] provided an explicit construction of ALSH, which we

call L2-ALSH. Without loss of generality, one can assume

∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S (8)

for some U < 1. If this is not the case, then we can always

scale down the norms without altering the argmax. Since

the norm of the query does not affect the argmax in MIPS,

for simplicity it was assumed ∣∣q∣∣2 = 1. This condition

can be removed easily (see Section 5 for details). In L2-

ALSH, two vector transformations P ∶ RD ↦ R
D+m and

Q ∶ RD ↦ R
D+m are defined as follows:

P (x) = [x; ∣∣x∣∣22 ; ∣∣x∣∣42 ;; ∣∣x∣∣2m2] (9)

Q(x) = [x; 1/2; 1/2;; 1/2], (10)

where [;] is the concatenation. P (x) appends m scalers of

the form ∣∣x∣∣2i2 at the end of the vector x, while Q(x) simply

appends m “1/2” to the end of the vector x. By observing

∣∣P (xi)∣∣22 = ∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2 + ∣∣xi∣∣2m+12∣∣Q(q)∣∣22 = ∣∣q∣∣22 +m/4 = 1 +m/4
Q(q)TP (xi) = qTxi + 1

2
(∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2)

one can obtain the following key equality:

∣∣Q(q) − P (xi)∣∣22 = (1 +m/4) − 2qTxi + ∣∣xi∣∣2m+12 (11)

Since ∣∣xi∣∣2 ≤ U < 1, we have ∣∣xi∣∣2m+1 → 0 at the tower

rate (exponential to exponential). Thus, as long as m is not

too small (e.g., m ≥ 3 would suffice), we have

argmax
x∈S qTx ≃ argmin

x∈S ∣∣Q(q) −P (x)∣∣2 (12)

This scheme is the first connection between solving un-

normalized MIPS and approximate near neighbor search.

TransformationsP and Q, when norms are less than 1, pro-

vide correction to the L2 distance ∣∣Q(q)−P (xi)∣∣2 making

it rank correlate with the (un-normalized) inner product.

3.1 Intuition for the Better Scheme : Why Signed

Random Projections (SRP)?

Recently in [17, 18], it was observed that the quantization

of random projections used by traditional L2-LSH scheme

is not desirable when the data is normalized and in fact the

shift b in Eq. (4) hurts the variance leading to less informa-

tive hashes. The sub-optimality of L2-LSH hints towards

existence of better hashing functions for MIPS.

As previously argued, when the data are normalized then

both L2-NNS and correlation-NNS are equivalent to MIPS.

Therefore, for normalized data we can use either L2-LSH

which is popular LSH for L2 distance or SRP which is pop-

ular LSH for correlation to solve MIPS directly. This raises

a natural question ”Which will perform better ?”.

If we assume that the data are normalized, i.e., all the norms

are equal to 1, then both SRP and L2-LSH are monotonic

in the inner product and their corresponding ρ values for

retrieving max inner product can be computed as

ρSRP =
log (1 − 1

π
cos−1(S0))

log (1 − 1
π
cos−1(cS0)) (13)

ρL2−LSH =
log (Fr(√2 − 2S0))
log (Fr(√2 − 2cS0)) (14)

where the function Fr(.) is given by Eq. (5). The

values of ρSRP and ρL2−LSH for different S0 ={0.1,0.2, ..,0.9,0.95} with respect to approximation ratio

c is shown in Figure 1. We use standard recommendation of

r = 2.5 for L2-LSH. We can clearly see that ρSRP is consis-

tently better than ρL2−LSH given any S0 and c. Thus, for

MIPS with normalized data L2-LSH type of quantization

given by equation 5 seems suboptimal. It is clear that when

the data is normalized then SRP is always a better choice

for MIPS as compared to L2-LSH. This motivates us to ex-

plore the possibility of better hashing algorithm for general

(unnormalized) instance of MIPS using SRP, which will

have impact in many applications as pointed out in [23].

Asymmetric transformations give us enough flexibility to

modify norms without changing inner products. The trans-

formations provided in [23] used this flexibility to convert

MIPS to standard near neighbor search in L2 space for

which we have standard hash functions. For binary data,

[24] showed a strictly superior construction, the asymmet-

ric minwise hashing, which outperforms all ALSHs made

for general MIPS.

00.20.40.60.81

0.6

0.8

1

c

ρ

0.5

0.1

Normalized Data. 0.5

L2−LSH
SRP

00.20.40.60.81

0.2

0.4

0.6

0.8

1

c

ρ

0.95

0.5

0.9

0.8

Normalized Data

L2−LSH
SRP

Figure 1: Values of ρSRP and ρL2−LSH (Lower is better)

for normalized data. It is clear that SRP is more suited for

retrieving inner products when the data is normalized

Signed random projections are popular hash functions

widely adopted for correlation or cosine similarity. We use

asymmetric transformations to convert approximate MIPS

into approximate maximum correlation search and thus we

avoid the use of sub-optimal L2-LSH. The collision prob-

ability of the hash functions is one of the key constituents

which determine the efficiency of the obtained ALSH al-

gorithm. We show that our proposed transformation with

SRP is better suited for ALSH compared to the existing

L2-ALSH for solving general MIPS instance.

4 The New Proposal: Sign-ALSH

4.1 From MIPS to Correlation-NNS

We assume for simplicity that ∣∣q∣∣2 = 1 as the norm of the

query does not change the ordering, we show in the next

section how to get rid of this assumption. Without loss of

generality let ∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S as it can always be

achieved by scaling the data by large enough number. We

define two vector transformations P ∶ RD
↦ R

D+m and

Q ∶ RD
↦ R

D+m as follows:

P (x) = [x; 1/2 − ∣∣x∣∣22 ; 1/2 − ∣∣x∣∣42 ;; 1/2 − ∣∣x∣∣2m2]
(15)

Q(x) = [x; 0; 0;; 0], (16)

Using ∣∣Q(q)∣∣22 = ∣∣q∣∣22 = 1, Q(q)TP (xi) = qTxi, and

∣∣P (xi)∣∣22
= ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣42 − ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣82 − ∣∣xi∣∣42 + ...
+ 1/4 + ∣∣xi∣∣2m+12 − ∣∣xi∣∣2m2
=m/4 + ∣∣xi∣∣2m+12

we obtain the following key equality:

Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 = qTxi√
m/4 + ∣∣xi∣∣2m+12

(17)

The term ∣∣xi∣∣2m+1 → 0, again vanishes at the tower rate.

This means we have approximately

argmax
x∈S qTx ≃ argmax

x∈S
Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 (18)

This provides another solution for solving MIPS using

known methods for approximate correlation-NNS. Asym-

metric transformations P and Q provide a lot of flexibility.

Note that transformations P and Q are not unique for this

task and there are other possibilities [2, 19]. It should be

further noted that even scaling data and query differently is

asymmetry in a strict sense because it changes the distribu-

tion of the hashes. Flexibility in choosing the transforma-

tions P and Q allow us to use signed random projections

and thereby making possible to avoid suboptimal L2-LSH.

4.2 Fast MIPS Using Sign Random Projections

Eq. (18) shows that MIPS reduces to the standard approxi-

mate near neighbor search problem which can be efficiently

solved by sign random projections, i.e., hSign (defined by

Eq. (6)). Formally, we can state the following theorem.

Theorem 2 Given a c-approximate instance of MIPS, i.e.,

Sim(q, x) = qTx, and a query q such that ∣∣q∣∣2 = 1 along

with a collection S having ∣∣x∣∣2 ≤ U < 1 ∀x ∈ S. Let P and

Q be the vector transformations defined in Eq. (15) and Eq.

(16), respectively. We have the following two conditions for

hash function hSign (defined by Eq. (6))

• if qTx ≥ S0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≥ 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠
• if qTx ≤ cS0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≤ 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠
where z∗ = (m/2

2m+1−2)2−m−1 .

Proof: When qTx ≥ S0, we have, according to Eq. (7)

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≥ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 +U2m+1

⎞⎠
When qTx ≤ cS0, by noting that qTx ≤ ∥x∥2, we have

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≤ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 + (qTx)2m+1
⎞⎠

For this one-dimensional function f(z) = z√
a+zb

, where

z = qTx, a =m/4 and b = 2m+1 ≥ 2, we know

f ′(z) = a − zb (b/2 − 1)(a + zb)3/2
One can also check that f ′′(z) ≤ 0 for 0 < z < 1, i.e., f(z)
is a concave function. The maximum of f(z) is attained at

z∗ = (2a
b−2)1/b = (m/2

2m+1−2)2−m−1If z∗ ≥ cS0, then we need

to use f(cS0) as the bound. ◻
Therefore, we have obtained, in LSH terminology,

p1 = 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠ (19)

p2 = 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠ ,
(20)

z∗ = (m/2
2m+1 − 2)

2
−m−1

(21)

Theorem 1 allows us to construct data structures with worst

case O(nρ logn) query time guarantees for c-approximate

MIPS, where ρ = log p1

log p2
. For any given c < 1, there always

exist U < 1 and m such that ρ < 1. This way, we obtain

a sublinear query time algorithm for MIPS. Because ρ is

a function of 2 parameters, the best query time chooses U

and m, which minimizes the value of ρ. For convenience,

we define

ρ∗ =min
U,m

log(1 − 1
π
cos−1 (S0√

m/4+U2m+1
))

log(1 − 1
π
cos−1 (min{cS0,z∗}√

m/4+(min{cS0,z∗})2m+1
))
(22)

See Figure 2 for the plots of ρ∗, which also compares the

optimal ρ values for L2-ALSH in the prior work [23]. The

results show that Sign-ALSH is noticeably better.

00.20.40.60.81
0.6

0.7

0.8

0.9

1

c

ρ*

S = 0.5US = 0.1U

S = 0.5US = 0.1U

S
0
 = 0.5U

S
0
 = 0.1U

Sign
L2

00.20.40.60.81
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ*
S

0
 = 0.9U

S
0
 = 0.5U

Sign
L2

Figure 2: Optimal values of ρ∗ (lower is better) with re-

spect to approximation ratio c for different S0, obtained by

a grid search over parameters U and m, given S0 and c.

The curves show that Sign-ALSH (solid curves) is notice-

ably better than L2-ALSH (dashed curves) in terms of their

optimal ρ∗ values. The results for L2-ALSH were from the

prior work [23]. For clarity, the results are in two figures.

4.3 Parameter Selection

00.20.40.60.81
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 2, U = 0.75

c

ρ

S
0
 = 0.9U

S
0
 = 0.1U

Figure 3: The solid curves are the optimal ρ values of Sign-

ALSH from Figure 2. The dashed curves represent the ρ

values for fixed parameters: m = 2 and U = 0.75 (left

panel). Even with fixed parameters, the ρ does not degrade.

Figure 3 presents the ρ values for (m, U) = (2, 0.75)
We can see that even if we use fixed parameters, the per-

formance would only degrade little. This essentially frees

practitioners from the burden of choosing parameters.

