
Asymmetric optical loop mirror:
analysis of an all-optical switch
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We present an analysis of the optical loop mirror in which a nonlinear optical element is asymmetrically
placed in the loop. This analysis provides a general framework for the operation of a recently invented
ultrafast all-optical switch known as the terahertz optical asymmetric demultiplexer. We show that a
loop with small asymmetry, such as that used in the terahertz optical asymmetric demultiplexer, permits
low-power ultrafast all-optical sampling and demultiplexing to be performed with a relatively slow optical
nonlinearity. The size of the loop is completely irrelevant to switch operation as long as the required
degree of asymmetry is accommodated. This is therefore the first low-power ultrafast all-optical switch
that can be integrated on a single substrate.
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Introduction

Various all-optical switches have been proposed and
demonstrated. All of these switches use an optical
nonlinearity of some type, since all-optical switching
requires a nonlinear function to be performed on one
or more optical fields. The optical nonlinearities are
produced by electronic excitations of a material,
usually a semiconductor or a glass. Nonlinearities
tend to be relatively strong and slow when the
frequency of an optical field resonates with the fre-
quency of a long-lived excitation, permitting slow
switching with small switching energy. An example
of such a nonlinearity is modification of the refractive
index in a semiconductor through the photogenera-
tion of electron-hole pairs. On the other hand,
excitations produced when the frequency of an optical
field is detuned from the frequencies of excitation or
when the excitations are short lived lead to relatively
weak, fast nonlinearities. These permit fast switch-
ing but require large switching energy. An example
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of this type of excitation is the optical Kerr effect in
optical fiber, arising from nonresonant excitation of
bound electrons in the silica glass.

The fast response time of the Kerr nonlinearity in
silica fiber has prompted the development of several
types of all-fiber switches, capable of switching pulses
that are a picosecond long or less. Because the
optical Kerr effect in silica fiber is weak, these devices
require large switching energies or long lengths of
fiber to extend the interaction distance, or both.14

In order to reduce the size and the power require-
ments of an all-optical switch, researchers have inves-
tigated other materials with stronger nonlinearities.5-7

In particular, switches have been constructed by
incorporation of a nonlinear element (NLE) in a loop
mirror, permitting the switch to take advantage of
the loop's highly stable zero-background output.8' 2

However, in most switches of this type the basic
speed-power trade-off of the nonlinear element re-
mains. For example, Eiselt demonstrated a switch
with a semiconductor optical amplifier in a fiber loop;
the amplifier's strong, slow nonlinearity permits the
switch to operate with a switching energy of only 0.4
pJ, but the time resolution of the switch is limited by
the amplifier's 400-ps gain recovery time.'2

In contrast, a terahertz optical asymmetric demul-
tiplexer (TOAD) has been demonstrated that directly
addresses the problem created by the speed-power
trade-off by permitting a relatively slow, sensitive
nonlinearity to perform ultrafast switching.13 By
placing a NLE in a short loop mirror with slight
asymmetry, one can reduce the time resolution to far
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less than the recovery time of the optical nonlinearity.
Using semiconductor optical amplifiers with a gain
recovery time of 1 ns, researchers have used this
architecture to perform optical time-division demulti-
plexing at 9 Gbit/s (Ref. 14) and 50 Gbit/s.15

Recently demultiplexing was demonstrated at 250
Gbit/s with a bit-error rate of less than 10-9 and a
switching energy of 800 fj.1 6

Our purpose in this paper is to provide a general
analytical framework for the operation of the TOAD
switch and to place it within the broader context of
other switches that use a nonlinear optical element in
a loop mirror. After the analysis, we provide experi-
mental data to illustrate the main results and de-
scribe some applications.

Analysis of Switch Operation

General Formulation

A linear optical loop mirror consists of a 2 x 2 3-dB
coupler with two ports joined. Its properties and
applications are described in Refs. 17-20. Here we
consider a loop mirror in which a NLE is placed
asymmetrically in the loop (Fig. 1). The degree of
asymmetry is represented by the distance Ax between
the NLE and the midpoint of the loop. The control
is exercised by applying an optical control pulse to the
NLE, altering its absorption and/or refractive index,
and switching some portion of the input signal to the
output for the duration of the sampling window
created by the control pulse. The optical input
enters the loop through port 1 of the coupler, and the
switched optical output exits from port 2.

