Supporting Information for

Asymmetric Nitroallylation of Arylboronic Acids with Nitroallyl Acetates Catalyzed by Chiral Rhodium Complexes and Its Application in a Concise Total Synthesis of Optically Pure (+)-*γ*-Lycorane

Lin Dong, Yan-Jun Xu, Lin-Feng Cun, Xin Cui, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong*

General. All manipulations were carried out under an argon atmosphere. NMR spectra were recorded on a Brucker-300MHz spectrometer. Mass spectra were recorded on VG 7070E. Elemental analysis was recorded on Italy CARCOERBA 1106. HR-MS (ESI) spectra were recorded on Bruker BioTOF Q.

Materials. THF and dioxane were dried with sodium/ benzophenone. Diethyl ether, petroleum ether (PE) and ethyl acetate for column chromatography were distilled before use.

General procedure for the asymmetric nitroallylation of arylboronic acids with nitroally acetates catalyzed by chiral rhodium complexes: Under Argon atmosphere, $[Rh(OH)(COD)]_2^1$ (3.4 mg, 15 µmol, 5 mol%), (S)-BINAP (11.2 mg, 18 µmol, 6 mol%) and phenylboronic acid (183 mg, 1.5 mmol, 5 equiv) in 1,4-dioxane(1 mL) was stirred at 50 0 C for 2 h. Substrate $1a^2$ (0.3 mmol) in 1,4-dioxane (1 mL) was added to the above mixture, and followed by addition of water (200 µL). The reaction mixture was stirred at 50 0 C for 20 h. After evaporation of the solvent, the residue was purified by column chromatography on silica (Diethyl ether/ petroleum ether =1/20) to yield 1–nitro–6-phenylcyclohexene (**2a**) as a white solid (34 mg, 56% yield). m.p. 71.3-72.0 °C; $[\alpha]^{20}_{D}$ = +92.5 (*c*= 1.07, CHCl₃); IR (KBr): γ 3456, 3023, 2946, 2920, 2867, 1663, 1510, 1491, 1451, 1413, 1333, 1077, 938 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.55-1.62 (m, 2H), 1.89-1.92 (m, 1H), 2.01-2.03 (m, 1H), 2.40 - 2.49 (m, 2H), 4.29 (brs, 1H), 7.14-7.34 (m, 5H), 7.57 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.5, 25.0, 31.5, 39.5, 126.7, 127.1, 128.5, 136.2, 141.9, 150.9; HRMS for C₁₂H₁₃NO₂, calcd: 203.0940, found: 203.0928. Anal. calcd for C₁₂H₁₃NO₂: C, 70.93; H, 6.41; N, 6.89. Found: C, 70.84; H, 6.44; N, 6.84. Enantiomeric excess: 97%, detemined

by chiral GC analysis (CP–Cyclodextrin- 2, 3, 6 -M-19, 0.25 mm×25 m, column temperature = 168 °C (isothermal), inject temperature = 240 °C, detector temperature = 260 °C, inlet pressure = 10 psi).

Crystal data of **2a**: C₁₂H₁₃NO₂, MW= 203.23, Orthorhombic, space group P2₁2₁2₁, *a*= 6.1206(5), *b*= 12.592(1), *c*= 14.007(1) Å, *a*= 90°, *β*= 90°, *γ*= 90°, *U*= 1079.57(12) Å³, *T*= 290(2) K, *Z*= 4, *D_c*= 1.250 mg/m³, *μ*= 0.085 mm⁻¹, *λ*= 0.71073 Å, *F*(000) 432, crystal size: 0.56 x 0.50 x 0.42 mm³, 1483 reflections collected, 1380 [R(int) = 0.0122]; Refinement method: Full-matrix least-squares on F^2 ; goodness-of-fit on F^2 = 0.961, final R indices [I> 2 σ (I)] R1 = 0.0327, wR2 = 0.0652.