5 Removing Dependency on Norm of Query

Changing norms of the query does not affect the

argmaxx∈C qTx, and hence, in practice for retrieving top-

k, normalizing the query should not affect the performance.

But for theoretical purposes, we want the runtime guaran-

tee to be independent of ∣∣q∣∣2. Note, both LSH and ALSH

schemes solve the c-approximate instance of the problem,

which requires a threshold S0 = q
Tx and an approximation

ratio c. These quantities change if we change the norms.

We can use the same idea used in [23] to get rid of the norm

of q. Transformations P and Q were precisely meant to re-

move the dependency of correlation on the norms of x but

at the same time keeping the inner products same. Let M

be the upper bound on all the norms i.e. M =maxx∈C ∣∣x∣∣2.

In other words M is the radius of the space.

Let U < 1, define the transformations, T ∶ RD
→ R

D as

T (x) = Ux

M
(23)

and transformations P,Q ∶ RD
→ R

D+m are the same for

the Sign-ALSH scheme as defined in Eq (15) and (16).

Given the query q and any data point x, observe that the

inner products between P (Q(T (q))) and Q(P (T (x))) is

P (Q(T (q)))TQ(P (T (x))) = qTx × (U2

M2
) (24)

P (Q(T (q))) appends first m zeros components to T (q)
and then m components of the form 1/2 − ∣∣q∣∣2i .

Q(P (T (q))) does the same thing but in a different or-

der. Now we are working in D + 2m dimensions. It is

not difficult to see that the norms of P (Q(T (q))) and

Q(P (T (q))) is given by

∣∣P (Q(T (q)))∣∣2 =√m

4
+ ∣∣T (q)∣∣2m+12 (25)

∣∣Q(P (T (x)))∣∣2 =√m

4
+ ∣∣T (x)∣∣2m+12 (26)

The transformations are very asymmetric but we know that

it is necessary.

Therefore the correlation or the cosine similarity between

P (Q(T (q))) and Q(P (T (x))) is

Corr =
qTx × (U2

M2)√
m
4
+ ∣∣T (q)∣∣2m+12

√
m
4
+ ∣∣T (x)∣∣2m+12

(27)

Note ∣∣T (q)∣∣2m+12 , ∣∣T (x)∣∣2m+12 ≤ U < 1, therefore both∣∣T (q)∣∣2m+12 and ∣∣T (x)∣∣2m+12 converge to zero at a tower

rate and we get approximate monotonicity of correlation

with the inner products. We can apply sign random projec-

tions to hash P (Q(T (q))) and Q(P (T (q))).
As 0 ≤ ∣∣T (q)∣∣2m+12 ≤ U and 0 ≤ ∣∣T (x)∣∣2m+12 ≤ U , it is

not difficult to get p1 and p2 for Sign-ALSH, without con-

ditions on any norms. Simplifying the expression, we get

the following value of optimal ρu (u for unrestricted).

ρ∗u = min
U,m,

log(1 − 1
π
cos−1 (S0×(U

2

M2)
m

4
+U2m+1

))
log(1 − 1

π
cos−1 (cS0×(4U2

M2)
m

)) (28)

s.t. U2
m+1

<
m(1 − c)

4c
, m ∈ N+, and 0 < U < 1.

With this value of ρ∗u, we can state our main theorem.

Theorem 3 For the problem of c-approximate MIPS in a

bounded space, one can construct a data structure having

O(nρ∗
u logn) query time and space O(n1+ρ∗

u), where ρ∗u <
1 is the solution to constraint optimization (28).

Note, for all c < 1, we always have ρ∗u < 1 because the

constraintU2
m+1

<
m(1−c)

4c
is always true for big enoughm.

The only assumption for efficiently solving MIPS that we

need is that the space is bounded, which is always satisfied

for any finite dataset. ρ∗u depends on M , the radius of the

space, which is expected.

6 Random Space Partitioning for Inner

Product

In this section, we show that due to the nature of the new

transformations P and Q there is one subtle but surprising

advantage of Sign-ALSH over L2-ALSH.

One popular application of LSH (Locality Sensitive Hash-

ing) is random partitioning of the data for large scale clus-

tering, where similar points map to the same partition (or

bucket). Such partitions are very useful in many applica-

tions [12]. With classical LSH, we simply use h(x) to gen-

erate partition for x. Since PrH(h(x) = h(y)) is high if

sim(x, y) is high, similar points are likely to go into the

same partition under the usual LSH mapping. For general

ALSH, this property is lost because of asymmetry.

In case of ALSH, we only know that Pr(h(P (x)) =
h(Q(y)) is high if sim(x, y) is high. Therefore, given

x we cannot determine whether to assign partition using

h(P (.)) or h(Q(.)). Neither Pr(h(P (x)) = h(P (y)) nor

PrH(h(Q(x)) = h(Q(y)) strictly indicates high value of

sim(x, y) in general. Therefore, partitioning property of

classical LSH does not hold anymore with general ALSHs.

However for the case of inner products using Sign-ALSH,

there is a subtle observation which allows us to construct

the required assignment function, where pairs of points

with high inner products are more likely to get mapped in

the same partition while pairs with low inner products are

more likely to map into different partitions.

In case of Sign-ALSH for MIPS, we have the transforma-
tions P (Q(T (x))) and Q(P (T (x))) given by

P (Q(T (x))) = [x; 1/2 − ∣∣T (x)∣∣22;; 1/2 − ∣∣T (x)∣∣
2
m

2 ,0, ...,0]

Q(P (T (x))) = [x; 0, ...,0,1/2 − ∣∣T (x)∣∣22;; 1/2 − ∣∣T (x)∣∣
2
m

2].

After this transformation, we multiply the generated D +
2m dimensional vector by a random vector a ∈ R

D+2m
whose entries are i.i.d. Gaussian followed by taking the
sign. For illustration let a = [w; s1, ...sm, t1, ...tm] where

w ∈ RD bi and ci are numbers. All components of a are
i.i.d. from N(0,1). With this notation, we can write the
final Sign-ALSH as

hSign(P (Q(T (x)))) = Sign(wTT (x) +
m

∑
i=1

si(1/2 − ∣∣T (x)∣∣
2
i

2))

hSign(Q(P (T (x)))) = Sign(wTT (x) +
m

∑
i=1

ti(1/2 − ∣∣T (x)∣∣
2
i

2))

The key observation here is that hSign(P (Q(T (x)))) does

not depend on ti and hSign(Q(P (T (x)))) does not de-

pend on si. If we define

hw(x) = Sign(wTT (x) + m∑
i=1

αi(1/2 − ∣∣T (x)∣∣2i2)) (29)

where αi are sampled i.i.d. from N(0,1) for every x in-

dependently of everything else. Then, under the random-

ization of w, it is not difficult to show that

Prw(hw(x) = hw(y)) = Pr(hSign(P (x)) = hSign(Q(y)))
for any x, y. The term Pr(hSign(P (x)) = hSign(Q(y)))
satisfies the LSH like property and therefore, in any parti-

tions using hw, points with high inner products are more

likely to be together. Thus, hw(x) is the required assign-

ment. Note, hw is not technically an LSH because we are

randomly sampling αi for all x independently. The con-

struction of hw using independent randomizations could be

of separate interest. To the best of our knowledge, this is

the first example of LSH like partition using hash function

with independent randomization for every data point.

The function hw is little subtle here, we sample w i.i.d from

Gaussian and use the same w for all x, but while computing

hw we use αi independent of everything for every x. The

probability is under the randomization of w and indepen-

dence of all αi ensures the asymmetry. We are not sure if

such construction is possible with L2-ALSH. For LSH par-

titions with binary data, the idea used here can be applied

on asymmetric minwise hashing [24].

7 Ranking Evaluations

In [23], the L2-ALSH scheme was shown to outperform

other reasonable heuristics in retrieving maximum inner

products. Since our proposal is an improvement over L2-

ALSH, in this section we first present comparisons with

L2-ALSH, in particular on ranking experiments.

7.1 Datasets

We use three publicly available dataset MNIST, WEB-

SPAM and RCV1 for evaluations. For each of the three

dataset we generate two independent partitions, the query

set and the train set. Each element in the query set is used

for querying, while the training set serves as the collec-

tion C that will be searched for MIPS. The statistics of the

dataset and the partitions are summarized in Table 1

Dataset Dimension Query size Train size

MNIST 784 10,000 60,000

WEBSPAM 16,609,143 5,000 100,000

RCV1 47,236 5,000 100,000

Table 1: Datasets used for evaluations.

7.2 Evaluations

In this section, we show how the ranking of the two ALSH

schemes, L2-ALSH and Sign-ALSH, correlates with inner

products. Given a query vector q, we compute the top-10

gold standard elements based on the actual inner products

qTx, ∀x ∈ C, here our collection is the train set. We then

generate K different hash codes of the query q and all the

elements x ∈ C and then compute

Matchesx =
K∑
t=1

1(ht(Q(q)) = ht(P (x))), (30)

where 1 is the indicator function and the subscript t is

used to distinguish independent draws of h. Based on

Matchesx we rank all the elements x. Ideally, for a better

hashing scheme, Matchesx should be higher for element

x having higher inner products with the given query q. This

procedure generates a sorted list of all the items for a given

query vector q corresponding to the each of the two asym-

metric hash functions under consideration.

For L2-ALSH, we used the same parameters used and rec-

ommended in [23]. For Sign-ALSH, we used the recom-

mended choice shown in Section 4.3, which is U = 0.75,

m = 2. Note that Sign-ALSH does not have parameter r.

We compute precision and recall of the top-10 gold stan-

dard elements, obtained from the sorted list based on

Matchesx. To compute this precision and recall, we start

at the top of the ranked item list and walk down in order.

Suppose we are at the kth ranked item, we check if this ele-

ment belongs to the gold standard top-10 list. If it is one of

the top-10 gold standard elements, then we increment the

count of relevant seen by 1, else we move to k + 1. By kth

step, we have already seen k elements, so the total items

seen is k. The precision and recall at that point are

Precision =
relevant seen

k
, Recall =

relevant seen

10

We show performance for K ∈ {64,128,256,512}. Note

that it is important to balance both precision and recall. The

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes

MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes
MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes
MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes

MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes
WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes
RCV1

L2−ALSH
Sign−ALSH

Figure 4: Precision-Recall curves (higher is better). We compare L2-ALSH (using parameters recommended in [23]) with

our proposed Sign-ALSH using (m = 2, U = 0.75) for retrieving top-10 elements. Sign-ALSH is noticeably better.

method which obtains higher precision at a given recall is

superior. Higher precision indicates higher ranking of the

top-10 inner products which is desirable. We report aver-

aged precisions and recalls.

The plots for all the three datasets are shown in Figure 4.

We can clearly see, that our proposed Sign-ALSH scheme

gives significantly higher precision recall curves than the

L2-ALSH scheme, indicating better correlation of top in-

ner products with Sign-ALSH compared to L2-ALSH. The

results are consistent across datasets.

