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ABSTRACT

Recombination line profile shapes are derived for ionized spherical stellar
winds at radio wavelengths. It is assumed that the wind is optically thick owing to
free-free opacity. Emission lines of arbitrary optical depth are obtained assuming
that the free-free photosphere forms in the outer, constant expansion portion of
the wind. Previous works have derived analytic results for isothermal winds when
the line and continuum source functions are equal. Here, semi-analytic results are
derived for unequal source functions to reveal that line shapes can be asymmetric
about line center. A parameter study is presented and applications discussed.

RESUMEN

Se calcula la forma de los perfiles en radiofrecuencia de las líneas de recombi-
nación para vientos estelares esféricos ionizados. Se supone que el viento es óptica-
mente grueso debido a la opacidad libre-libre. Se obtienen líneas de emisión para
profundidades ópticas arbitrarias, suponiendo que la fotósfera libre-libre se forma
en la parte externa del viento, la cual se expande de manera constante. En traba-
jos anteriores se habían obtenido resultados analíticos para vientos isotérmicos, en
los que las funciones fuente para las líneas y el continuo se suponían iguales. En
este artículo obtenemos resultados semi-analíticos cundo las funciones fuente no son
iguales. Las líneas resultantes pueden mostrar formas asimétricas. Se presenta un
estudio de los parámetros y se discuten algunas aplicaciones.

Key Words: line: profiles — radiative transfer — stars: early-type — stars: winds,
outflows — radio lines: stars

1. INTRODUCTION

Radio astronomy has long proven to be an impor-
tant window into the study of stellar astrophysics,
and stellar outflows have been no exception (e.g.,
Dulk 1995; Güdel 2002; Kurt et al. 2002). For stel-
lar winds a key driver has been the prospect of mea-
suring wind mass-loss rates, Ṁ , from the excess in-
frared (IR) and radio continuum emission relative to
the stellar atmosphere (e.g., Panagia & Felli 1975;
Wright & Barlow 1975). Numerous studies have fo-
cused on determining Ṁ values based on this ap-
proach (e.g., Abbott et al. 1980; Abbot, Bieging, &
Churchwell 1981; Abbott et al. 1986; Bieging, Ab-
bott, & Churchwell 1989; Leitherer, Chapman, &
Koribalski 1995).

One of the main results from a consideration of
free-free excesses formed in the wind is that the spec-
tral energy distribution (SED) at long wavelengths

will have a power-law slope with flux fν ∝ λ−0.6.
However, this outcome depends on several assump-
tions: isothermal, spherical symmetry, large optical
depth, negligible contribution from the stellar at-
mosphere, and constant outflow speed. Cassinelli
& Hartmann (1977) explored the effects of different
power laws for the wind density and temperature dis-
tributions to relate the SED power-law slope to these
influences. Schmid-Burgk (1982) showed that such
SED slopes persist even for axisymmetric stellar en-
velopes, as long as the same power-law relations are
adopted. The main difference is that flux levels are
modified, which would have implications for inferring
Ṁ values.

Of greater relevance in recent decades has been
the abundance of evidence for clumping in massive
star winds. In this regard the literature is volumi-
nous, and there has even been a conference to fo-
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cus on the topic (Hamann, Feldmeier, & Oskinova
2008). The line-driven winds of massive stars (Cas-
tor, Abbot, & Klein 1975; Friend & Abbott 1986;
Pauldrach, Puls, & Kudritzski 1986) are known to be
subject to an instability (e.g., Lucy & White 1980;
Owocki, Castor, & Rybicki 1988). This instability
produces shocks in the flow and is a natural cul-
prit for stochastic wind clumping. The clumping is
well-known to affect the long wavelength emission
because of the density-square dependence of the free-
free emissivity. In the presence of clumping, the ra-
dio emission is overly bright for a given value of Ṁ as
compared to a smooth (i.e., unclumped) wind with
the same mass loss. Neglecting the clumping leads
to overestimates of Ṁ , scaling as the square root of
the clumping factor, or inverse to the square root of
the volume filling factor of clumps. These factors
will be defined precisely in the following section.

Clumping affects any density-square emissivity,
including recombination lines. Clumping has been
incorporated into several detailed complex numer-
ical codes for modeling massive star atmospheres
and their winds, such as CMFGEN (Hillier & Miller
1999) and PoWR (Hamann, Gräfener, & Liermann
2006). An important distinction for clumping is be-
tween “macroclumping” and “microclumping”. The
former leads to modifications of observables that can
depend on the shape of the clump and is sometimes
synonymous with a “porosity” treatment. The latter
occurs when clumps are all optically thin, so that
the radiative transfer does not depend on details
of clump morphology. Consequently, microclumping
can be handled in terms of a scale parameter, and in
fact does not alter the SED slope relative to an un-
clumped wind (Nugis, Crowther, & Willis 1998). Ig-
nace (2016a) considered the impact of macroclump-
ing vs microclumping for ionized winds at long wave-
lengths.