1–Nitro–6-(4-methylphenyl)cyclohexene (2b), White solid (41 mg, 63% yield). m.p. 54.4-55.9 °C; $[\alpha]^{20}_{D}$ = +84.3 (*c*= 0.86, CHCl₃); IR (KBr): γ 3447, 3022, 2950, 2872, 1660, 1506, 1336, 809 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.57(m, 2H), 1.89(m, 1H), 2.00 (m, 1H), 2.32 (s, 3H), 2.39 (m, 2H), 4.26 (brs, 1H), 7.04 (d, *J*= 8.0 Hz, 2H), 7.14 (d, *J*= 8.0 Hz, 2H), 7.55 (t, *J*= 4.0 Hz, 1H); ¹³C NMR(CDCl₃, 75 MHz): δ (ppm) 16.4, 20.8, 24.9, 31.5, 39.0, 126.9, 129.1, 135.9, 136.2, 138.8, 151.0; HRMS for C₁₃H₁₅NO₂, calcd: 217.1097, found: 217.1095. Enantiomeric excess: 95%, determined by chiral GC analysis (CP-Cyclodextrin-2, 3, 6 – M-19, 0.25 mm×25 m, column temperature= 168 °C (isothermal), inject temperature= 240 °C, detector temperature= 260 °C, inlet pressure = 10 psi).

1–Nitro–6-(4-methoxylphenyl)cyclohexene (2c), White solid (40.5 mg, 58% yield). m.p. 56.8-57.9 °C; $[α]^{20}_{D}$ = +93.4 (*c*=1.06, CHCl₃); IR (KBr): γ 3494, 2996, 2859, 2936, 2833, 1658, 1613, 1507, 1460, 1448, 1336, 1258, 1177, 1031, 823, 815 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.54-1.61 (m, 2H), 1.82-1.88 (m, 1H), 1.96-2.00 (m, 1H), 2.39 -2.47 (m, 2H), 3.77 (s, 3H), 4.23 (brs, 1H), 6.81 (d, *J*= 11.5 Hz, 2H), 7.04 (d, *J*= 11.5 Hz, 2H), 7.52 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.5, 25.0, 31.6, 38.7, 55.2, 113.9, 128.1, 134.0, 135.8, 151.2, 158.3; HRMS for C₁₃H₁₅NO₃, calcd: 233.1046, found: 233.1033. Enantiomeric excess: 96%, determined by chiral HPLC (Daicel Chiralcel OD; hexane: isopropanol = 99:1, flow = 1.0mL / min, *R*-isomer, t_R= 12.4 min, *S*-isomer, t_R= 14.5 min).

1–Nitro–6-(4-chlorophenyl)cyclohexene (2d), colorless oil (45 mg, 64% yield); $[\alpha]^{20}_{D}$ = +102.2 (*c*= 1.15, CHCl₃); IR (neat): γ 2943, 2867, 1662, 1517, 1488, 1336, 1091, 1013, 819; ¹H NMR

(CDCl₃, 300 MHz): δ (ppm) 1.25-1.62 (m, 2H), 1.84-1.87 (m, 1H), 2.03 (m, 1H), 2.41-2.48 (m, 2H), 4.24 (brs, 1H), 7.06 (d, *J*= 11.0 Hz, 2H), 7.24 (d, *J*= 11.0 Hz, 2H), 7.56 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.5, 24.9, 31.4, 39.0, 128.4, 128.7, 132.5, 136.6, 140.5, 150.5; HRMS for C₁₂H₁₂ClNO₂, calcd: 237.0551, found: 237.0569. Enantiomeric excess: 99%; determined by chiral GC analysis (CP-Cyclodextrin -2, 3, 6 –M-19, 0.25 mm×25 m, column temperature= 168 °C (iso thermal), inject temperature= 240 °C, detector temperature= 260 °C, inlet pressure = 10 psi).