8 Comparisons of Hashing Based and Tree

Based Methods for MIPS

We have shown in the previous Section that Sign-ALSH

outperforms L2-ALSH in ranking evaluations. In this Sec-

tion, we consider the actual task of finding the maximum

inner product. Our aim is to estimate the computational

saving, in finding the maximum inner product, with Sign-

ALSH compared to the existing scheme L2-ALSH. In ad-

dition to L2-ALSH which is a hashing scheme, there is an

another tree based space partitioning method [21] for solv-

ing MIPS. Although, in theory, it is know that tree based

methods perform poorly [25] due to their exponential de-

pendence on the dimensionality, it is still important to un-

derstand the impact of such dependency in practice. Un-

fortunately no empirical comparison between hashing and

tree based methods exists for the problem of MIPS in the

literature. To provide such a comparison, we also consider

tree based space partitioning method [21] for evaluations.

We use the same three datasets as described in Section 7.1.

Tree based and hashing based methodologies are very dif-

ferent in nature. The major difference is in the stopping

criteria. Hashing based methods create buckets and stop

the search once they find a good enough point, they may

not succeed with some probability. On the other hand, tree

based methods use branch and bound criteria to stop ex-

ploring further. So it is possible that a tree based algo-

rithm finds the optimal point but continues to explore fur-

ther requiring more computations. The usual stopping cri-

teria thus makes tree based methods unnecessarily expen-

sive compared to hashing based methods where the criteria

is to stop after finding a good point. Therefore, to ensure

fair comparisons, we allow the tree based method to stop

the evaluations immediately once the algorithm finds the

maximum inner product and prevent it from exploring fur-

ther. Also, in case when hashing based algorithm fails to

find the best inner product we resort to the full linear scan

and penalize the hashing based algorithm for not succeed-

ing. All this is required to ensure that tree based algorithm

is not at any disadvantage compare to hashing methods.

We implemented the bucketing scheme with Sign-ALSH

and L2-ALSH. The bucketing scheme requires creating

many hash tables during the preprocessing stage. Dur-

ing query phase, given a query, we compute many hashes

of the query and probe appropriate buckets in each table.

Please refer [1] for more details on the process. We use the

same fixed parameters for all the evaluations, i.e., (m=2,

U=0.75) for Sign-ALSH and (m=3, U=0.83, r=2.5) for L2-

ALSH as recommended in [23]. The total number of inner

products evaluated by a hashing scheme, for a given query,

is the total number of hash computation for the query plus

the total number of points retrieved from the hash tables. In

rare cases, with very small probability, if the hash tables are

unable to retrieve the gold standard maximum inner prod-

uct, we resort to linear scan and also include the total num-

ber of inner products computed during the linear scan. We

stop as soon as we reach the gold standard point.

We implemented Algorithm 5 from [21], which is the best

performing algorithm as shown in the evaluations. For

this algorithm, we need to select one parameter which is

the minimum number of elements in the node required for

splitting. We found that on all the three datasets the value

of 100 for this parameter works the best among {500, 200,

100, 50}. Therefore, we use 100 in all our experiments.

The total number of inner products evaluated by tree based

algorithm is the total number of points reported plus the to-

tal number of nodes visited, where we compute the branch

and bound constraint. Again we stop the search process as

soon as we reach the point with gold standard maximum

inner product. As argued, we need this common stopping

condition to compare with hashing based methods, where

we do not have any other stopping criteria [13].

For every query we compute the number of inner products

evaluated by different methods for MIPS. We report the

mean of the total number of inner products evaluated per

query in Table 2. We can clearly see that hashing based

Sign-ALSH L2-ALSH Cone Trees

MNIST 7,944 9,971 11,202

WEBSPAM 2,866 3,813 22,467

RCV1 9,951 11,883 38,162

Table 2: Average number of inner products evaluated per

query by different MIPS algorithms. Both Sign-ALSH and

L2-ALSH [23] outperform cone trees [21]. Sign-ALSH is

always superior compared to L2-ALSH for MIPS.

methods are always better than the tree based algorithm.

Except on MNIST dataset, hashing based methods are sig-

nificantly superior, which is also not surprising because

MNIST is an image dataset having low intrinsic dimen-

sionality. Among the two hashing schemes Sign-ALSH is

always better than L2-ALSH, which verifies our theoreti-

cal findings and supports our arguments in favor of Sign-

ALSH over L2-ALSH for MIPS.

9 Conclusion

The MIPS (maximum inner product search) problem has

numerous important applications in machine learning,

databases, and information retrieval. [23] developed the

framework of Asymmetric LSH and provided an explicit

scheme (L2-ALSH) for approximate MIPS in sublinear

time. L2-ALSH uses L2-LSH as a subroutine which uses

suboptimal quantizations. In this study, we present another

asymmetric transformation scheme (Sign-ALSH) which

converts the problem of maximum inner products into the

problem of maximum correlation search, which is subse-

quently solved by sign random projections, thereby avoid-

ing the use of L2-LSH.

Theoretical analysis and experimental study demonstrate

that Sign-ALSH can be noticeably more advantageous than

L2-ALSH. The new transformations with Sign-ALSH can

be adapted to generate LSH like random data partitions

which is very useful for large scale clustering. Such an

adaptation is not possible with existing L2-ALSH. This

was a rather unexpected advantage of the proposed Sign-

ALSH over L2-ALSH. We also establish by experiments

that hashing based algorithms are superior to tree based

space partitioning methods for MIPS.

It should be noted that for MIPS over binary data our recent

work asymmetric minwise hashing [24] should be used.

We showed that for binary domain asymmetric minwise

hashing is both empirically and provably superior, please

see [24] for more details.

10 Acknowledgement

The work is partially supported by NSF-III-1360971, NSF-

Bigdata-1419210, ONR-N00014-13-1-0764, and AFOSR-

FA9550-13-1-0137. We would like to thank the reviewers

of AISTATS 2015 and UAI 2015. We also thank Sanjiv

Kumar and Hadi Daneshmand for pleasant discussions.

References

[1] A. Andoni and P. Indyk. E2lsh: Exact euclidean lo-

cality sensitive hashing. Technical report, 2004.

[2] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach,

L. Katzir, N. Koenigstein, N. Nice, and U. Paquet.

Speeding up the xbox recommender system using a

euclidean transformation for inner-product spaces. In

Proceedings of the 8th ACM Conference on Recom-

mender Systems, RecSys ’14, 2014.

[3] R. Basri, T. Hassner, and L. Zelnik-Manor. Approxi-

mate nearest subspace search with applications to pat-

tern recognition. In Computer Vision and Pattern

Recognition, 2007. CVPR’07. IEEE Conference on,

pages 1–8. IEEE, 2007.

[4] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In STOC, pages 380–388, Mon-

treal, Quebec, Canada, 2002.

[5] P. Cremonesi, Y. Koren, and R. Turrin. Performance

of recommender algorithms on top-n recommenda-

tion tasks. In Proceedings of the fourth ACM confer-

ence on Recommender systems, pages 39–46. ACM,

2010.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn.

Locality-sensitive hashing scheme based on p-stable

distributions. In SCG, pages 253 – 262, Brooklyn,

NY, 2004.

[7] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-

narasimhan, and J. Yagnik. Fast, accurate detection of

100,000 object classes on a single machine. In Com-

puter Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on, pages 1814–1821. IEEE, 2013.

[8] W. Dong, M. Charikar, and K. Li. Asymmetric dis-

tance estimation with sketches for similarity search

in high-dimensional spaces. In Proceedings of the

31st annual international ACM SIGIR conference on

Research and development in information retrieval,

pages 123–130. ACM, 2008.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester,

and D. Ramanan. Object detection with discrimi-

natively trained part-based models. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,

32(9):1627–1645, 2010.

[10] J. H. Friedman and J. W. Tukey. A projection pursuit

algorithm for exploratory data analysis. IEEE Trans-

actions on Computers, 23(9):881–890, 1974.

[11] M. X. Goemans and D. P. Williamson. Improved

approximation algorithms for maximum cut and sat-

isfiability problems using semidefinite programming.

Journal of ACM, 42(6):1115–1145, 1995.

[12] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable

techniques for clustering the web. In WebDB, pages

129–134, 2000.

[13] P. Indyk and R. Motwani. Approximate nearest neigh-

bors: Towards removing the curse of dimensionality.

In STOC, pages 604–613, Dallas, TX, 1998.

[14] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-

plane training of structural svms. Machine Learning,

77(1):27–59, 2009.

[15] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient re-

trieval of recommendations in a matrix factorization

framework. In CIKM, pages 535–544, 2012.

[16] Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-

tion techniques for recommender systems.

[17] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding

for random projections. In ICML, 2014.

[18] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding

for random projections and approximate near neigh-

bor search. Technical report, arXiv:1403.8144, 2014.

[19] B. Neyshabur and N. Srebro. On symmetric and

asymmetric lshs for inner product search. Technical

report, arXiv:1410.5518, 2014.

[20] B. Neyshabur, N. Srebro, R. R. Salakhutdinov,

Y. Makarychev, and P. Yadollahpour. The power of

asymmetry in binary hashing. In Advances in Neural

Information Processing Systems, pages 2823–2831,

2013.

[21] P. Ram and A. G. Gray. Maximum inner-product

search using cone trees. In KDD, pages 931–939,

2012.

[22] A. Shrivastava and P. Li. Beyond pairwise: Prov-

ably fast algorithms for approximate k-way similarity

search. In NIPS, Lake Tahoe, NV, 2013.

[23] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for

sublinear time maximum inner product search (mips).

In NIPS, Montreal, CA, 2014.

[24] A. Shrivastava and P. Li. Asymmetric minwise hash-

ing for indexing binary inner products and set con-

tainment. In WWW, 2015.

[25] R. Weber, H.-J. Schek, and S. Blott. A quantitative

analysis and performance study for similarity-search

methods in high-dimensional spaces. In Proceedings

of the 24rd International Conference on Very Large

Data Bases, VLDB ’98, pages 194–205, San Fran-

cisco, CA, USA, 1998. Morgan Kaufmann Publishers

Inc.

Asymmetric Minwise Hashing for Indexing Binary Inner
Products and Set Containment

Anshumali Shrivastava
Department of Computer Science
Computer and Information Science

Cornell University
Ithaca, NY 14853, USA

anshu@cs.cornell.edu

Ping Li
Department of Statistics and Biostatistics

Department of Computer Science
Rutgers University

Piscataway, NJ 08854, USA
pingli@stat.rutgers.edu

ABSTRACT

Minwise hashing (Minhash) is a widely popular indexing scheme

in practice. Minhash is designed for estimating set resemblance and

is known to be suboptimal in many applications where the desired

measure is set overlap (i.e., inner product between binary vectors)

or set containment. Minhash has inherent bias towards smaller sets,

which adversely affects its performance in applications where such

a penalization is not desirable. In this paper, we propose asym-

metric minwise hashing (MH-ALSH), to provide a solution to this

well-known problem. The new scheme utilizes asymmetric trans-

formations to cancel the bias of traditional minhash towards smaller

sets, making the final “collision probability” monotonic in the in-

ner product. Our theoretical comparisons show that, for the task of

retrieving with binary inner products, asymmetric minhash is prov-

ably better than traditional minhash and other recently proposed

hashing algorithms for general inner products. Thus, we obtain

an algorithmic improvement over existing approaches in the liter-

ature. Experimental evaluations on four publicly available high-

dimensional datasets validate our claims. The proposed scheme

outperforms, often significantly, other hashing algorithms on the

task of near neighbor retrieval with set containment. Our proposal

is simple and easy to implement in practice.