AX

M6- Control

Input Output

Fig. 1. Optical loop mirror with a nonlinear element (NLE) placed

asymmetrically in the loop at a distance Ax from the loop's

midpoint M. The optical control modifies the optical properties of

the NLE, causing the input signal to be switched to the output.

In the absence of a control signal the switch
operates as a linear loop mirror. The input signal
enters port 1 of the coupler with an intensity I, then
splits into two fields of intensity 1/2 at ports 3 and 4,
one propagating clockwise (CW) in the loop and the
other counterclockwise (CCW). (CW does not stand
for continuous wave in what follows.) As it crosses
from one side of the coupler to the other, the CCW
field undergoes a rr/2 phase delay relative to the CW
field. Then both fields travel the same distance in
the loop. To reach the output at port 2, the CCW
field must cross the coupler again. As a result, at the
output there is a superposition of two fields having
equal amplitudes but a r phase difference. The
resulting destructive interference prevents optical
power from exiting from the output, provided that
the relative polarization of the two fields does not
change as they traverse the loop. Therefore all of
the optical power entering the input must be reflected.
(In actual use an optical isolator can be placed at the
input to absorb the reflected power.) The loop can
thus be regarded as a white-light interferometer in
which the two arms are distinguished by the two
directions of propagation.

If a constant control signal is applied to the NLE,
its optical characteristics will be modified. However,
the two counterpropagating modes will interfere in
the same way as in the absence of the control signal
because the counterpropagating fields still experience
identical propagation characteristics. But if a time-
varying control signal is applied to the NLE, the
optical properties of the NLE become time dependent.
As a result, the destructive interference that leads to
field cancellation at the output is disturbed. If a
portion of the light traveling in the loop experiences
an absorption or an index difference relative to its
counterpropagating complement, light will emerge
from the output of the coupler.

Now we analyze the time-dependent operation of
the loop in more detail. In our analysis we make
several assumptions:

(1) Optical couplers are ideal. Commercially
available couplers approximate this ideal adequately.

(2) The input signal's intensity is sufficiently small
that it does not modify the optical properties of the
NLE, and neither the input nor the control signal
induces nonlinearities in the other parts of the loop.

(3) The relative polarization of the counterpropa-
gating CW and CCW fields is maintained as they
traverse the loop.

(4) No reflections occur at the interface between
the NLE and the loop medium. This assumption is
easily approximated in practice by use of antireflec-
tion coatings.

(5) The input signal can be distinguished from the
control signal. One realizes this in practice by keep-
ing the control signal out of the loop or by using
suitable wavelength or polarization filters. Simi-
larly we ignore noise that may be generated by the
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NLE, since it can largely be blocked with suitable
output filters.

The total field at port 2 of the loop is the sum of two
components, one from the CW field and one from the
CCW field. The output intensity is

cn
I0 .t(t) = 8r I Ecw(t) + Eccw(t) 12, (1)

where n is the index of the medium and Ecw ccw)(t)
represents the complex amplitude of the CW CCW)
field as it exits from port 2. For a monochromatic
continuous-wave optical input of frequency o, the
amplitudes at port 2 are

Ecw(t) = 21rlin) exp[-iwt + i-lcw(t) - ycw(t)], (2)

Eccw(t) = -( cn )exp[-iw)t + iccw(t) - yccw(t)],

(3)

where Iin is the input intensity incident upon port 1
and 'bcw(ccw)(t) and ycw(ccw)(t) represent the time-
dependent phase shift and attenuation that the CW
(CCW) field emerging from port 2 at time t experi-
enced as it traversed the NLE. The phase shift and
attenuation can depend on the frequency o. The
expression for Eccw(t) has a negative sign to account
for the two w/2 phase shifts that the counterclock-
wise field experiences crossing the coupler twice.

The attenuation and phase responses of the NLE to
the control signal can be complicated functions of
time. These responses represent changes in absorp-
tion and refractive index, and they depend on the
control signal and the properties of the NLE. These
details are not of interest here, although we do make
some observations about certain types of response
characteristics later in the paper.