1–Nitro–6-(4-fluorophenyl)cyclohexene (2e), colorless oil (40 mg, 61% yield); $[\alpha]^{20}_{D}$ = +87.3 (*c*= 1.22, CHCl₃); IR (neat): γ 3069, 2945, 2868, 1662, 1602, 1509, 1336, 1222, 826, 816 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.52-1.61 (m, 2H), 1.84-1.87 (m, 1H), 2.02 (m, 1H), 2.39-2.48 (m, 2H), 4.26 (brs, 1H), 6.95-7.01 (m, 2H), 7.10- 7.13 (m, 2H), 7.55 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75MHz): δ (ppm) 16.4, 24.9, 31.5, 38.8, 115.1, 115.4, 128.5, 128.6, 136.4, 137.7, 150.8, 160.0, 163.2; HRMS for C₁₂H₁₂FNO₂, calcd: 221.0846, found: 221.0834. Enantiomeric excess: 98%, determined by Chiral GC analysis (CP -Cyclodextrin-2, 3, 6-M-19, 0.25 mm×25 m, column temperature= 168 °C (isothermal), inject temperature = 240 °C, detector temperature= 260 °C, inlet pressure= 10 psi).

1–Nitro–6-(4-*tert*-butylphenyl)cyclohexene (2f), white solid (52 mg, 67% yield). mp: 82.0-83.5 °C; $[α]^{20}_{D}$ = + 98.2 (*c*= 0.70, CHCl₃); IR (KBr): γ 2958, 2865, 1659, 1513, 1342, 1330, 1075, 1018, 823 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.28 (s, 9H), 1.57-1.86 (m, 2H), 1.87-2.02 (m, 2H), 2.40-2.48 (m, 2H), 4.25 (brs, 1H), 7.04 (d, *J*= 8.3 Hz, 2H), 7.28 (d, *J*= 8.3 Hz, 2H), 7.53 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.6, 24.9, 31.2, 31.4, 34.3, 39.0, 125.3, 126.7, 135.8, 138.7, 149.3, 149.3, 151.1; HRMS for C₁₆H₂₁NO₂, calcd: 259.1567, found: 259.1554. Enantiomeric excess: 90%, determined by chiral GC analysis (CP-Cyclodextrin-2, 3, 6-M-19, 0.25 mm×25 m, column temperature= 168 °C (isothermal), inject temperature= 240 °C, detector temperature = 260 °C, inlet pressure = 10 psi).

1–Nitro–6-(4-trifluoromethylphenyl)cyclohexene (2g), colorless oil (42 mg, 52% yield); $[\alpha]^{20}_{D}$ = +107.2 (*c*= 0.83, CHCl₃); IR (neat): γ 2943, 2871, 1664, 1618, 1519, 1325, 1163, 1112, 1066, 1017; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.52-1.63 (m, 2H), 1.87-1.90 (m, 1H), 2.08 (m, 1H), 2.44-2.52 (m, 2H), 4.32 (brs, 1H), 7.25 (d, *J*= 8.2 Hz, 2H), 7.55 (d, *J*= 8.2 Hz, 2H), 7.62 (t, *J*= 4.0

Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.5, 24.9, 31.4, 39.5, 122.2, 125.5, 127.4, 128.4, 128.9, 129.3, 129.4, 137.0, 146.1, 150.2; HRMS for C₁₃H₁₂F₃NO₂, calcd: 271.0814, found: 271.0808. Enantiomeric excess: 94%, determined by chiral GC analysis (CP- Cyclodextrin -2, 3, 6-M-19, 0.25 mm×25 m, column temperature = 168 °C (isothermal), inject temperature = 240 °C, detector temperature = 260 °C, inlet pressure = 10 psi).