1. INTRODUCTION
Record matching (or linkage), data cleansing and plagiarism de-

tection are among the most frequent operations in many large-scale

data processing systems over the web. Minwise hashing (or min-

hash) [6, 7, 27] is a popular technique deployed by big data in-

dustries for these tasks. Minhash was originally developed for

economically estimating the resemblance similarity between sets

(which can be equivalently viewed as binary vectors). Later, be-

cause of its locality sensitive property [22], minhash became a widely

used hash function for creating hash buckets leading to efficient al-

gorithms for numerous applications including spam detection [6],

collaborative filtering [4], news personalization [15], compressing

social networks [13], graph sampling [14], record linkage [25], du-

plicate detection [21], all pair similarity [5], etc.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741285 .

1.1 Sparse Binary Data, Set Resemblance, and
Set Containment

Binary representations for web data are common, owing to the

wide adoption of the “bag of words (n-gram)” representations for

documents and images. It is often the case that a significant num-

ber of words (or combinations of words) occur rarely in a document

and most of the higher-order n-grams in the document occur only

once. Thus in practice, often only the presence or absence informa-

tion suffices [9, 20, 24]. Leading search firms routinely use sparse

binary representations in their large data systems, e.g., [8].

The underlying similarity measure of interest with minhash is

the resemblance (also known as the Jaccard similarity). The re-

semblance similarity between two sets x, y ⊆ Ω = {1, 2, ..., D}
is

R =
|x ∩ y|
|x ∪ y| =

a

fx + fy − a
, (1)

where fx = |x|, fy = |y|, a = |x ∩ y|.
Sets can be equivalently viewed as binary vectors with each compo-

nent indicating the presence or absence of an attribute. The cardi-

nality (e.g., fx, fy) is the number of nonzeros in the binary vector.

While the resemblance similarity is convenient and useful in nu-

merous applications, there are also many scenarios where the re-

semblance is not the desired similarity measure [1, 11]. For in-

stance, consider text descriptions of two restaurants:

1. “Five Guys Burgers and Fries Downtown Brooklyn New York"

2. “Five Kitchen Berkley"

Shingle (n-gram) based representations for strings are common in

practice. Typical (first-order) shingle based representations of these

names will be (i) {five, guys, burgers, and, fries, downtown, brook-

lyn, new, york } and (ii) {five, kitchen, berkley}. Now suppose

the query is “Five Guys" which in shingle representation is {Five,

Guys}. Suppose we hope to match and search the records, for this

query “Five Guys", based on resemblance. Observe that the resem-

blance between query and record (i) is 2
9

= 0.22, while that with

record (ii) is 1
4

= 0.25. Thus, simply based on resemblance, record

(ii) is a better match for query “Five Guys" than record (i), which

however should not be correct in this content.

Clearly the issue here is that resemblance penalizes the sizes

of the sets involved. Shorter sets are unnecessarily favored over

longer ones, which hurts the performance in (e.g.,) record match-

ing [1]. There are other scenarios where such penalization is unde-

sirable. For instance, in plagiarism detection, it is typically immate-

rial whether the text is plagiarized from a long or a short document.

To counter the often unnecessary penalization of the sizes of the

sets with resemblance, a modified measure, the set containment (or

Jaccard containment) was adopted [6, 1, 11]. Containment of set x
and y with respect to x is defined as

JC =
|x ∩ y|
|x| =

a

fx
. (2)

In the above example with query “Five Guys”, the set containment

with respect to query for record (i) will be 2
2

= 1 and with re-

spect to record (ii) it will be 1
2

, leading to the desired ordering. It

should be noted that for any fixed query x, the ordering under set

containment with respect to the query, is the same as the ordering

with respect to the intersection a (or binary inner product). Thus,

near neighbor search problem with respect to JC is equivalent to

the near neighbor search problem with respect to a.

1.2 Maximum Inner Product Search (MIPS)
& Maximum Containment Search (MCS)

Formally, we state our problem of interest. We are given a col-

lection C containing n sets (or binary vectors) over universe Ω with

|Ω| = D (or binary vectors in {0, 1}D). Given a query q ⊂ Ω, we

are interested in the problem of finding x ∈ C such that

x = argmax
x∈C

|x ∩ q| = argmax
x∈C

qTx; (3)

where | | is the cardinality of the set. This is the so-called maximum

inner product search (MIPS) problem.

For binary data, the MIPS problem is equivalent to searching

with set containment with respect to the query, because the cardi-

nality of the query does not affect the ordering and hence

x = argmax
x∈C

|x ∩ q| = argmax
x∈C

|x ∩ q|
|q| ; (4)

which we also refer to as the maximum containment search (MCS)

problem.

1.3 Shortcomings of Inverted Index Based Ap-
proaches for MIPS (and MCS)

Owing to its practical significance, there have been many ex-

isting heuristics for solving the MIPS (or MCS) problem [31, 34,

12]. A notable recent work among them made use of the inverted

index based approach [1]. Inverted indexes might be suitable for

problems when the sizes of documents are small and each record

only contains few words. This situation, however, is not always ob-

served in practice. The documents over the web are large with huge

vocabulary. Moreover, the vocabulary blows up very quickly once

we start using higher-order shingles. In addition, there is an in-

creasing interest in enriching the text with extra synonyms to make

the search more effective and robust to semantic meanings [1], at

the cost of a significant increase of the sizes of the documents. Fur-

thermore, if the query contains many words then the inverted index

is not very useful. To mitigate this issue several additional heuris-

tics were proposed, for instance, the heuristic based on minimal

infrequent sets [1]. Computing minimal infrequent sets is similar

to the set cover problem which is hard in general and thus [1] re-

sorted to greedy heuristics. The number of minimal infrequent sets

could be huge in general and so these heuristics can be very costly.

Also, such heuristics require the knowledge of the entire dataset

before hand which is usually not practical in a dynamic environ-

ment like the web. In addition, inverted index based approaches

do not have theoretical guarantees on the query time and their per-

formance is very much dataset dependent. Not surprisingly, it was

shown in [17] that simply using a sign of the projected document

vector representation referred to as TOPSIG, which is also similar

in nature to sign random projections (SRP) [18, 10], outperforms

inverted index based approaches for querying.

1.4 Probabilistic Hashing
Locality Sensitive Hashing (LSH) [22] based randomized tech-

niques are common and successful in industrial practice for effi-

ciently solving NNS (near neighbor search). They are some of

the few known techniques that do not suffer from the curse of di-

mensionality. Hashing based indexing schemes provide provably

sub-linear algorithms for search which is a boon in this era of big

data where even linear search algorithms are impractical due to la-

tency. Furthermore, hashing based indexing schemes are massively

parallelizable, which makes them ideal for modern distributed sys-

tems. The prime focus of this paper will be on efficient hashing

based algorithms for binary inner products.

Despite the interest in set containment and binary inner products,

there were no hashing algorithms for these measures for a long time

and minwise hashing is still a popular heuristic [1]. Recently, it was

shown that general inner products for real vectors can be efficiently

solved by using asymmetric locality sensitive hashing schemes [35,

37]. The asymmetry is necessary for the general inner products and

an impossibility of having a symmetric hash function can be easily

shown using elementary arguments. Thus, binary inner product (or

set intersection) being a special case of general inner products also

admits provable efficient search algorithms with these asymmetric

hash functions which are based on random projections. However,

it is known that random projections are suboptimal for retrieval in

the sparse binary domain [39]. Hence, it is expected that the exist-

ing asymmetric locality sensitive hashing schemes for general inner

products are likely to be suboptimal for retrieving with sparse high

dimensional binary-like datasets, which are common over the web.

1.5 Our Contributions
We investigate hashing based indexing schemes for the problem

of near neighbor search with binary inner products and set con-

tainment. The impossibility of existence of LSH for general inner

products shown in [35] also hold for the binary case.

Recent results on hashing algorithms for maximum inner prod-

uct search [35] have shown the usefulness of asymmetric trans-

formations in constructing provable hash functions for new simi-

larity measures, which were otherwise impossible. Going further

along this line, we provide a novel (and still very simple) asym-

metric transformation for binary data, that corrects minhash and

removes the undesirable bias of minhash towards the sizes of the

sets involved. Such an asymmetric correction eventually leads to a

provable hashing scheme for binary inner products, which we call

asymmetric minwise hashing (MH-ALSH). Our theoretical compar-

isons show that for binary data, which are common over the web,

the new hashing scheme is provably more efficient that the recently

proposed asymmetric hash functions for general inner products [35,

37]. Thus, we obtain a provable algorithmic improvement over the

state-of-the-art hashing technique for binary inner products. The

construction of our asymmetric transformation for minhash could

be of independent interest in itself.

The proposed asymmetric minhash significantly outperforms ex-

isting hashing schemes, in the tasks of ranking and near neighbor

search with set containment as the similarity measure, on four real-

world high-dimensional datasets. Our final proposed algorithm is

simple and only requires minimal modifications of the traditional

minhash and hence it can be easily adopted in practice.

2. BACKGROUND

2.1 c-Approximate Near Neighbor Search and
the Classical LSH

Past attempts of finding efficient algorithms, for exact near neigh-

bor search based on space partitioning, often turned out to be a dis-

appointment with the massive dimensionality of modern datasets [40].

Due to the curse of dimensionality, theoretically it is hopeless to ob-

tain an efficient algorithm for exact near neighbor search. Approx-

imate versions of near neighbor search problem were proposed [22]

to overcome the linear query time bottleneck. One commonly adopted

such formulation is the c-approximate Near Neighbor (c-NN).

DEFINITION 1. (c-Approximate Near Neighbor or c-NN). [22]

Given a set of points in a d-dimensional space R
d, and parameters

S0 > 0, δ > 0, construct a data structure which, given any query

point q, does the following with probability 1− δ: if there exists an

S0-near neighbor of q in P, it reports some cS0-near neighbor.

The usual notion of S0-near neighbor is in terms of distance.

Since we are dealing with similarities, we define S0-near neighbor

of point q as a point p with Sim(q, p) ≥ S0, where Sim is the

similarity function of interest.