Using exponential notation would be burdensome
for our purposes, so we represent attenuation with-
out it, defining the NLE's transmission A(t) for the
clockwise and counterclockwise fields as

Acw(ccw)(t) exp[-ycw(ccw)(t)]. (4)

We define the sampling function S(t) as the time-
dependent output intensity I)ut(t) divided by the con-
tinuous-wave input intensity Iin. Then, combining
Eqs. (1)-(4), we get

S(t) = /4{A2w(t) + ACw(t) - 2AcW(t)Accw(t)

x cos[Lw(t) - ccw(t)]1 (5)

This is the general expression describing the time-
dependent sampling of the loop's optical input by its
output.

Often an NLE is used in a manner in which the
time variation of either the transmission or the phase
shift is dominant. In these cases, we can simplify

Eq. (5), either by approximating cw(t) and PCcw(t) as
a constant phase shift +0 or by approximating ACw(t)
and Accw(t) as a constant transmission AO. We refer
to these as amplitude-modulated and phase-modu-
lated operation, respectively.

Zero-Length Approximation

We now employ an approximation that we call the
zero-length approximation. The condition for valid-
ity of this approximation is as follows. We define the
loop's time asymmetry At - Ax/V1 P, where v100 is
the speed of light in the loop medium, and similarly
we define the transit time of the NLE as
Ttransit L/VNLE, where L is the length of the NLE
and VNLE is the speed of light in the NLE. The
zero-length approximation applies if Ttransit << At.
This approximation leads to a simpler analysis, but
later in the paper we remove it.

In the zero-length approximation we therefore
ignore the finite length of the NLE and treat it as an
asymmetrically placed point element. Then the am-
plitude (and phase) changes experienced by the two
fields are identical except for a time shift, and we can
introduce new transmission and phase-shift variables
without the CW and CCW subscripts:

Acw(t - At) = Accw(t + At) - A(t),

cw(t - At) = kccw(t + At) - (t).

(6)

(7)

Substituting Eqs. (6) and (7) into Eq. (5), we get

S(t) = ¼/,{A2(t + At) + A2(t - At) - 2A(t + At)A(t - At)

x cos[4(t + At) - (t - At)]I. (8)

Loop with Large Asymmetry

It is useful to analyze two special loop configurations.
The first is a loop with large asymmetry. Represen-
tatives of this type of switch can be found in the
research described in Refs. 9-12. To define this
configuration, we consider the control signal to be a
pulse of some shape. The NLE responds to this
pulse. Before the control pulse appears, the trans-
mission A(t) and the phase shift P(t) of the NLE have
their steady-state values Ao and j0, respectively, and
after some finite time Tcontroi, they return to these
values. We define a zero-background transmission
A(t) and phase shift +(t) such that

A(t) A(t) - Ao,

+(t A () - k).

(9)

(10)

Thus these two new variables are zero outside some
period of duration Tcontrol.

A loop with large asymmetry is one in which the
inequality 2At > Tcontrol is satisfied. Continuing to
use the zero-length approximation for now, we
can see that the period of time that A(t + At) and
4(t + At) are nonzero does not overlap the period of
time that A(t - At) and 4(t - At) are nonzero. (We
assume that successive control pulses are separated
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by more than 2At + Tontroi)

tions to Eq. (8), we get
Applying these condi-

S(t) = A2t+A)+ A0 A(t + At)sin 2t A)

+A2(t - At) + \* -A~i2 4(t - At)
+ 4 0 t-tiisn 2 (11)

The first two terms on the right-hand side are
identical to the second two terms, apart from a time
shift 2At. Thus each control pulse causes two
nonoverlapping sampling windows to be opened be-
tween input and output. The two windows are
identical but separated in time by 2At. The duration
of each window is Tontroi, and therefore switching
cannot be performed faster than the recovery time of
the NLE. As a result, in this configuration the basic
speed-power trade-off of the NLE remains.

Loop with Small Asymmetry

Now we consider the second special loop configura-
tion, representing the configuration used in the TOAD
switch.13 In some ways it is the opposite of the loop
with large asymmetryjust described. Now the loop's
time asymmetry is much shorter than the response of
the NLE to the control pulse; thus the inequality
2At << Tontroi is satisfied. In general this yields
rather complicated results unless we specify that the
response of the NLE's optical properties to the con-
trol pulse consists of a fast transition with a short rise
time, followed by a period of slow relaxation with a
long fall time, with Trise < At << Tl. Therefore
when we call this a loop with small asymmetry, it is
with the understanding that the small asymmetry is
combined with occasional rapid transitions in the
transmission and/or the phase shift.