1–Nitro–6-(3-methoxylphenyl)cyclohexene (2h), white solid (41 mg, 58% yield). m.p.: 81.7-83.6 °C; $[α]^{20}_D$ = +108.5 (*c*= 1.29, CHCl₃); IR (KBr): γ 2942, 2866, 2835, 1662, 1600, 1583, 1515, 1487, 1330, 1285, 1263, 1042, 781 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.57-1.62 (m, 2H), 1.88-1.93 (m, 1H), 1.98-2.17 (m, 1H), 2.40-2.48 (m, 2H), 3.78 (s, 3H), 4.24 (brs, 1H), 6.68 (s, 1H), 6.72-6.78 (m, 2H), 7.19 (m, 1H), 7.55 (d, *J*= 8.2 Hz, 2H), 7.62 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.6, 25.0, 31.4, 39.5, 55.1, 111.6, 113.4, 119.5, 129.5, 136.2, 143.6, 150.8, 159.7; HRMS for C₁₃H₁₅NO₃, calcd: 233.1046, found: 233.1055. Enantiomeric excess: 96%, determined by chiral HPLC analysis (Daicel Chiralcel OD; hexane: isopropanol = 99:1, flow = 1.0 mL / min, *R*-isomer, t_R= 22.5min, *S*-isomer, t_R= 25.3 min).

1–Nitro–6-(3,4-methylenedioxy-phenyl)cyclohexene (2i), colorless oil (48 mg, 65% yield); $[\alpha]^{20}_{D}$ = +98.2 (*c*= 1.40, CHCl₃); IR (neat): γ 2942, 2897, 1661, 1607, 1513, 1486, 1439, 1333, 1249, 1231, 1037, 934, 809 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.55-1.62 (m, 2H), 1.81-1.87 (m, 1H), 1.95-2.00 (m, 1H), 2.38-2.47 (m, 2H), 4.19 (brs, 1H), 5.92 (s, 2H), 6.57-6.84 (m, 3H), 7.52 (t, *J*= 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 16.4, 24.9, 31.5, 39.1, 100.9, 107.7, 108.1, 120.0, 135.8, 136.1, 146.3, 147.774, 150.9; HRMS for C₁₃H₁₃NO₄, calcd: 247.0839, found: 247.0852. Enantiomeric excess: 98%, determined by chiral HPLC analysis (Daicel Chiralcel OD; hexane: isopropanol = 99:1, flow = 1.0 mL / min, *R*-isomer, t_R = 15.3 min, *S*-isomer, t_R = 21.5 min).

Methyl 1,2-cis-2,3-cis-2-nitro-3-benzo[1,3]dioxol-5-ylcyclohexylacetate (8). Colorless oil (138 mg, 72% yield); IR (KBr): 2939, 2864, 1733, 1543, 1504, 1440; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.48-1.78 (m, 4H), 2.03 (m, 1H), 2.28 (m, 2H), 2.39- 2.45 (m, 2H), 2.45-2.99 (m, 1H), 3.68 (s, 3H), 4.98 (t, *J* = 4.0 Hz, 1H), 5.91 (s, 2H), 6.63 -6.71 (m, 2H), 6.74 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (CDCl₃, 75MHz): δ (ppm) 24.1, 24.9, 25.3, 36.7, 36.9, 45.5, 51.8, 91.1, 101.0, 107.6, 108.3, 120.4, 133.7, 146.7, 147.8, 171.8; HRMS for C₁₆H₁₉NO₆, calcd: 321.1207, found: 321.1206.