This contribution is concerned with modeling a
radio recombination line (RRL) profile shape that
also includes continuum free-free opacity. The prob-
lem has been addressed many times before. Ro-
dríguez (1982) derived the line profile shape for this
case, with the interest of supplementing the use of
the continuum to obtain Ṁ with line broadening
formed in the same spatial locale to obtain the wind
terminal speed v∞. Hillier, Jones, & Hyland (1983)
did so as well. Ignace (2009) repeated the deriva-
tion, and expanded the consideration to include line
blends. All of these treatments assume that the
source function for the line and continuum is the
same, as given by the Planck function for an isother-
mal wind. Using a numerical radiative transfer cal-

culation, Viner, Vallee, & Hughes (1979) showed
that an asymmetric line shape can result when the
line and continuum source functions are unequal.
Here, this result is explored further through analytic
derivations. § 2 introduces the model assumptions
and presents a derivation for the line shape. Unlike
most previous treatments, the derivation also allows
for a power-law distribution of microclumping in the
wind. § 3 provides for a parameter study for line
profile shapes. § 4 discusses relevant applications for
various astrophysical sources.

2. RADIO RECOMBINATION LINE MODELING

Various authors have addressed the relevance of
non-LTE effects for interpreting observed RRLs. A
discussion of progress on the topic can be found in
Gordon & Sorochenko (2002). Relevant to wind-
broadened emission lines, Viner et al. undertook a
calculation of departure coefficients for studies of
H ii regions. As previously noted, they allowed for
spherical outflow and found that line shapes can be
asymmetric. Peters, Longmore, & Dullemond (2012)
conducted a similar study for H ii regions, and elab-
orated further on line asymmetry for an outflow.
However, neither Viner et al. nor Peters et al. ex-
plored the possibility of analytic solutions for the ra-
diative transfer. Here, the approach largely follows
Ignace (2009), but relaxing the assumption that the
line and continuum source functions are equal. The
primary assumptions of the model are as follows:

i. The wind is spherically symmetric in time aver-
age.

ii. The wind is optically thick to free-free opacity.
The line can be thin or thick.

iii. While the line and continuum source functions
may not be equal, they are taken as constant
with radius.

iv. Microclumping is included in the treatment,
specifically as a power-law distribution1 with ra-
dius. Clumping in massive star winds is both
predicted and measured to vary with radius
(e.g., Runacres & Owocki 2002; Blomme et al.
2002, 2003; Puls et al. 2006).

1The additional power-law distribution need not be at-
tributed to clumping. It could be attributed to something
else that modifies the density. However, it cannot be the ve-
locity law, since that would lead to a different geometry for
the isovelocity zones and would invalidate the derivation that
follows. The inclusion of the additional power law follows the
spirit of the approach in Cassinelli & Hartmann (1977).
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ASYMMETRIC RADIO RECOMBINATION LINES 33

Fig. 1. Coordinate definitions used in the derivation for
the line and continuum emission from a spherical ionized
wind. See text for explanation. The color figure can be
viewed online.

2.1. Wind Parameters

Spherical symmetry requires the wind to have a
strictly radial wind velocity and density. Being opti-
cally thick to free-free opacity, only the large radius
flow at constant expansion will be considered. The
wind terminal speed is represented by v∞. The wind
also has a time-average mass-loss rate of Ṁ , and the
star has radius R∗.

Microclumping is represented as

〈ρ2〉 = Dcl 〈ρ〉
2, (1)

where 〈x〉 represents spatial averaging. On the right-
hand side, the average density is given by the smooth
wind relation for spherical symmetry, with

〈ρ〉 =
Ṁ

4π R2
∗
v∞

(

R∗

r

)2

≡ ρ0

(

R∗

r

)2

. (2)

For emissivity jν ∝ ρ2, the emission is enhanced
above the smooth wind by the clumping factor Dcl.
It is common to represent the clumping in the wind
with a volume filling factor, fV = D−1

cl . Both ap-
proaches are used in the literature (c.f., clumping fac-
tor: Hamann & Koesterke 1998 or Ignace, Quigley,
& Cassinelli 2003; volume filling factor: Abbott et
al. 1981 or Dessart et al. 2000).

For this study the clumping factor is allowed to
vary with radius as a power law, with

Dcl ∝ r−m. (3)

The case of m = 0 is for clumping that is constant
throughout the flow; m > 0 implies that clumping
declines with radius; m < 0 is the opposite case.
(Note that some care must be taken with use of the
power law for clumping, since Dc ≥ 1.)