The popular technique, with near optimal guarantees for c-NN

in many interesting cases, uses the underlying theory of Locality

Sensitive Hashing (LSH) [22]. LSH relies on a family of functions,

with the property that similar input objects in the domain of these

functions have a higher probability of colliding in the range space

than non-similar ones. More specifically, consider H a family of

hash functions mapping R
D to some set S .

DEFINITION 2. (Locality Sensitive Hashing) A familyH is called

(S0, cS0, p1, p2) sensitive if for any two point x, y ∈ R
D and h

chosen uniformly from H satisfies the following:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1

• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 > p2 and

c < 1 is needed. Note, c < 1 as we are defining neighbors in

terms of similarity. To obtain distance analogy we can resort to

D(x, y) = 1− Sim(x, y)

FACT 1. [22] Given a family of (S0, cS0, p1, p2) -sensitive

hash functions, one can construct a data structure for c-NN with

O(nρ log1/p2 n) query time and space O(n1+ρ), ρ = log 1/p1
log 1/p2

< 1

LSH trades off query time with extra preprocessing time and

space that can be accomplished off-line. It requires constructing a

one time data structure which costs O(n1+ρ) space and further any

c-approximate near neighbor queries can be answered inO(nρ log1/p2 n)
time in the worst case.

A particularly interesting sufficient condition for existence of

LSH is the monotonicity of the collision probability in Sim(x, y).
Thus, if a hash function family H satisfies,

Prh∈H(h(x) = h(y)) = g(Sim(x, y)), (5)

where g is a monotonically increasing function, then the conditions

of Definition 2 are automatically satisfied for all c < 1.

The quantity ρ < 1 is a property of the LSH family, and it is

of particular interest because it determines the worst case query

complexity of the c-approximate near neighbor search. It should

be further noted, that the complexity depends on S0 which is the

operating threshold and c, the approximation ratio we are ready to

tolerate. In case when we have two or more LSH families for a

given similarity measure, then the LSH family with smaller value

of ρ, for given S0 and c, is preferred.

2.2 Minwise Hashing (Minhash)
Minwise hashing [6] is the LSH for the resemblance, also known

as the Jaccard similarity, between sets. In this paper, we focus on

binary data vectors which can be equivalent viewed as sets.

Given a set x ∈ Ω = {1, 2, ..., D}, the minwise hashing family

applies a random permutation π : Ω → Ω on x and stores only the

minimum value after the permutation mapping. Formally minwise

hashing (or minhash) is defined as:

hπ(x) = min(π(x)). (6)

Given sets x and y, it can be shown that the probability of colli-

sion is the resemblance R = |x∩y|
|x∪y| :

Prπ(hπ(x) = hπ(y)) =
|x ∩ y|
|x ∪ y| =

a

fx + fy − a
= R. (7)

where fx = |x|, fy = |y|, and a = |x∩y|. It follows from Eq. (7)

that minwise hashing is (S0, cS0, S0, cS0)-sensitive family of hash

function when the similarity function of interest is resemblance.

Even though minhash was really meant for retrieval with resem-

blance similarity, it is nevertheless a popular hashing scheme used

for retrieving set containment or intersection for binary data [1]. In

practice, the ordering of inner product a and the ordering or resem-

blance R can be different because of the variation in the values of

fx and fy , and as argued in Section 1, which may be undesirable

and lead to suboptimal results. We show later that by exploiting

asymmetric transformations we can get away with the undesirable

dependency on the number of nonzeros leading to a better hashing

scheme for indexing set intersection (or binary inner products).

2.3 LSH for L2 Distance (L2LSH)
[16] presented a novel LSH family for all Lp (p ∈ (0, 2]) dis-

tances. In particular, when p = 2, this scheme provides an LSH

family for L2 distance. Formally, given a fixed number r, we

choose a random vector w with each component generated from

i.i.d. normal, i.e., wi ∼ N(0, 1), and a scalar b generated uni-

formly at random from [0, r]. The hash function is defined as:

hL2
w,b(x) =

⌊

wTx+ b

r

⌋

, (8)

where ⌊⌋ is the floor operation. The collision probability under this

scheme can be shown to be

Pr(hL2
w,b(x) = hL2

w,b(y)) = Fr(d), (9)

Fr(d) = 1− 2Φ(−r/d)− 2√
2πr/d

(

1− e−r2/(2d2)
)

(10)

where Φ(x) =
∫ x

−∞
1√
2π

e−
x2

2 dx is the cumulative density func-

tion (cdf) of standard normal distribution and d = ||x − y||2 is

the Euclidean distance between the vectors x and y. This collision

probability F (d) is a monotonically decreasing function of the dis-

tance d and hence hL2
w,b is an LSH for L2 distances. This scheme is

also the part of LSH package [2]. Here r is a parameter.

2.4 LSH for Cosine Similarity (SRP)
Sign Random Projections (SRP) or simhash is another popular

LSH for the cosine similarity measure, which originates from the

concept of Sign Random Projections (SRP) [18, 10]. Given a

vector x, SRP utilizes a random w vector with each component

generated from i.i.d. normal, i.e., wi ∼ N(0, 1), and only stores

the sign of the projection. Formally simhash is given by

hsign(x) = sign(wTx). (11)

It was shown in the seminal work [18] that collision under SRP

satisfies the following equation:

Prw(h
sign(x) = hsign(y)) = 1− θ

π
, (12)

where θ = cos−1
(

xT y
||x||2||y||2

)

. The term xT y
||x||2||y||2 is the popular

cosine similarity. For sets (or equivalently binary vectors), the

cosine similarity reduces to

S =
a

√

fxfy
(13)

The recent work on coding for random projections [28] has shown

the advantage of SRP (and 2-bit random projections) over L2LSH

for both similarity estimation and near neighbor search. Interest-

ingly, another recent work [39] has shown that for binary data (actu-

ally even sparse non-binary data), minhash can significantly outper-

form SRP for near neighbor search even as we evaluate both SRP

and minhash in terms of the cosine similarity (although minhash is

designed for resemblance). This motivates us to design asymmetric

minhash for achieving better performance in retrieving set contain-

ments. But first, we provide an overview of asymmetric LSH for

general inner products (not restricted to binary data).

2.5 Asymmetric LSH (ALSH)
The term “ALSH” stands for asymmetric LSH, as used in a recent

work [35]. Through an elementary argument, [35] showed that it is

not possible to have a Locality Sensitive Hashing (LSH) family for

general unnormalized inner products.

For inner products between vectors x and y, it is possible to have

xT y ≫ xTx. Thus for any hashing scheme h to be a valid LSH,

we must have Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1,

which is an impossibility. It turns out that there is a simple fix, if

we allow asymmetry in the hashing scheme. Allowing asymmetry

leads to an extended framework of asymmetric locality sensitive

hashing (ALSH). The idea to is have a different hashing scheme

for assigning buckets to the data point in the collection C, and an

altogether different hashing scheme while querying.

DEFINITION 3. (Asymmetric Locality Sensitive Hashing (ALSH))

A family H, along with the two vector functions Q : RD 7→ R
D′

(Query Transformation) and P : R
D 7→ R

D′

(Preprocessing

Transformation), is called (S0, cS0, p1, p2)-sensitive if for a given

c-NN instance with query q, and the hash function h chosen uni-

formly from H satisfies the following:

• if Sim(q, x) ≥ S0 then PrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 then PrH(h(Q(q)) = h(P (x))) ≤ p2

Here x is any point in the collection C. Asymmetric LSH borrows

all theoretical guarantees of the LSH.

FACT 2. Given a family of hash function H and the associ-

ated query and preprocessing transformations Q and P respec-

tively, which is (S0, cS0, p1, p2) -sensitive, one can construct a

data structure for c-NN with O(nρ log n) query time and space

O(n1+ρ), where ρ = log p1
log p2

.

[35] showed that using asymmetric transformations, the problem

of maximum inner product search (MIPS) can be reduced to the

problem of approximate near neighbor search in L2. The algorithm

first starts by scaling all x ∈ C by a constant large enough, such that

||x||2 ≤ U < 1. The proposed ALSH family (L2-ALSH) is the

LSH family for L2 distance with the Preprocessing transformation

P : R
D 7→ R

D+m and the Query transformation Q : R
D 7→

R
D+2m defined as follows:

PL2(x) = [x; ||x||22;; ||x||2
m

2 ; 1/2; ...; 1/2] (14)

QL2(x) = [x; 1/2; ...; 1/2; ||x||22;; ||x||2
m

2], (15)

where [;] is the concatenation. PL2(x) appends m scalers of the

form ||x||2i2 followed by m “1/2s" at the end of the vector x, while

QL2(x) first appends m “1/2s” to the end of the vector x and then

m scalers of the form ||x||2i2 . It was shown that this leads to prov-

ably efficient algorithm for MIPS.

FACT 3. [35] For the problem of c-approximate MIPS in a

bounded space, one can construct a data structure having

O(nρ∗L2−ALSH log n) query time and space O(n1+ρ∗L2−ALSH), where

ρ∗L2−ALSH < 1 is the solution to constrained optimization (16).

ρ∗L2−ALSH (16)

= min
U<1,m∈N,r

logFr

(

√

m/2− 2S0

(

U2

V 2

)

+ 2U2m+1
)

logFr

(

√

m/2− 2cS0

(

U2

V 2

)

)

s.t.
U (2m+1−2)V 2

S0
< 1− c,

Here the guarantees depends on the maximum norm of the space

V = maxx∈C ||x||2.

Quickly after, it was realized that a very similar idea can convert

the MIPS problem in the problem of maximum cosine similarity

search which can be efficiently solve by SRP leading to a new and

better ALSH for MIPS Sign-ALSH [37] which works as follows:

The algorithm again first starts by scaling all x ∈ C by a constant

large enough, such that ||x||2 ≤ U < 1. The proposed ALSH

family (Sign-ALSH) is the SRP family for cosine similarity with

the Preprocessing transformation P sign : RD 7→ R
D+m and the

Query transformation Qsign : RD 7→ R
D+2m defined as follows:

P sign(x) = [x; 1/2− ||x||22; ...; 1/2 − ||x||2
m

2 ; 0; ...; 0] (17)

Qsign(x) = [x; 0; ...; 0; 1/2− ||x||22; ...; 1/2 − ||x||2
m

2], (18)

where [;] is the concatenation. P sign(x) appends m scalers of the

form 1/2 − ||x||2i2 followed by m “0s" at the end of the vector x,

while Qsign(x) appends m “0” followed by m scalers of the form

1/2−||x||2i2 to the end of the vector x. It was shown that this leads

to provably efficient algorithm for MIPS.