To analyze this configuration, we apply the approxi-
mations T

rise = 0 and Tfall = oo. Thus at some time to
the transmission A(t) steps from a value ofAo to Al, or
the phase shift cb(t) steps from a value of 4o to 1,, or
both. After the step, variations in A(t) and +(t) are
neglected until the next step. By inspection of Eq.
(8) we can determine the response of the sampling
function to the step. Before t = to - At and after
t = to + At, the sampling function S(t) is approxi-
mately zero. The first two terms in the braces are
approximately canceled by the third term because of
the slow variation in the transmission and the phase
shift. But for times to - At < t < to + At the
cancelation does not occur, and the sampling function
has a constant level:

1/4[A + A' - 2AoA cos(4o -

SWt) = for to - At < t < to + At . (12)

0 otherwise

Thus the loop with small asymmetry permits a
rectangular sampling window to be created from a
single rapid transition, with the width of the sam-
pling window determined by the time asymmetry of

the loop. This explains why the TOAD switch can
achieve a time resolution far below the recovery time
of the optical nonlinearity. Furthermore, the size of
the loop is completely irrelevant to switch operation
as long as there is enough room for the required
asymmetry.

The only restriction on operation is that another
sampling window cannot be created until a time
greater than Tfal has elapsed, permitting the nonlinear-
ity to recover. But modeling the transmission and
the phase shift as a step function involves two
approximations whose validity must be addressed.

First, in reality, T
rise > 0. As a result, the rising

and falling transitions of the rectangular pulse de-
scribed by Eq. (12) are not instantaneous, but require
a time Trise. This transition time can be quite small,
even for slow nonlinearities such as those associated
with interband transitions in semiconductors. The
reason is as follows: When we speak of an optical
nonlinearity in a material as fast or slow, we are
characterizing the time required for the optical prop-
erties to return to their normal, linear values after
the incident optical power is removed. The time
required for the nonlinearity to turn on can be much
shorter than this, since in the presence of an incident
optical field the electronic excitations can be induced
rapidly. As a first approximation, the time required
for an excited state to be generated is shorter than its
decay time by a factor equal to the average photon
occupation number of all the field modes capable of
inducing the excitation. The large occupation num-
bers achievable with laser excitation permit slow
nonlinearities to turn on rapidly. For example, gain
nonlinearities associated with interband transitions
in semiconductor optical amplifiers can exhibit subpi-
cosecond turn-on times.21 22

Second, rfi, is not infinite. As a result, the top of
the rectangular pulse described by Eq. (12) has a
descending slope. In addition, after the pulse has
ended, a small residual intensity remains at the
output for a period Tfall. However, it is straightfor-
ward to show that this error is proportional to
(At/Trfla)

2 and can be reduced to small values.

Effect of Finite Nonlinear-Element Length

Up to this point, we have considered the asymmetric
loop mirror with the approximation that the NLE has
zero length. This is usually a good approximation in
a loop with large asymmetry, since the loop's asymme-
try is generally much larger than the length of the
NLE. But in a loop with small asymmetry, such as
the TOAD switch, this approximation leads to an
incorrect conclusion. It suggests that the minimum
duration of the sampling window is determined ulti-
mately by the rise time of the nonlinearity, since in
principle the NLE can be placed arbitrarily close to
the center of the loop. In this subsection we show
that the finite length L of the NLE leads to an
additional limitation: a nonlinear element can pro-
duce a sampling window with a total duration no
shorter than twice the NLE's transit time, with a full

6836 APPLIED OPTICS / Vol. 33, No. 29 / 10 October 1994



width at half-maximum (FWHM) approximately equal
to the transit time. If a typical semiconducting
material is used as the nonlinear element, this implies
that, with a 100-rim-long NLE, the FWHM of the
sampling window is limited by the finite-length effect
to -1 ps.

If the NLE has finite length, we must be more
specific about the definition of the time asymmetry
At. We define it as the propagation delay from the
midpoint of the loop to the nearest edge of the NLE.
The midpoint of the loop is defined as the point at
which half the time required to traverse the loop has
elapsed, including the NLE's transit time.