3a, **7a**-*cis*-**7**, **7a**-*cis*-**7-benzo** [1, 3] dioxol-5-yl-octahydroindol-2-one (9): To a solution of **8** (96mg, 0.3mmol) in absolute ethanol (1 mL) in autoclave was added Raney-nickel (5 mol%) previously rinsed with absolute ethanol. Hydrogen was introduced into the autoclave until the pressure reached 80 atm. The autoclave was warmed up to 55 0 C and was maintained at the temperature for 24 h. After the autoclave was cooled down to room temperature, the mixture was filtered and the filtrate was concentrated. Recrystallization from CHCl₃ / hexane gave **9** as a white solid (74 mg, 95% yield); $[\alpha]^{20}{}_{D}=112.3$ (*c*= 1.30, CHCl₃); m.p.: 185.9-187.2 °C; IR (KBr): γ 3252, 2927, 2915, 2853, 1681, 1502, 1488, 1242, 1230, 1039; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.25-1.33 (m, 2H), 1.68-1.75 (m, 3H), 1.82(m, 1H), 1.96 (d, *J*=16.0 Hz, 1H), 2.47 (m, 1H), 2.52 (m, 1H), 2.78-2.82 (m, 1H), 3.84 (t, *J* = 4.2 Hz, 1H), 5.33 (brs, 1H), 5.95 (s, 2H), 6.63 (d, *J*= 1.5 Hz, 1H), 6.66 (dd, *J*= 1.5 Hz, 7.9 Hz, 1H), 6.75 (d, *J*= 7.9 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 24.2, 27.5, 35.1, 40.2, 43.7, 58.8, 101.0, 107.5, 108.5, 119.7, 136.2, 146.4, 148.0, 177.9; HRMS for C₁₅H₁₇NO₃, calcd: 259.1203, found: 259.1203. Enantiomeric excess: 98%, determined by chiral HPLC (Daicel Chiralcel OJ-H; hexane: isopropanol = 70:30, flow = 1.0 mL / min, *R*- isomer, t_R= 8.1 min, *S*-isomer, t_R= 13.3 min).

Preparation and characterization of compound 10: To a solution of **9** (52 mg, 0.20 mmol) in anhydrous Cl(CH₂)₂Cl (5 mL) was added, sequentially, paraformaldehyde (23.1 mg, 0.77 mmol) and CF₃CO₂H (0.19 mL, 2.5 mmol) at room temperature. The reaction mixture was stirred at room temperature for 24 h, and then quenched with saturated aqueous NaHCO₃ (10 mL) followed by addition of CH₂Cl₂ (40 mL). The organic layer was separated, and the aqueous phases were washed by brine, and dried over NaSO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (AcOEt / PET= 3/1) to give **10** (47 mg, 88% yield) as a white solid. m.p.: 144.0-147.7 °C; IR (KBr): γ 2927, 2854, 1676, 1503, 1483, 1440, 1418; ¹H NMR (CDCl₃, 300 MHz): δ (ppm) 1.12 -1.32 (m, 3H), 1.68 (m, 3H), 2.04 (d, *J*= 16.0 Hz, 1H), 2.39 (m, 1H), 2.51 (dd, *J* = 16.0 Hz, 6.8 Hz, 1H), 2.69 (m, 1H), 3.73 (t, *J* = 4.5 Hz, 1H), 3.76 (d, *J*= 17.3 Hz, 1H), 4.49 (d, *J*= 17.3 Hz, 1H), 5.89 (m, 2H), 6.57 (s, 1H), 6.59 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 23.5, 27.8, 30.2, 32.9, 39.7, 40.2, 42.6, 55.6, 100.9, 106.6, 108.4, 123.2, 131.5, 146.5, 146.6, 175.6; HRMS for C₁₆H₁₇NO₃, calcd: 271.1203, found: 271.1193.

(+)-y-Lycorane: A mixture of 10 (40 mg, 0.15 mmol) and LiAlH₄ (17.1 mg, 0.45 mmol) in THF (5

mL) was stirred at reflux for 18 h. NaSO₄ was added, and the precipitate was removed by filtration. The filtrate was concentrated, and the residue was purified by flash column chromatography (Et₂O) to give (+)- γ -Lycorane as a colorless oil (37 mg, 98% yield); [α]²⁰_D = +17.3 (*c*= 0.98, EtOH), [lit.³ [α]²⁰D +17.1 (*c* 0.25, EtOH)]; IR (KBr): γ 2928, 2848, 1505, 1483, 1375, 1318, 1245, 1226, 1038; ¹HNMR (CDCl₃, 300 MHz): δ (ppm)1.25-1.35 (m, 5H), 1.42 (m, 3H), 1.69-2.20 (m, 3H), 2.36 (t, *J*= 4.5 Hz, 1H), 2.70 (m, 1H), 3.18 (d, *J*= 14.4 Hz, 1H), 3.23 (m, 1H), 3.99 (d, *J*= 14.4 Hz, 1H), 5.87 (m, 2H), 6.49 (s, 1H), 6.61(s, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 25.2, 29.2, 30.3, 31.7, 37.3, 39.4, 53.7, 57.1, 62.8, 100.6, 106.2, 108.3, 127.3, 133.1, 145.6, 146.0; HRMS for C₁₆H₂₀NO₂, [M+H]⁺ calcd: 258.1489, found: 258.1496. The spectral data are in agreement with those reported in the literature. ⁴