As demonstrated by the recent work [28] on coding for random

projections, there is a significant advantage of SRP over L2LSH

for near neighbor search. Thus, it is not surprising that Sign-ALSH

outperforms L2-ALSH for the MIPS problem. Similar to L2LSH,

the runtime guarantees for Sign-ALSH can be shown as:

FACT 4. For the problem of c-approximate MIPS, one can con-

struct a data structure having O(nρ∗Sign−ALSH log n) query time

and space O(n1+ρ∗Sign−ALSH), where ρ∗Sign−ALSH < 1 is the

solution to constraint optimization problem

ρ∗Sign−ALSH = min
U,m,

log

(

1− 1
π
cos−1

(

S0×
(

U2

V 2

)

m
4

+U2m+1

))

log

(

1− 1
π
cos−1

(

min{ cS0U2

V 2 , z∗}
))

(19)

z∗ =

[

(m−m2m−1) +
√

(m−m2m−1)2 +m2(2m − 1)

4(2m − 1)

]2−m

There is a similar asymmetric transformation [3, 32] which fol-

lowed by sign random projection leads to another ALSH having

very similar performance to Sign-ALSH. The ρ values, which were

also very similar to the ρSign−ALSH can be shown as

ρSign =

log

(

1− 1
π
cos−1

(

S0

V 2

))

log

(

1− 1
π
cos−1

(

cS0

V 2

)) (20)

Both L2-ALSH and Sign-ALSH work for any general inner prod-

ucts over R
D. For sparse and high-dimensional binary dataset

which are common over the web, it is known that minhash is typi-

cally the preferred choice of hashing over random projection based

hash functions [39]. We show later that the ALSH derived from

minhash, which we call asymmetric minwise hashing (MH-ALSH),

is more suitable for indexing set intersection for sparse binary vec-

tors than the existing ALSHs for general inner products.

3. SAMPLING BASED ALSH FOR INDEX-

ING BINARY INNER PRODUCTS
In [35], it was shown that there cannot exist any LSH for general

unnormalized inner product. Using a slightly different argument it

can be shown that even for binary data we cannot have any LSH

scheme. Note, for binary inner product xT y ≤ xTx and therefore

we cannot use exactly the same argument as before. But we can

have x,y and z such that xT y ≫ zT z. Now, Pr(h(x) = h(y)) >
Pr(h(z) = h(z)) = 1 is again impossible. However, with asym-

metry it is not difficult to construct a provable hashing scheme for

binary inner product.

The construction is based on sampling. Simply sampling a ran-

dom component leads to the popular LSH for hamming distance [33].

The ordering of inner product is different from that of hamming dis-

tance. The hamming distance between x and query q is given by

fx + fq − 2a, while we want the collision probability to be mono-

tonic in the inner product a. fx makes it non-monotonic in a. Note

that fq has no effect on ordering of x ∈ C because it is constant

for every query. To construct an LSH monotonic in binary inner

product, we need an extra trick.

Given a binary data vector x, we sample a random co-ordinate

(or attribute). If the value of this co-ordinate is 1 (in other words if

this attribute is present in the set), our hash value is a fixed number

0. If this randomly sampled co-ordinate has value 0 (or the attribute

is absent) then ensure that the hash value of the query never matches

the hash value of the data. Formally,

HS(f(x)) =

0 if xi = 1, i drawn uniformly

1 if f = Q (for query)

2 if f = P (while preprocessing)

(21)

Note the asymmetry, i.e., the hash functions are different for query

and the dataset. We can also write it down more formally using

P (.) and Q(.) but we avoid it for the sake of simplicity.

THEOREM 1. Given two binary vectors x and y, we have

Pr(HS(P (x)) = HS(Q(y))) =
a

D
(22)

PROOF. The probability that both HS(P (x)) and HS(Q(y))
have value 0 is a

D
. They cannot be equal otherwise

COROLLARY 1. HS is (S0, cS0,
S0

D
, cS0

D
)-sensitive ALSH for

binary inner product with ρHS =
log

(

S0
D

)

log
(

cS0
D

) < 1

3.1 Shortcomings
The above ALSH for binary inner product is likely to be very in-

efficient for sparse and high dimensional datasets. For those datasets,

typically the value of D is very high and the sparsity ensures that

a is very small. For modern web datasets, we can have D running

into billions (or 264) while the sparsity is only in few hundreds

or perhaps thousands [8]. Therefore, we have a
D

≃ 0 which es-

sentially boils down to ρHS ≃ 1. In other words, the hashing

scheme becomes worthless in sparse high dimensional domain. On

the other hand, if we observe the collision probability of minhash

Eq.(7), the denominator is fx+fy−a, which is usually of the order

of a and much less than the dimensionality for sparse datasets.

Another way of realizing the problem with the above ALSH is to

note that it is informative only if a randomly sampled co-ordinate

has value equal to 1. For very sparse dataset with a ≪ D, sampling

a non zero coordinate has probability a
D

≃ 0. Thus, almost all of

the hashes will be fixed numbers which are not informative.

3.2 Why Is Minhash Reasonable?
In this section, we argue why retrieving inner product based on

plain minhash is a reasonable thing to do. Later, we will show a

provable way to improve it using asymmetric transformations.

The number of nonzeros in the query, i.e., |q| = fq does not

change the identity of argmax in Eq.(4). Let us assume that we

have data of bounded sparsity and define constant M as

M = max
x∈C

|x| (23)

where M is the maximum number of nonzeros (or maximum cardi-

nality of sets) seen in the database. For sparse data seen in practice

M is likely to be small compared to D. Outliers, if any, can be

handled separately. By observing that a ≤ fx ≤ M , we also have

a

fq +M − a
≤ a

fx + fq − a
= R ≤ a

fq
(24)

Thus, given the bounded sparsity, if we assume that the number of

nonzeros in the query is given, then we can show that minhash is

an LSH for inner products a because the collision probability can

be upper and lower bounded by purely functions of a,M and fq.

THEOREM 2. Given bounded sparsity and query q with |q| =
fq , minhash is a (S0, cS0,

S0

fq+M−S0
, cS0

fq
) sensitive for inner prod-

ucts a with ρqmin =
log

S0
fq+M−S0

log
cS0
fq

This explains why minhash might be a reasonable hashing approach

for retrieving inner products or set intersection.

Here, if we remove the assumption that |q| = fq then in the worst

case R ≤ a
fq

≤ 1 and we get log 1 in the denominator. Note that

the above is the worst case analysis and the assumption |q| = fq
is needed to obtain any meaningful ρ with minhash. We show the

power of ALSH in the next section, by providing a better hashing

scheme and we do not even need the assumption of fixing |q| = fq .

4. ASYMMETRIC MINWISE HASHING
In this section, we provide a very simple asymmetric fix to min-

hash, named asymmetric minwise hashing (MH-ALSH), which makes

the overall collision probability monotonic in the original inner

product a. For sparse binary data, which is common in practice, we

later show that the proposed hashing scheme is superior (both the-

oretically as well as empirically) compared to the existing ALSH

schemes for inner product [35].

4.1 The New ALSH for Binary Data
We define the new preprocessing and query transformations P ′ :

[0, 1]D → [0, 1]D+M and Q′ : [0, 1]D → [0, 1]D+M as:

P ′(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0] (25)

Q′(x) = [x; 0; 0; 0; ...; 0], (26)

For P ′(x) we append M − fx 1s and rest fx zeros, while in Q′(x)
we simply append M zeros.

At this point we can already see the power of asymmetric trans-

formations. The original inner product between P ′(x) and Q′(x)
is unchanged and its value is a = xT y. Given the query q, the new

resemblance R′ between P ′(x) and Q′(q) is

R′ =
|P ′(x) ∩Q′(q)|
|P ′(x) ∪Q′(q)| =

a

M + fq − a
. (27)

If we define our new similarity as Sim(x, y) = a
M+fq−a

, then the

near neighbors in this new similarity are the same as near neigh-

bors with respect to either set intersection a or set containment a
fq

.

Thus, we can instead compute near neighbors in a
M+fq−a

which is

also the resemblance between P ′(x) and Q′(q). We can therefore

use minhash on P ′(x) and Q′(q).
Observe that now we have M+fq−a in the denominator, where

M is the maximum nonzeros seen in the dataset (the cardinality of

largest set), which for very sparse data is likely to be much smaller

than D. Thus, asymmetric minhash is a better scheme than HS

with collision probability a
D

for very sparse datasets where we usu-

ally have M ≪ D.

From theoretical perspective, to obtain an upper bound on the

query and space complexity of c-approximate near neighbor with

binary inner products, we want the collision probability to be in-

dependent of the quantity fq . This is not difficult to achieve. The

asymmetric transformation used to get rid of fx in the denominator

can be reapplied to get rid of fq .

Formally, we can define P ′′ : [0, 1]D → [0, 1]D+2M and Q′′ :
[0, 1]D → [0, 1]D+2M as :

P ′′(x) = Q′(P ′(x)); Q′′(x) = P ′(Q′(x)); (28)

where in P ′′(x) we append M − fx 1s and rest M + |fx| zeros,

while in Q′′(x) we append M zeros, then M−fq 1s and rest zeros

Again the inner product a is unaltered, and the new resemblance

then becomes

R′′ =
|P ′′(x) ∩Q′′(q)|
|P ′′(x) ∪Q′′(q)| =

a

2M − a
. (29)

which is independent of fq and is monotonic in a. This allows us to

achieve a formal upper bound on the complexity of c-approximate

maximum inner product search with the new asymmetric minhash.

From the collision probability expression, i.e., Eq. (29), we have

THEOREM 3. Minwise hashing along with Query transforma-

tion Q′′ and Preprocessing transformation P ′′ defined by Equa-

tion 28 is a (S0, cS0,
S0

2M−S0
, cS0

2M−cS0
) sensitive asymmetric hash-

ing family for set intersection.

This leads to an important corollary.

COROLLARY 2. There exists an algorithm for c-approximate

set intersection, with bounded sparsity M , that requires space

O(n1+ρMH−ALSH) and query time O(nρMH−ALSH log n), where

ρMH−ALSH =
log S0

2M−S0

log cS0

2M−cS0

< 1 (30)

Given query q and any point x ∈ C, the collision probability

under traditional minhash is R = a
fx+fq−a

. This penalizes sets

with high fx, which in many scenarios is not desirable. To balance

this negative effect, asymmetric transformation penalizes sets with

smaller fx. Note, that M − fx ones added in the transformations

P ′(x) gives additional chance in proportion to M−fx for minhash

of P ′(x) not to match with the minhash of Q′(x). This asymmetric

probabilistic correction balances the penalization inherent in min-

hash. This is a simple way of correcting the probability of collision

which could be of independent interest in itself. We will show in

our evaluation section, that despite this simplicity such correction

leads to significant improvement over plain minhash.

4.2 Efficient Sampling
Our transformations P ′′ and Q′′ always create sets with 2M

nonzeros. In case when M is big, hashing might take a lot of time.