Equation (5) expresses the sampling function in
terms of the transmission functions Acw(t) and
Accw(t) and the phase shifts cw(t) and
)ccw(t). With the zero-length approximation the

two transmission functions are time-shifted replicas
of each other, as are the phase shifts [Eqs. (6) and (7)].
In general this is not true for a finite-length NLE.
Instead Acw(t) can have a different shape from Accw
(t), as can 4cw(t) from ccw(t).

First, we analyze amplitude-modulated operation.
We must work in terms of the attenuation y(t) instead
of the transmission A(t); these are related through
Eq. (4). The attenuation ycw(t) represents the at-
tenuation that the CW field emerging from port 2 of
the coupler at time t experienced as it traversed the
NLE; the attenuation is similar for the CCW field.
To calculate the attenuation, we represent the NLE's
attenuation per unit length at a point x in the NLE
and a time t as at(x, t), where the origin x = 0 is at the
end of NLE nearest to the loop's midpoint. We
perform an integral through the NLE of the attenua-
tion per unit length in the frame of reference of the
CW or the CCW fields, which propagate at a speed
VNLE. The two moving frames of reference are
treated by the introduction of an additional time
integral and a delta function that moves with the
appropriate frame of reference:

ycw(t) = f dr dx a(x, T)

X 8(T - t + T1/2 - At - X/vNLE), (13)

A AL

yccw(t) = dT dx a(x, T)

X 8(T - t + T1/2 + At + X/VNLE). (14)

Here we have introduced a fixed time delay T1/ 2,
representing the propagation delay from the loop's
midpoint to port 2 of the main coupler.

In order to make the effects of finite NLE length
easier to visualize, we apply some simplifying assump-
tions to Eqs. (13) and (14). The first assumption is
that the NLE does not deviate strongly from transpar-
ency. Consider the fact that the optical control pulse
propagates through the NLE with a fixed speed.
Changes in the NLE attenuation a(x, t) are induced

by the control pulse. If the NLE is nearly transpar-
ent, the control pulse does not change much as it
propagates through the NLE, and the NLE attenua-
tion (x, t) propagates through the NLE without
changing shape, much as a pulse traveling at the
same speed as the control pulse. In general this
transparency assumption leads to results that are
correct to first order, and it makes it easier to
understand the finite-length effect.

Various methods of introducing the control pulse
into the NLE are possible. For example, if it is
injected normal to the loop, as suggested by Fig. 1, the
entire length of the NLE experiences the effect of the
control pulse simultaneously, and ax(x, t) = a(t). But
here we assume a configuration in which the control
pulse is injected into the loop through an intraloop
coupler so that it propagates in the loop in a clockwise
direction (Fig. 2 ). [If the intraloop coupler does not
discriminate between the control and the input sig-
nals, using, for example, wavelength or polarization
discrimination, it will permit some of the input signal
to leave the loop. This loss reduces the sampling
function S(t) by a constant factor.] We assume that
the control pulse propagates through the NLE at the
same speed as the CW and the CCW input fields.
This assumption is usually satisfactory, although it
may not be if the control and input signals have
different polarization states or are widely separated
in wavelength. With these assumptions the attenua-
tion in the NLE takes the form of a traveling wave,

4(X, t) = a(t - X/VNLE).

AX

Input

Fig. 2. Optical loop mirror with
optical control is introduced into
coupler.

(15)

L

Output
a finite-length NLE. The
the loop with an intraloop.
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Substituting Eq. (15) into Eqs. (13) and (14), we get

,ycw(t) = La(t - T1/2 + At), (16)

AL

yCcw(t) = f dx a(t - T1/2- At - 2X/VNLE)- (17)

Because the control pulse and the clockwise input
field propagate in the same direction and at the same
speed through the NLE, the effect of the control pulse
appears to be stationary in the frame of the clockwise
input field. This is why the copropagation integral
reduces to the simple form of Eq. (16), and the finite
length of the NLE has no effect on the shape of
'yCW(t). But the counterpropagation integral in Eq.
(17) is more complicated because the control pulse
and the counterclockwise input field move past each
other in the NLE, and the NLE's finite length alters
the shape of yccw(t).