Determination of the absolute configuration of compound 2a:

To a solution of the nitro olefin 2a (40.6 mg, 0.2 mmol) in ethanol (10 mL) at 0 ^{0}C was added NaBH₄ (15.2 mg, 0.4 mmol) over 20 min. After stirring for 2 h at r.t., the ethanol was removed and 2N HCl (5 mL) was added. The product was extracted with CH₂Cl₂ (3 [] 10 mL) and combined organic layers were dried (NaSO₄), and the CH₂Cl₂ was removed to give the crude nitro **2a**' (40 mg, 98% yield).⁵ To a solution of **2a**' in methanol (0.2 mL) was added sodium methoxide (13.2 mg, 0.24 mmol) in methanol (0.2 mL) at 0 °C and the mixture was stirred for 0.5 h. To the nitronate solution was added a mixture of concentrated sulfuric acid (40 L) and methanol (0.2 mL). During the addition, the mixture was kept at -40 °C and after additional stirring at -20 °C for 1 h, it was poured into dichloromethane (50 mL). The organic layer was washed with water (20 mL) and was extracted with dichloromethane (20 mL). The combined organic layers were dried over NaSO₄, and the CH₂Cl₂ was removed. Dichloromethane (20 mL) and hydrochloric acid (2M, 20 mL) were added, and the mixture was stirred at r.t for 2 h. The aqueous layer was extracted with dichloromethane, and the combined organic layers were dried over NaSO4. After the CH2Cl2 was removed, the residue was purified by column chromatography on silica gel to give 2-phenylcyclohexanone (R)-2a": $[\alpha]^{20}_{D} = +94$ (c = 0.75, benzene). ⁶ The reported specific rotation of (2S)-2a" is $[\alpha]^{20}$ D -114 (c 0.60, benzene).⁷

References

- (1) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 129.
- (2) Seebach, D.; Calderari, G.; Knochel, P. Tetrahedron 1985, 41, 4861.
- (3) Kotera, K. Tetrahedron 1961, 12, 248-261.
- (4) Iida, H.; Aoyagi, S.; Kibayashi, C. J. Chem. Soc., Perkin Trans. 1 1975, 2502
- (5) Stevens, R.V.; Beaulieu, N.; Zutter, U.; J. Am. Chem. Soc. 1986, 108, 1039
- (6) Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716
- (7) Berti, G.; Macchia, B.; Macchia, F.; Monti, L. J. Chem. Soc.(C) 1971, 3371

ŅO₂

이 가슴								
Peak No.		RT(min)	Height	Area	% Area			
1		8. 448	53. 385	1383.000	0.4067			
2		11.565	23644. 205	169898.766	49.9658			
3		11.898	24106.625	168748.172	49.6274			
Total			47804. 215	340029. 938	100.0000			

 1
 11.598
 976.781
 5968.438
 2.0723

 2
 11.898
 44995.953
 282048.281
 97.9277

 Total
 45972.734
 288016.719
 100.0000

Peak No.	RT(min)	Height	Area	% Area
1	4. 765	3365. 444	15588.560	1.8827
2	13.632	427.254	18123.023	2.1888
3	15. 265	263. 422	15125.823	1.8268
4	16. 532	47785.301	392320. 563	47.3816
5	17.232	47484.051	386844. 594	46.7202
Total		99325.472	828002.563	100.0000

Peak No.	RT(min)	Height	Area	% Area
1	34.848	4252. 729	72584. 242	50. 1869
2	35. 698	4299.750	72043. 555	49.8131
Total		8552. 479	144627.797	100.0000

Total

