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Abstract—In this letter, we first extend the convolution theory
of discrete Fourier transform (DFT) and introduce a structure of
layered fast Fourier transform (FFT). Based on this framework,
we propose novel asymmetric orthogonal frequency-division mul-
tiplexing (OFDM) systems that bridge general OFDM and single
carrier systems. Adaptive to the capability of the transceiver, asym-
metric OFDM systems provide significant flexibility in system de-
sign and operation. We show how effects of noise enhancement and
frequency diversity counteract each other in asymmetric OFDM
systems. Performance comparison with general OFDM and single
carrier systems is also given.

Index Terms—Fast Fourier transform (FFT), frequency diver-
sity, orthogonal frequency-division multiplexing (OFDM), peak-
to-average power ratio (PAPR).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing (OFDM)
is a spectrum-efficient signalling scheme to combat dense

multipath channels for broadband wireless communications.
However, OFDM systems also suffer from well-known prob-
lems including large peak-to-average power ratio (PAPR) [1]
and sensitivity to carrier frequency offset (CFO) [2]. As an
alternative solution, frequency-domain equalized single carrier
system (SC-FDE) [3] retains OFDM’s capability of combating
multipath while mitigating the PAPR and frequency offset
sensitivity problems. However, one problem with SC-FDE
systems is that the complexity in the transmitter and receiver
is very unbalanced. In this letter, we present asymmetric
OFDM systems that bridge the gap between general OFDM
and SC-FDE systems. The systems are developed based on a
novel “layered” fast Fourier transform (FFT) structure that is
an extension of the convolution property of the discrete Fourier
transform (DFT) [4]. The proposed asymmetric OFDM systems
provide flexibility in system design and operation by adapting
to the capability of the transceiver, such as the dynamic range
of power amplifier and battery status, and duplex requirements.
Notations: In this letter, symbols belonging to different layers
are represented with different accents: for a frequency-do-
main symbol , for an intermediate layer symbol , and
time-domain symbols have no accent.
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II. LAYERED FFT STRUCTURE

It is well known that the divide-and-conquer (D&C) algo-
rithm is the basis of FFT algorithms to compute the DFT. Below,
we recall the process of the D&C algorithm to calculate an

-point DFT of the signal , .
S1) Stack the input signal ,
column-wise into a matrix ,

, with and .
S2) Compute the -point DFTs for each row of , and
yield a new matrix , ,

with ,
, where .

S3) Multiply by the phase factors , where
, and generate a new matrix

with .
S4) Compute the -point DFTs for each column of , and
we get with

(1)

S5) Read the resulting matrix row-wise,
and the resulting output is the DFT of , ,

, with .
Given two -point signals , , and their circular convolu-

tion output , we know that their DFTs have the re-
lationship , where and denote the circular con-
volution and element-wise product of two vectors, respectively.
Now let us consider the relationship between the intermediate
outputs, that is, the per-row DFT outputs in Step S2, in the D&C
approach for , , and .

If we rearrange the frequency domain samples , , and
into matrices row-wise according to the reverse process
of S5 in the D&C approach, we get matrices ,

, , , with respective th
column vector

(2)

(3)

(4)

.
The reformatted frequency domain vectors retain the multi-

plication relationship . From (1), according to
the convolution property of DFT, it is straightforward to see
that for any , the vector equals to

the length- circular convolution of the two vectors
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and , . Thus, the th element in

can be represented as

(5)

where denotes modulo . Thus, for any
, we have

(6)

where . Equation (6) establishes the rela-
tionship of the intermediate outputs in the D&C approach. The
equation can also be expressed in matrix form. To summarize,
we have the following theorem.

Theorem 1: For two -point discrete signals and and
their circular convolution , their intermediate outputs, per-row
DFT outputs in the columnwise divide-and-conquer algorithm,
are connected by

(7)

where , , and are defined as

(8)

(9)

...
...

. . .
...

(10)

respectively.
Together with the circular convolution property of DFT, we

see a three-layer FFT structure: the input layer (time-domain
signals), the intermediate layer (per-row DFT outputs), and the
output layer (final frequency-domain signals). As an extension
to the general two-layer FFT structure (time domain and fre-
quency domain), this three-layer FFT structure provides more
flexibility in system design. By letting the inputs be in the in-
termediate layer instead of the frequency-domain or time-do-
main layers, we can develop, for example, the following asym-
metric OFDM system that bridges general OFDM and SC-FDE
systems.

III. ASYMMETRIC OFDM SYSTEMS

According to Theorem 1, we can see that OFDM and SC-FDE
systems correspond to and , respectively. We can
design asymmetric OFDM systems by choosing any factor
of , preferably a power of 2 for implementation convenience,
and letting , be the inputs. The value
of can be negotiated between the transmitter and receiver ac-
cording to their power supply, hardware capability (linearity of
power amplifier, capability of FFT module, etc.), and duplex re-
quirement. The baseband structure of the proposed asymmetric
OFDM system is shown in Fig. 1.