An analysis of phase-modulated operation follows
the same lines. The phase shifts through the NLE

(cw(t) and ccw(t) can be calculated from the space-
and time-dependent phase shift per unit length,
which is the NLE's propagation wave number
k(x, t) = wn(x, t)/c, where n(x, t) is the space- and
time-dependent refractive index in the NLE. How-
ever, in this case, simple propagation integrals such
as those in Eqs. (13) and (14) cannot be written
because the CW and the CCW input fields can no
longer be treated as sampling functions traveling at a
fixed speed VNLE. Instead, the speed of each sam-
pling function changes as it propagates through the
NLE because of the changing index. In spite of the
added complexity the qualitative effect of finite NLE
length is the same for phase-modulated operation as
it is for amplitude-modulated operation.

Let us consider a specific example of the finite-
length effect for amplitude-modulated operation.
In this example the control pulse induces a steplike
change in the attenuation of the NLE from ao to al.
Therefore

a(x, t) = a(t - X/VNLE)

{to (t x/VNLE < 0, 0 < x < L)

a1 (t X/VNLE > 0, 0 < x < L)

It is straightforward to evaluate Eqs. (16) and (17) for
this simple case, then to substitute ycw(t) and yccw(t)
into Eqs. (4) and (5). In Fig. 3(a) we plot S(t) for the
case in which the NLE lies entirely to one side of the
midpoint. Arbitrary time units are used, with
Ttransit = 1 and At = 1.5. The finite length of the
NLE adds a tail of total length 2Ttransit to the trailing
edge of the 2At-wide rectangular sampling window.
Although the detailed shape of the tail depends on the
exact form of a(x, t), in general the effect is the same
for all NLE's with the same transit time. By chang-
ing the sign of At and VNLE, we can show that, if the
NLE lies on the other side of the midpoint, the extra
region is added to the leading edge of the rectangular

(e) <

CD

12 34 5 67 8
Time

Fig. 3. Finite-length effect for different positions of the NLE.
The sampling function S(t) is plotted for the NLE position shown in
the corner of each plot. (a), (b) The NLE is to the side of the

midpoint; (c), (d) one edge of the NLE is at the midpoint; (e) the

NLE is exactly centered in the loop.
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sampling window, as in Fig. 3(b). If the NLE is
moved closer to the midpoint of the loop, At can be
reduced to zero as one edge of the NLE reaches the
midpoint of the loop. Then all that remains is the
extra region with a total length of 2

Ttransit and a
FWHM of approximately Ttransit, as in Figs. 3(c) and
(d). Centering the NLE even more closely in the loop
does not reduce the duration of the sampling window.
However, it does provide more symmetry, as shown in
Fig. 3(e), in which the NLE is exactly centered in the
loop. The improved symmetry of the sampling win-
dow is obtained at the expense of a lower peak value;
compare Fig. 3(e) with Figs. 3(a)-3(d), which are
plotted on the same vertical scale. In spite of the
fact that the NLE is perfectly centered in the loop, it
is nevertheless the asymmetry of the loop that causes
the sampling window to exist. The asymmetry is
expressed by the fact that the intraloop coupler
appears on one side of the NLE rather than the other,
as shown in Fig. 2.

If the length of the NLE is reduced, Ttransit can be
reduced and a shorter sampling window can be
obtained. However, the height of the sampling func-
tion is then reduced. Since the required optical
output power of the switch is determined by subse-
quent processing stages, the power of the control
pulse must be increased to restore the loss introduced
by shortening the NLE. As a result, shortening the
NLE does not permit any fundamental improvement
in the gain-bandwidth product achievable from a
given optical nonlinearity.

In the foregoing analysis we have disregarded the
effect of the NLE's group-velocity dispersion. This
is a legitimate approximation because the finite-
length effect that we have described limits the short-

:3
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M
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est possible sampling window to approximately
Ttransit = Ln/c, where n is the refractive index, but the
temporal broadening that is due to group-velocity
dispersion limits the shortest sampling window to
(LXOAX/c)d2n/dX2 , where Xo and AX are the wave-
length and the spectral width of the control signal,
respectively. The first quantity is much larger than
the second, and the finite-length effect therefore
imposes a much stronger limitation than the group-
velocity dispersion effect.