2.2. Line and Continuum Opacities

The free-free opacity, κν , is given by

κν ρ = Kff ni ne, (4)

where ni = ρ/µimH is the number density of ions,
with µi the mean molecular weight per free ion; ne =
ρ/µemH is the number density of electrons, with µe

the mean molecular weight per free electron; mH is
the mass of hydrogen; and (Cox 2001)

Kff = 3.692× 108
(

1− e−hν/kTC

)

Z2
i gνT

−1/2
C ν−3.

(5)
In the preceding equation, h is Planck’s constant, k
is the Boltzmann constant, TC is the temperature of
the gas appropriate for the continuum emission, Zi is
the root mean square ion charge, ν is the frequency,
and gν is the Gaunt factor.

Figure 1 shows the geometry for evaluating the
optical depth τ along a ray. Cylindrical coordinates
for the observer are (p, α, z), with the observer lo-
cated at great distance along the +z-axis. Spherical
observer coordinates are (r, θ, α), with r2 = p2 + z2.
The continuum optical depth along a ray of fixed
impact parameter, p, is

τC = TC(λ)

∫

ρ̃2(r̃)Dcl(r̃) dz̃, (6)

where x̃ signifies a normalized parameter, in this case
ρ̃ = ρ/ρ0 and lengths are relative to R∗, and the
optical depth scaling is

TC =
Kff R∗ ρ

2
0

µi µe m2
H

. (7)

At long wavelengths that are the focus of this pa-
per, TC ∝ gν λ

2 for the Rayleigh-Jeans limit, and
gν ∝ λ0.1.

The line opacity is somewhat similar to that of
the continuum in the sense that there is a depen-
dence on the square of the density for recombina-
tion. Assuming that the wind speed is highly super-
sonic, the line optical depth can be approximated
from Sobolev theory (Sobolev 1960). The line opti-
cal depth becomes

τL =
κL ρ λ

(v∞/r) (1− µ2)
, (8)
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where κL ρ ∝ Dcl ρ
2 F (TL), for F (TL) a function of

temperature appropriate for the line emission, and
µ = cos θ.

For the case of constant expansion of the wind at
v∞, the line-of-sight velocity shift due to the Doppler
effect is vz = −v∞ µ. It is convenient to introduce a
normalized velocity shift with

wz = vz/v∞ = −µ. (9)

Also note that p = r sin θ. Then the line optical
depth becomes

τL = TL p̃−3−m (sin θ)1+m, (10)

where the power-law dependence of Dcl with radius
has been substituted into the expression, along with
ρ̃2 = r̃−4, and TL is the optical depth scaling for the
line. Casting the line optical depth in terms of p and
θ will prove useful for solving the radiative transfer
problems in the following sections.

2.3. Solution for the Case of SL = SC

When the line and continuum source functions
are the same, let S0 = SL = SC . At wavelength λ,
just outside the maximum velocity shift of the line,
the flux of continuum emission is given by

fC =
2πR2

∗

d2

∫

∞

0

Iν p̃ dp̃, (11)

where Iν is the emergent intensity as given by

Iν = S0

[

1− e−τC(p̃)
]

. (12)

When the wind is optically thick, such that the ex-
cess emission from the wind greatly exceeds the at-
tentuated stellar emisison through the wind, the ra-
diative transfer has a well-known solution when there
is no clumping (Panagia & Felli 1975; Wright &
Barlow 1975). When constant clumping is present
(m = 0), the spectral energy distribution is un-
changed, and the flux is simply enhanced above that
of a smooth wind (Nugis et al. 1998).

Ignace (2009) also showed that an analytic so-
lution can result with a power-law distribution in
the clumping. The following integral relation will be
found of general use in subsequent steps:

∫

∞

0

(

1− e−axβ
)

x dx =
1

β
Γ

(

2

β

)

a2/β , (13)

where Γ is the Gamma-function.

For the case at hand, the continuum optical
depth is

τC(p̃) =

∫ +∞

−∞

TC
dz̃

r̃4+m
(14)

= TC p̃−3−m

∫ π

0

(sin θ)2+m dθ (15)

= TC p̃−3−m Gm(π), (16)

where the second line above uses a change of variable
to θ, with tan θ = p/z, and

Gm(θ) =

∫ θ

0

(sinx)2+m dx. (17)

The flux of continuum emission becomes

fC =
2πR2

∗

d2
S0

(

1

3 +m

)

Γ

(

2

3 +m

)

×

[Gm(π) TC(λ)]
2/(3+m)

. (18)

In the Rayleigh-Jeans limit, the continuum flux will
have a power-law slope of −2 + 4.2/(3 + m), with
S0 scaling as λ−2 for the Planck function. When
m = 0, the canonical slope of −0.6 results. Formally,
the analytic solution of equation (18) requires that
m > −1.