We can use (improved) consistent weighted sampling [30, 23] for

efficient generation of hashes. We can instead use transformations

P ′′′ and Q′′′ that makes the data non-binary as follows

P ′′′(x) = [x;M − fx; 0] (31)

Q′′′(x) = [x; 0;M − fx]

It is not difficult to see that the weighted resemblance (or weighted

Jaccard similarity) between P ′′′(x) and Q′′′(q) for given query q
and any x ∈ C is

RW =

∑

i min(P ′′′(x)i, Q
′′′(q)i)

∑

i max(P ′′′(x)i, Q′′′(q)i)
=

a

2M − a
. (32)

Therefore, we can use fast consistent weighted sampling for weighted

resemblance on P ′′′(x) and Q′′′(x) to compute the hash values in

time constant per nonzero weights, rather than maximum sparsity

M . In practice we will need many hashes for which we can utilize

the recent line of work that make minhash and weighted minhash

significantly much faster [29, 36, 38, 19].

5. THEORETICAL COMPARISONS
For solving the MIPS problem in general data types, we already

know two asymmetric hashing schemes, L2-ALSH and Sign-ALSH,

as described in Section 2.5. In this section, we provide theoreti-

cal comparisons of the two existing ALSH methods with the pro-

posed asymmetric minwise hashing (MH-ALSH). As argued, the

LSH scheme described in Section 3 is unlikely to be useful in prac-

tice because of its dependence on D; and hence we can safely ig-

nore it for simplicity of the discussion.

Before we formally compare various asymmetric LSH schemes

for maximum inner product search, we argue why asymmetric min-

hash should be advantageous over traditional minhash for retrieving

inner products. Let q be the binary query vector, and fq denotes the

number of nonzeros in the query. The ρMH−ALSH for asymmetric

minhash in terms of fq and M is straightforward from the collision

probability Eq.(27):

ρqMH−ALSH =
log S0

fq+M−S0

log cS0

fq+M−cS0

(33)

For minhash, we have from theorem 2 ρqmin =
log

S0
fq+M−S0

log
cS0
fq

.

Since M is the upper bound on the sparsity and cS0 is some value

of inner product, we have M − cS0 ≥ 0. Using this fact, the fol-

lowing theorem immediately follows

THEOREM 4. For any query q, we have ρqMH−ALSH ≤ ρqmin.

This result theoretically explains why asymmetric minhash is better

for retrieval with binary inner products, compared to plain minhash.

For comparing asymmetric minhash with ALSH for general in-

ner products, we compare ρMH−ALSH with the ALSH for in-

ner products based on sign random projections. Note that it was

shown that Sign-ALSH has better theoretical ρ values compared

to L2-ALSH [37]. Therefore, it suffices to show that asymmetric

minhash outperforms sign random projection based ALSH. Both

ρMH−ALSH and ρsign can be rewritten in terms of ratio S0

M
as fol-

lows. Note that for binary data we have M = maxx∈C ||x||2 = V 2

ρMH−ALSH =
log S0/M

2−S0/M

log cS0/M
2−cS0/M

; ρSign =

log

(

1− 1
π
cos−1

(

S0

M

))

log

(

1− 1
π
cos−1

(

cS0

M

))

(34)

Observe that M is also the upper bound on any inner product.

Therefore, we have 0 ≤ S0

M
≤ 1. We plot the values of ρMH−ALSH

and ρsign for S0

M
= {0.1, 0.2, ..., 0.8, 0.9, 0.95} with c. The

comparison is summarized in Figure 1. Note that here we use ρSign

based on the slightly more convenient transformation from [3, 32]

instead of ρSign−ALSH for convenience although the two schemes

perform essentially the same.

Clearly, irrespective of the choice of threshold S0

M
or the approxi-

mation ratio c, asymmetric minhash outperforms sign random pro-

jection based ALSH in terms of the theoretical ρ values. This is

not surprising, because it is known that minhash based methods

are often significantly powerful for binary data compared to SRP

(or simhash) [39]. Therefore ALSH based on minhash outperforms

ALSH based on SRP as shown by our theoretical comparisons. Our

proposal thus leads to an algorithmic improvement over state-of-

the-art hashing techniques for retrieving binary inner products.

6. EVALUATIONS
In this section, we compare the different hashing schemes on the

actual task of retrieving top-ranked elements based on set Jaccard

containment. The experiments are divided into two parts. In the

first part, we show how the ranking based on various hash func-

tions correlate with the ordering of set containment. In the sec-

ond part, we perform the actual LSH based bucketing experiment

for retrieving top-ranked elements and compare the computational

saving obtained by various hashing algorithms.

6.1 Datasets
We used four publicly available high dimensional sparse datasets:

EP2006, MNIST, NEWS20, and NYTIMES. (Note that “EP2006” is

a short name for “E2006LOG1P” from LIBSVM web site.) Except

for MNIST, the other three datasets are binary “BoW" representa-

tion of the corresponding text corpus. MNIST is an image dataset

consisting of 784 pixel image of handwritten digits. Binarized ver-

sions of MNIST are commonly used in literature. The pixel values

in MNIST were binarized to 0 or 1 values. For each of the four

datasets, we generate two partitions. The bigger partition was used

to create hash tables and is referred as the training partition. The

small partition which we call the query partition is used for query-

ing. The statistics of these datasets are summarized in Table 1. The

datasets cover a wide spectrum of sparsity and dimensionality.

Table 1: Datasets

Dataset # Query # Train # Dim nonzeros (mean ± std)

EP2006 2,000 17,395 4,272,227 6072 ± 3208
MNIST 2,000 68,000 784 150 ± 41
NEWS20 2,000 18,000 1,355,191 454 ± 654
NYTIMES 2,000 100,000 102,660 232 ± 114

6.2 Competing Hash Functions
We consider the following hash functions for evaluations:

1. Asymmetric minwise hashing (Proposed): This is our pro-

posal, the asymmetric minhash described in Section 4.1.

2. Traditional minwise hashing (MinHash): This is the usual

minwise hashing, the popular heuristic described in Section 2.2.

This is a symmetric hash function, we use hπ as defined in

Eq.(6) for both query and the training set.

3. L2 based Asymmetric LSH for Inner products (L2-ALSH):

This is the asymmetric LSH of [35] for general inner prod-

ucts based on LSH for L2 distance.

4. SRP based Asymmetric LSH for Inner Products (Sign-

ALSH): This is the asymmetric hash function of [37] for

general inner products based on SRP.

6.3 Ranking Experiment: Hash Quality Eval-
uations

We are interested in knowing, how the orderings under different

competing hash functions correlate with the ordering of the under-

lying similarity measure which in this case is the set containment.

For this task, given a query q vector, we compute the top-100 gold

standard elements from the training set based on the set contain-

ment a
fq

. Note that this is the same as the top-100 elements based

on binary inner products. Give a query q, we compute K different

hash codes of the vector q and all the vectors in the training set. We

then compute the number of times the hash values of a vector x in

the training set matches the hash values of query q defined by

Matchesx =

K
∑

t=1

1(ht(q) = ht(x)), (35)

where 1 is the indicator function. t subscript is used to distin-

guish independent draws of the underlying hash function. Based on

Matchesx we rank all elements in the training set. This procedure

generates a sorted list for every query for every hash function. For

asymmetric hash functions, in computing total collisions, on the

query vector we use the corresponding Q function (query transfor-

mation) followed by underlying hash function, while for elements

in the training set we use the P function (preprocessing transfor-

mation) followed by the corresponding hash function.

We compute the precision and the recall of the top-100 gold stan-

dard elements in the ranked list generated by different hash func-

tions. To compute precision and recall, we start at the top of the

ranked item list and walk down in order, suppose we are at the pth

ranked element, we check if this element belongs to the gold stan-

dard top-100 list. If it is one of the top 100 gold standard elements,

then we increment the count of relevant seen by 1, else we move to

p + 1. By pth step, we have already seen p elements, so the total

00.20.40.60.81

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ

Theoretical ρ

0.5

0.95

0.95

0.5

0.9

0.9

ρ
MH−ALSH

ρ
sign

00.20.40.60.81

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ 0.4

Theoretical ρ

0.3 0.2 0.1

0.4 0.3
0.2

0.1

ρ
MH−ALSH

ρ
sign

Figure 1: Values of ρMH−ALSH and ρsign (lower is better) with respect to approximation ratio c for different S0

M
. The curves show

that asymmetric minhash (solid curves) is noticeably better than ALSH based on sign random projection (dashed curves) in terms

of their ρ values, irrespective of the choices of S0

M
or c. For clarity, the results are shown in two panels.

elements seen is p. The precision and recall at that point is then

computed as:

Precision =
relevant seen

p
, Recall =

relevant seen

100
(36)

It is important to balance both. Methodology which obtains higher

precision at a given recall is superior. Higher precision indicates

higher ranking of the relevant items. We finally average these val-

ues of precision and recall over all elements in the query set. The

results for K ∈ {32, 64, 128} are summarized in Figure 2.

We can clearly see, that the proposed hashing scheme always

achieves better, often significantly, precision at any given recall

compared to other hash functions. The two ALSH schemes are usu-

ally always better than traditional minwise hashing. This confirms

that fact that ranking based on collisions under minwise hashing

can be different from the rankings under set containment or inner

products. This is expected, because minhash in addition penalizes

the number of nonzeros leading to a ranking very different from the

ranking of inner products. Sign-ALSH usually performs better than

L2-LSH, this is in line with the results obtained in [37].

It should be noted that ranking experiments only validate the

monotonicity of the collision probability. Although, better rank-

ing is certainly a good indicator of good hash function, it does not

always mean that we will achieve faster sub-linear LSH algorithm.

For bucketing the probability sensitivity around a particular thresh-

old is the most important factor, see [33] for more details. What

matters is the gap between the collision probability of good and

the bad points. In the next subsection, we compare these schemes

on the actual task of near neighbor retrieval with set containment.

6.4 LSH Bucketing Experiment: Computational
Savings in Near Neighbor Retrieval

In this section, we evaluate the four hashing schemes on the

standard (K,L)-parameterized bucketing algorithm [2] for sub-

linear time retrieval of near neighbors based on set containment.

In (K,L)-parameterized LSH algorithm, we generate L different

meta-hash functions. Each of these meta-hash functions is formed

by concatenating K different hash values as

Bj(x) = [hj1(x);hj2(x); ...; hjK (x)], (37)

where hij , i ∈ {1, 2, ..., K} and j ∈ {1, 2, ..., L}, are KL differ-

ent independent evaluations of the hash function under considera-

tion. Different competing scheme uses its own underlying random-

ized hash function h.

In general, the (K,L)-parameterized LSH works in two phases:

i) Preprocessing Phase: We construct L hash tables from data

by storing element x, in the training set, at location Bj(P (x))
in the hash-table j. Note that for vanilla minhash which is a

symmetric hashing scheme P (x) = x. For other asymmetric

schemes, we use their corresponding P functions. Preprocess-

ing is a one time operation, once the hash tables are created

they are fixed.

ii) Query Phase: Given a query q, we report the union of all the

points in the buckets Bj(Q(q)) ∀j ∈ {1, 2, ..., L}, where the

union is over L hash tables. Again here Q is the corresponding

Q function of the asymmetric hashing scheme, for minhash

Q(x) = x.