Experimental Results and Discussion

In the case of a loop with large asymmetry our
analysis shows that each control pulse causes two
nonoverlapping sampling windows to be opened be-
tween input and output, identical but separated in
time by 2At. To illustrate this result, we con-
structed a fiber loop mirror with the effect of the NLE
simulated by a LiNbO3 electro-optic phase modulator,
which is placed in the loop with a time asymmetry
At = 360 ns. (In order to accommodate this much
asymmetry, the loop is 75 m long.) Using this
electrically controlled element, we can simulate the
behavior of a phase-modulated loop mirror for an
arbitrary time-varying phase shift +(t) by using a
waveform generator to produce the electrical input to
the phase modulator. In this experiment the electri-
cal input is a 400-ns long ramp with its amplitude
adjusted for 180° peak-to-peak phase modulation,
shown in Fig. 4(a). Since 2At > Tcontrol, the condi-
tion for large asymmetry is satisfied. Although the
generator and the phase modulator have relatively
low bandwidth, we can simulate ultrafast operation
by time scaling the time asymmetry At, the phase
shift ¢(t), and the sampling function S(t) by the same

1.2 1.6 2.0

Time (s)

Fig. 4. Experimental data obtained with an electro-optic phase modulator used to simulate the effect of the nonlinear element. (a) The
400-ns ramp applied to the phase modulator. The output intensity is shown for two different positions of the phase modulator relative to
the loop's midpoint. They correspond to a time asymmetry of (b) 360 ns (large asymmetry loop) and (c) 22 ns (small asymmetry loop).
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factor. A continous-wave optical signal from a
1320-nm semiconductor laser is introduced into the
loop's input so that the output intensity represents
the sampling function S(t). Figure 4(b) shows that
two identical pulses emerge from the loop, separated
by 2At. By simplifying Eq. (11) for the case of
phase-modulated operation, we obtain an expression
for the predicted sampling function:

S(t) = A [sin2 ) (t + At) + sin2 (t - At)] (19)

The phase shift induced by the phase modulator
depends linearly on voltage, and therefore +(t) is a
linear function of time during the control pulse.
Thus the intensity of each output pulse has a sin2(t)
time dependence.

In the case of a loop with small asymmetry, our
analysis shows that a short rectangular sampling
window can be created from a single rapid transition,
with the width of the window determined by the time
asymmetry of the loop. To illustrate this result, we
reduce the time asymmetry At from 360 ns to 22 ns.
The LiNbO3 electro-optic phase modulator and the
control pulse are the same as used for Fig. 4(b), but,
because of the reduced asymmetry, the loop is now
only a few meters long. The conditions for small
asymmetry are satisfied: the rise time for the con-
trol pulse transitions is 10 ns; thus 'Trise < At << Tfall-

Figure 4(c) shows the resulting sampling function
S(t). It consists of a rectangular pulse 2At wide,
generated by each control transition, in accordance
with Eq. (12). After the pulse, a residual output
intensity remains for the duration of the control
pulse, caused by the finite fall time of the phase shift

(t).
Now we cite our earlier results using a TOAD

switch13 to demonstrate the feasibility of all-optical
switching in a loop with small asymmetry and to
illustrate the finite-length effect. The configuration
is the same as that of Fig. 3(a). The NLE is a

500-pm InGaAsP polarization-insensitive traveling-
wave semiconductor optical amplifier with a transit
time Ttransit of 5 ps. Optical pulses with a 2-ps
FWHM are generated with a pulse-compressed
Nd:YLF laser, and they are split into fixed-delay,
20-fJ input pulses and variable-delay, 600-fJ control
pulses. The input pulses and the control pulses are
orthogonally polarized before they are introduced
into the loop, and the control pulses are blocked at the
output with a polarizer. The length of the loop in
these experiments is 2 m, but this length is irrel-
evant to the speed of the switch, which is controlled
by the asymmetry of the NLE in the loop, which
ranges from 10 cm to 1 mm. The dominant optical
nonlinearity arises from the gain saturation induced
by the control pulse. The rise time T

rise of the
transmission modification is 1 pS,

2 2 but its fall time

Tfall and total duration Tcontroj are 800 ps. This

pump-probe experiment actually measures the convo-
lution of S(t) with the input intensity Iin(t). As a

result, the measured sampling function has slower
transitions than the true sampling function S(t), and
this effect is noticeable when the sampling function
has a duration of the order of the 2-ps input pulse
duration.