At the transmitter, input data are first coded, interleaved, and
modulated and then arranged into an array. The data in
the th column of the array are denoted as vector . A -point

Fig. 1. Block diagram of the proposed asymmetric OFDM systems.

IFFT is then applied to each row. Under the assumption that
the IFFT outputs are stored in the same array, then the outputs
are read out column-wise. In practical systems, this can be real-
ized by a rectangular interleaver. The output of the inter-
leaver is appended with a cyclic prefix (or zero padding). The
signal is transmitted over a channel with a digital tap-delayed
line (TDL) model . The channel is as-
sumed to be quasi-static, being constant over at least one OFDM
symbol period.

At the receiver, after removing the cyclic prefix, the samples
are input column-wise to a array. A -point FFT is
applied to each row. Assume the FFT outputs are stored in the
same array, and denote the FFT outputs in the th column as .
Now and have the relationship of

(11)

where is the channel matrix defined in (10), contain
AWGN samples, each having zero mean and variance . Note
that the samples in have the same mean and variance as the
noise samples introduced in the received time-domain signals,
because the FFT does not change the statistical property of the
AWGN.

Instead of directly computing the inverse of , we derive
the following efficient algorithm that enables simple one-tap
equalization as used in OFDM systems. Observe that is a
factor-circulant matrix [5], which can be diagonalized as

(12)

where is a diagonal matrix

(13)

is the -point DFT matrix, and the superscript denotes
the Hermitian conjugate. becomes a circulant matrix

with first column , and
the diagonal elements of equal to the Fourier transform of
this column vector.

Based on this diagonalization, a one-tap equalizer can be re-
alized by left multiplying by , obtaining

(14)
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Since the channel matrix is a diagonal matrix, a one-tap
equalizer, such as the zero-forcing (ZF) equalizer, can be re-
alized to remove the channel distortions. As a result of (14),
channel estimation can be implemented easily by transmitting
carefully chosen training symbols such that is a
vector with constant modulus.

In comparison of (14) with , , and , we note the fol-
lowing relationship:

(15)

which shows the connection between the intermediate and the
final outputs in the D&C algorithm. Equation (15) suggests that,
in an asymmetric OFDM system, part of the IFFT in the trans-
mitter is equivalently shifted to the receiver. In fact, -point
IFFTs, each requiring multiplications based on a
radix-2 algorithm, are transferred from the transmitter to the re-
ceiver. This viewpoint interprets the name of the asymmetric
OFDM system and can be used to generalize the system. The
presented structure so far has explicit interpretation from the
decimation-in-time FFT algorithm. Following the principle of
shifting a part of IFFT, asymmetric OFDM systems can be ex-
tended to be based on any FFT algorithm, for example, the dec-
imation-in-frequency FFT algorithm.

As a bridging system between OFDM and SC-FDE, asym-
metric OFDM provides various trade-offs between system
performance, complexity, and power consumption. Adjustable
system features include PAPR, frequency sensitivity, hardware
complexity and power consumption, and frequency diver-
sity. Compared to OFDM systems, asymmetric OFDM has
smaller PAPR, better frequency offset sensitivity (theoretically
verifiable), and better frequency diversity. Thanks to the inde-
pendence of input symbols, the PAPR of signals in asymmetric
OFDM systems is proportional to the size of IFFT (the value
of ), similar to that in OFDM systems. The reduced PAPR
can be quantified by comparing the PAPR of the outputs from

-point and -point IFFTs and could be 0–3 dB, depending
on the values of , , and the modulation scheme. Compared
to SC-FDE, asymmetric OFDM has less unbalanced com-
plexity between transmitter and receiver and is consequently
more suitable for distributed networks, where it is preferable
for transmitters and receivers to have similar complexity.
Due to the extra IFFT operation after single-tap equalization,
asymmetric OFDM suffers similar noise enhancement and
error propagation problems to SC-FDE. Next, based on a ZF
equalizer, we analyze the bit-error rate (BER) performance of
asymmetric OFDM systems, including OFDM and SC-FDE
sysems, and study how noise enhancement and frequency
diversity counteract each other.

A ZF equalizer uses inverse channel coefficients as equalizer
taps. Assume the receiver has perfect channel knowledge. Ac-
cording to (14), the estimated signal is given by

(16)

where denotes the estimate of .
The signal-to-noise power ratio (SNR) of can be com-

puted as

(17)

where denotes the absolute value of , and is the variance
of each symbol in . Note that we have used the results in
(15) and (3) to represent the channel coefficients in . When
BPSK modulation is applied, the BER of an asymmetric OFDM
symbol (including all , ) can be represented
as

(18)

where . Equation (18) also
represents the BER for general OFDM ( , ) and
SC-FDE ( , ) systems.