Typically, the performance of a bucketing algorithm is sensitive

to the choice of parameters K and L. Ideally, to find best K and L,

we need to know the operating threshold S0 and the approximation

ratio c in advance. Unfortunately, the data and the queries are very

diverse and therefore for retrieving top-ranked near neighbors there

are no common fixed threshold S0 and approximation ratio c that

work for all the queries.

Our objective is to compare the four hashing schemes and min-

imize the effect of K and L, if any, on the evaluations. This is

achieved by finding best K and L at every recall level. We run the

bucketing experiment for all combinations of K ∈ {1, 2, 3, ...40}
and L ∈ {1, 2, 3, ..., 400} for all the four hash functions indepen-

dently. These choices include the recommended optimal combina-

tions at various thresholds. We then compute, for every K and L,

the mean recall of Top-T pairs and the mean number of points re-

ported, per query, to achieve that recall. The best K and L at every

recall level is chosen independently for different T s. The plot of

the mean fraction of points scanned with respect to the recall of

top-T gold standard near neighbors, where T ∈ {5, 10, 20, 50}, is

summarized in Figure 3.

The performance of a hashing based method varies with the vari-

ations in the similarity levels in the datasets. It can be seen that the

proposed asymmetric minhash always retrieves much less number

of points, and hence requires significantly less computations, com-

pared to other hashing schemes at any recall level on all the four

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

MNIST MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

MNIST
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

NEWS20
MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

NYTimes
MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

NYTimes
MinHash
Proposed
L2−ALSH
Sign−ALSH

Figure 2: Ranking Experiments. Precision Vs Recall curves for retrieving top-100 items, for different hashing schemes on 4 chosen

datasets. The precision and the recall were computed based on the rankings obtained by different hash functions using 32, 64 and

128 independent hash evaluations. Higher precision at a given recall is better.

datasets. Asymmetric minhash consistently outperforms other hash

functions irrespective of the operating point. The plots clearly es-

tablish the superiority of the proposed scheme for indexing set con-

tainment (or inner products).

L2-ALSH and Sign-ALSH perform better than traditional min-

hash on EP2006 and NEWS20 datasets while they are worse than

plain minhash on NYTIMES and MNIST datasets. If we look at the

statistics of the dataset from Table 1, NYTIMES and MNIST are

precisely the datasets with less variations in the number of nonzeros

and hence minhash performs better. In fact, for MNIST dataset with

very small variations in the number of nonzeros, the performance

of plain minhash is very close to the performance of asymmetric

minhash. This is of course expected because there is negligible ef-

fect of penalization on the ordering. EP2006 and NEWS20 datasets

have huge variations in their number of nonzeros and hence min-

hash performs very poorly on these datasets. What is exciting is

that despite these variations in the nonzeros, asymmetric minhash

always outperforms other ALSH for general inner products.

The difference in the performance of plain minhash and asym-

metric minhash clearly establishes the utility of our proposal which

is simple and does not require any major modification over tra-

ditional minhash implementation. Given the fact that minhash is

widely popular, we hope that our proposal will be adopted.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 5

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 20

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 5

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 20

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 5

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 20

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 5

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 20

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

Figure 3: LSH Bucketing Experiments. Average number of points retrieved per query (lower is better), relative to linear scan,

evaluated by different hashing schemes at different recall levels, for top-5, top-10, top-20, top-50 nearest neighbors based on set

containment (or equivalently inner products), on four datasets. We show that results at the best K and L values chosen at every

recall value, independently for each of the four hashing schemes.

7. CONCLUSION AND FUTURE WORK
Minwise hashing (minhash) is a widely popular indexing scheme

in practice for similarity search. Minhash was originally designed

for estimating set resemblance (i.e., normalized size of set inter-

sections). In many applications the performance of minhash is

severely affected because minhash has a bias towards smaller sets.

In this study, we propose asymmetric corrections (asymmetric min-

wise hashing, or MH-ALSH) to minwise hashing that remove this

often undesirable bias. Our corrections lead to a provably supe-

rior algorithm for retrieving binary inner products in the literature.

Rigorous experimental evaluations on the task of retrieving max-

imum inner products clearly establish that the proposed approach

can be significantly advantageous over the existing state-of-the-art

hashing schemes in practice, when the desired similarity is the in-

ner product (or containment) instead of the resemblance. Our pro-

posed method requires only minimal modification of the original

minwise hashing algorithm and should be straightforward to im-

plement in practice.

Future work: One immediate direction for future work would be

asymmetric consistent weighted sampling for hashing weighted in-

tersection:
∑D

i=1 min{xi, yi}, where x and y are general real-

valued vectors. One proposal of the new asymmetric transforma-

tion is the following:

P (x) = [x;M −
D
∑

i=1

xi; 0], Q(x) = [x; 0;M −
D
∑

i=1

xi],

where M = maxx∈C
∑

i xi. It is not difficult to show that the

weighted Jaccard similarity between P (x) and Q(y) is monotonic

in
∑D

i=1 min{xi, yi} as desired. At this point, we can use existing

methods for consistent weighted sampling [30, 23, 19, 26]. on the

new data after asymmetric transformations

Acknowledgement

The work is partially supported by NSF-DMS-1444124, NSF-III-

1360971, ONR-N00014-13-1-0764, and AFOSR-FA9550-13-1-0137.

8. REFERENCES

[1] P. Agrawal, A. Arasu, and R. Kaushik. On indexing

error-tolerant set containment. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of

data, pages 927–938. ACM, 2010.

[2] A. Andoni and P. Indyk. E2lsh: Exact euclidean locality

sensitive hashing. Technical report, 2004.

[3] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir,

N. Koenigstein, N. Nice, and U. Paquet. Speeding up the

xbox recommender system using a euclidean transformation

for inner-product spaces. In RecSys, 2014.

[4] Y. Bachrach, E. Porat, and J. S. Rosenschein. Sketching

techniques for collaborative filtering. In Proceedings of the

21st International Jont Conference on Artifical Intelligence,

IJCAI’09, 2009.

[5] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. In WWW, pages 131–140, 2007.

[6] A. Z. Broder. On the resemblance and containment of

documents. In the Compression and Complexity of

Sequences, pages 21–29, Positano, Italy, 1997.

[7] A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise independent permutations. In

STOC, pages 327–336, Dallas, TX, 1998.

[8] T. Chandra, E. Ie, K. Goldman, T. L. Llinares, J. McFadden,

F. Pereira, J. Redstone, T. Shaked, and Y. Singer. Sibyl: a

system for large scale machine learning.

[9] O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector

machines for histogram-based image classification. IEEE

Transactions on Neural Networks, 10(5):1055–1064, 1999.

[10] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In STOC, pages 380–388, Montreal,

Quebec, Canada, 2002.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive

operatior for similarity joins in data cleaning. In ICDE, 2006.

[12] S. Chaudhuri, V. Ganti, and D. Xin. Mining document

collections to facilitate accurate approximate entity

matching. Proceedings of the VLDB Endowment,

2(1):395–406, 2009.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,

A. Panconesi, and P. Raghavan. On compressing social

networks. In KDD, pages 219–228, Paris, France, 2009.

[14] G. Cormode and S. Muthukrishnan. Space efficient mining

of multigraph streams. In Proceedings of the twenty-fourth

ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 271–282. ACM, 2005.

[15] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news

personalization: scalable online collaborative filtering. In

Proceedings of the 16th international conference on World

Wide Web, pages 271–280. ACM, 2007.

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn.

Locality-sensitive hashing scheme based on p-stable

distributions. In SCG, pages 253 – 262, Brooklyn, NY, 2004.

[17] S. Geva and C. M. De Vries. Topsig: Topology preserving

document signatures. In CIKM, pages 333–338, 2011.

[18] M. X. Goemans and D. P. Williamson. Improved

approximation algorithms for maximum cut and satisfiability

problems using semidefinite programming. Journal of ACM,

42(6):1115–1145, 1995.

[19] B. Haeupler, M. Manasse, and K. Talwar. Consistent

weighted sampling made fast, small, and easy. Technical

report, arXiv:1410.4266, 2014.

[20] M. Hein and O. Bousquet. Hilbertian metrics and positive

definite kernels on probability measures. In AISTATS, pages

136–143, Barbados, 2005.

[21] M. R. Henzinger. Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In SIGIR, pages

284–291, 2006.

[22] P. Indyk and R. Motwani. Approximate nearest neighbors:

Towards removing the curse of dimensionality. In STOC,

pages 604–613, Dallas, TX, 1998.

[23] S. Ioffe. Improved consistent sampling, weighted minhash

and L1 sketching. In ICDM, pages 246–255, Sydney, AU,

2010.

[24] Y. Jiang, C. Ngo, and J. Yang. Towards optimal

bag-of-features for object categorization and semantic video

retrieval. In CIVR, pages 494–501, Amsterdam, Netherlands,

2007.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:

similarity measures and algorithms. In Proceedings of the

2006 ACM SIGMOD international conference on

Management of data, pages 802–803. ACM, 2006.

[26] P. Li. Min-max kernels. Technical report, arXiv:1503.0173,

2015.

[27] P. Li and A. C. König. Theory and applications b-bit

minwise hashing. Commun. ACM, 2011.

[28] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding for

random projections and approximate near neighbor search.

Technical report, arXiv:1403.8144, 2014.

[29] P. Li, A. B. Owen, and C.-H. Zhang. One permutation

hashing. In NIPS, Lake Tahoe, NV, 2012.

[30] M. Manasse, F. McSherry, and K. Talwar. Consistent

weighted sampling. Technical Report MSR-TR-2010-73,

Microsoft Research, 2010.

[31] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set

containment joins. ACM Transactions on Database Systems

(TODS), 28(1):56–99, 2003.

[32] B. Neyshabur and N. Srebro. A simpler and better lsh for

maximum inner product search (mips). Technical report,

arXiv:1410.5518, 2014.

[33] A. Rajaraman and J. Ullman. Mining of Massive Datasets.

http://i.stanford.edu/ ullman/mmds.html.

[34] K. Ramasamy, J. F. Naughton, and R. Kaushik. Set

containment joins: The good, the bad and the ugly.

[35] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for

sublinear time maximum inner product search (mips). In

NIPS, Montreal, CA, 2014.

[36] A. Shrivastava and P. Li. Densifying one permutation

hashing via rotation for fast near neighbor search. In ICML,

Beijing, China, 2014.

[37] A. Shrivastava and P. Li. Improved asymmetric locality

sensitive hashing (ALSH) for maximum inner product search

(MIPS). arXiv:1410.5410 (submitted to AISTATS), 2014.

[38] A. Shrivastava and P. Li. Improved densification of one

permutation hashing. In UAI, Quebec City, CA, 2014.

[39] A. Shrivastava and P. Li. In defense of minhash over

simhash. In AISTATS, 2014.

[40] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis

and performance study for similarity-search methods in

high-dimensional spaces. In VLDB, pages 194–205, 1998.

	5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips
	96
	frp0738-li