Figure 5(a) shows the measured sampling function
for a time asymmetry At of 345 ps. Since At is
neither much smaller nor much larger than the
800-ps recovery time of the NLE, this loop does not
satisfy the conditions for large or small asymmetry.
However, the zero-length approximation is valid,
since Ttrasit << A t. Equation (8) describes the sam-
pling function under these conditions. Because the
NLE is predominantly transmission modulated, the
phase shift +)(t) can be treated as a constant, and Eq.
(8) reduces to

S(t) = /4[A(t + At) - A(t - At)]2 . (20)

When the first term in brackets turns on, it yields the
initial transient. Then the first term diminishes,
and, after a time 2At has elapsed, the second term
turns on, creating a notch in the sampling function.
Following this, both terms diminish with time, and
the sampling function slowly returns to zero.

In Fig. 5(b) the time asymmetry At is reduced to 65
ps, and therefore Trise < A t << Tfall, and this is a loop
with small asymmetry. The zero-length approxima-
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Fig. 5. Results of an all-optical switching experiment obtained

with a semiconductor optical amplifier used as a NLE. The

pump-probe experiment yields a profile of the sampling window

opened by the control pulse. The figure shows three different

positions of tlie optical amplifier, corresponding to a time asymme-

try of (a) 345 ps, (b) 65 ps, and (c) 4 ps.
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tion is still valid, since Ttr~a,,it << At. The sampling
function is negligible outside a time window of dura-
tion 2At, and within the window it has a relatively
constant level, given by Eq. (12). The rapid turn on
of the gain saturation mechanism causes both the
fast turn on and the fast turn off of the sampling
function.

In Fig. 5(c) the time asymmetry At is reduced to 4
ps. This is also a small asymmetry loop, but in this
case the zero-length approximation does not hold
very well because Ttransit = At. As a result, the
sampling function shown in the inset detail is asym-
metrical. Its leading edge has a rise time of a few
picoseconds, partly because the measurement con-
volves the sampling function with the 2-ps long input
pulse. But there is an extra region lasting 10 ps
attached to the trailing edge. The extra region arises
from the finite-length effect, which adds an additional
region 2Ttransit long to the trailing edge of the sam-
pling function, as noted in Fig. 3(a). If subpicosec-
ond control pulses were used and the NLE were
centered more closely in the loop, the total duration of
the sampling function would reach the minimum
permitted by this NLE, which is 2Ttransit = 10 ps, with
aFWHMof -5 ps.

Applications of the Small-Asymmetry Loop Mirror

Our analysis has shown that, with sufficiently small
asymmetry, a loop mirror with a nonlinear element in
the loop can perform ultrafast switching. The time
resolution of the switch is determined by the asymme-
try of the NLE within the loop, not by the relaxation
time of the nonlinearity. However, the relaxation
time of the nonlinearity does limit the repetition rate
at which switching can be performed. Therefore the
applications for the switch are those that demand of a
high sampling bandwidth but at a repetition rate that
is much smaller than the bandwidth.

Two such applications are time-division optical
demultiplexing and time sampling of repetitive opti-
cal signals. The usefulness of the small-asymmetry
loop mirror for time-division demultiplexing has been
demonstrated experimentally.'4' 6 For demultiplex-
ing and sampling applications the duration of the
sampling window must be short enough to sample the
modulation bandwidth of the optical input effectively.
However, these applications are not as demanding as
general purpose ultrafast all-optical switching be-
cause they give the switch a long time to recover
between sampling events. In the case of sampling
repetitive signals the sampling can be performed at a
low repetition rate, as is done frequently in electronic
sampling. Similarly in the case of optical demulti-
plexing the switch does not need to route another
optical pulse to the output until the next data frame,
providing a recovery time as long as the data frame
itself. If the small-asymmetry loop mirror is used in
applications such as these, size and cost constraints
demand that it be integrated on a substrate. Fortu-
nately the size of the loop is completely irrelevant to
switch operation as long as there is enough room in

the loop for the required degree of asymmetry. As a
result, the switch can easily be integrated, perhaps as
part of a more complex optoelectronic integrated
circuit.

Conclusions

In this paper we have described a general analytical
framework for an optical loop mirror in which a
nonlinear optical element is placed in the loop. We
have shown that, when a NLE is placed in an optical
loop mirror, two special types of loop exist, the
small-asymmetry loop and the large-asymmetry loop.
In a loop with small asymmetry a strong, slow
nonlinearity can perform ultrafast all-optical switch-
ing in demultiplexing and sampling applications.
Our analysis provides an analytical framework for
the operation of the TOAD switch.
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