From (18), we can see both of the effects of noise enhance-
ment and frequency diversity. On the one hand, any small
channel coefficient results in noise enhancement and
error propagation in a group of data symbols. On the other
hand, frequency diversity is achieved by averaging the channel
power over the same group of symbols. Clearly, in OFDM
systems, there is no error propagation and inherent frequency
diversity, and limited frequency diversity is achieved by ex-
ternal methods, such as coding.

For the function of , the second derivative
of the function with respect to is given by

(19)

We can see that the function is convex when
and concave when . For two

asymmetric OFDM systems, one with parameters and ,
and the other with and where
and is a power of 2, we can rewrite their BER expressions such
that the Jensen’s inequality is applicable. According to Jensen’s
inequality, we can conclude that

if

if (20)

where

(21)

The performance bound given by the two inequalities is very
loose because the condition needs to be true for any , as shown
in (21). Nevertheless, from the inequalities, we can see the
trend that, when SNR is small, asymmetric OFDM systems
with smaller have better BER performance, while with SNR
increasing, systems with larger will become superior. The
exact SNR point corresponding to equal performance of two
systems depends on the channel condition. Thus, it is straight-
forward to see the performance difference between asymmetric
OFDM, general OFDM, and SC-FDE systems. Although this
result is obtained based on a single channel realization, it
is meaningful for package systems in quasi-static channels.
We will also see from the simulation results that, averaging
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Fig. 2. BER performance for uncoded asymmetric OFDM systems with BPSK
modulation, where P = 1 (OFDM), P = 32, and P = N = 256 (SC-FDE).

over hundreds of channel realizations from a specific channel
model, the BER comparison of asymmetric OFDM systems
with different gives the same relationship to the analytical
results here.

For asymmetric OFDM systems with , performance
can be significantly improved when advanced equalizers,
such as the minimum mean-squared error (MMSE) equal-
izer, are applied thanks to the reduced noise enhancement
effect. It is known that the MMSE equalizer helps general
OFDM little because ZF is already the maximum-likelihood
estimator for OFDM systems [6]. An MMSE equalizer, given
by , has marginally higher
complexity by requiring the estimation of noise variance.

IV. SIMULATION RESULTS

In this section, we present the BER performance of asym-
metric OFDM systems, compared with OFDM and SC-FDE
systems. The parameter is fixed at 256. System imperfec-
tions such as CFO and PAPR distortions are not introduced in
the simulation. In each simulation result, BER is averaged over
hundreds of channel realizations.

Fig. 2 shows simulation results for uncoded, BPSK modu-
lated asymmetric OFDM systems with (OFDM),

, and (SC-FDE) systems. The channel model
is adopted from HIPERLAN Model E [7], which is a dense in-
door multipath channel model with nonline-of-sight conditions.
Channel estimation is assumed to be perfect. Fig. 2 shows that
simulation results are a good match to the analytical results. We
can also see that an MMSE equalizer significantly improves the
performance of asymmetric OFDM and SC-FDE.

Fig. 3 shows BER performance for systems with 16QAM
modulation. The channel model is adopted from IEEE 802.16,
which is an outdoor channel model with a limited number of
taps. Channel is estimated using two training symbols based
on a ZF algorithm. From Fig. 3, we can see a similar trend, in
BER performance of asymmetric OFDM systems with different
values of , to that of Fig. 2 where BPSK modulation is used. In
fact, for various modulations including QPSK and 64QAM, in

Fig. 3. BER performance for uncoded asymmetric OFDM systems with
16QAM modulation and MMSE equalization where P = 1 (OFDM), p = 16,
P = 32, and P = N = 256 (SC-FDE).

our simulations, we have observed the similar trend and found
that asymmetric OFDM systems outperforms OFDM systems
at moderate SNR values (smaller than 25 dB) when an MMSE
equalizer is applied.

V. CONCLUSION

In this letter, based on a novel three-layer FFT structure, we
developed asymmetric OFDM systems that bridge between
OFDM and SC-FDE systems. The asymmetric OFDM sys-
tems have reduced PAPR and improved CFO sensitivity and
frequency diversity, compared to OFDM systems, and less
unbalanced complexity compared to SC-FDE systems. Perfor-
mance analysis shows that a “bridging” BER is achievable in
asymmetric OFDM systems. The asymmetric OFDM scheme
provides significant flexibility in system design and operation,
and it is particularly promising for distributed networks where
transceivers can negotiate link parameters according to their
hardware capability and battery status.
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