Within the line, the solution is really no more
complicated. Again, Ignace (2009) showed that

f(wz) =
2πR2

∗

d2
S0

∫

∞

0

{1− exp [−(TCGm(π)+

TL sin θ)p̃−3−m
]}

p̃ dp̃. (19)

While the argument of the exponential now has two
terms, the form of the integral is just like that of the
pure continuum. The analytic result is

f(wz) =
2πR2

∗

d2
S0

(

1

3 +m

)

Γ

(

2

3 +m

)

×

[Gm(π)TC(λ) + TL sin θ]
2/(3+m)

. (20)

Note that sin θ =
√

1− w2
z . When m = 0, the re-

sult of Rodríguez (1982) is recovered. The foremost
outcome for equal line and continuum source func-
tions is that regardless of the value of m, the line
profile is always symmetric about line center. How-
ever, when the two source functions are not equal,
the line shape will be asymmetric, as demonstrated
in the next section.
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2.4. Solution for the Case of SL 6= SC

In the previous section, a relatively complicated
radiative transfer problem for line and continuum
was found to have an analytic solution. The simpli-
fications required to obtain that solution were spher-
ical symmetry, time-independent flow, and the limit
of constant wind expansion. Variation in the clump-
ing factor could be included if the variation could be
treated as a power law. Especially important was
that both the free-free and line opacities scaled as
the square of density.

The final key assumption was that the line and
continuum source functions were equal. However,
this assumption can be relaxed to allow for unequal
source functions (yet still constant throughout the
flow at large radius). In this case the solution for the
emergent intensity is more complicated, and becomes

Iν(p̃, wz)=SC

(

e−τW− e−τC
)

e−τL+SC

(

1−e−τW
)

+

SL

(

1− e−τL
)

e−τW . (21)

This expression has three terms. A ray at impact
parameter p̃ intersects the conical isovelocity zone in
the form of a ring. Considering just one point on this
ring, corresponding to z̃ for a given velocity shift wz,
we have two path segments and one point to con-
sider for the accumulation of sinks and sources that
contribute to the emergent intensity. The first term
in the expression is for the continuum emission up
to the point of interest, and then its attenuation by
the line opacity at the point. The second term is for
the continuum emission from the point of interest to
the observer. The third term is the contribution by
the line emission, as attenuated by the foreground
continuum opacity. Thus as before, τC is the to-
tal continuum optical depth along the ray, and we
also have τW as the continuum optical depth from
the observer to the point of interest where the line
emissivity contributes to the emission.

When SL = SC , terms involving τW cancel out.
With unequal source functions, the dependence on
τW persists. The emergent intensity now becomes:

Iν(p̃)=SC

(

1− e−τC−τL
)

− (SL − SC) e
−τW−τL +

(SL − SC) e
−τW . (22)

For this expression the first term closely mimics
the result from the preceding section when SL =
SC . Thus the other two terms in the arrangement
of equation (22) represent modifications when the
source functions are unequal.

The flux still has an analytic solution. However,
an additional standard integral relation is required,
of the form

∫

∞

0

x−β e−ax dx = Γ(1− β) aβ−1. (23)

This relation can be applied to the solution for
the flux by allowing x = p̃−3−m, for which p̃ =
x−1/(3+m). One also has pdp = −(3 + m)x−β dx
with β = (5 +m)/(3 +m).

The flux in the continuum, outside the velocities
of the line, is the same as in the preceding section.
However, within the line, the flux now becomes

f(wz)

f0
=

(

1

3 +m

)

Γ

(

2

3 +m

)

×

[

Gm(π)TC(λ) + TL(sin θ)
1+m

]2/(3+m)
−

δLCΓ

(

−2

3 +m

)

×

[

Gm(θ)TC(λ) + TL(sin θ)
1+m

]2/(3+m)
+

δLC Γ

(

−2

3 +m

)

[Gm(θ)TC(λ)]
2/(3+m)

, (24)

where

δLC =
SL

SC
− 1, (25)

and

f0 =
2πR2

∗

d2
SC . (26)

It is frequently the case that line profile data are
plotted as continuum normalized. The continuum-
normalized emission line profile is given by

f(wz)

fC
=

[

1 +
tLC

Gm(π)
(sin θ)1+m

]

+ δLCγm ×

{

[

Gm(θ)

Gm(π)
+

tLC

Gm(π)
(sin θ)1+m

]2/(3+m)

−

[

Gm(θ)

Gm(π)

]2/(3+m)
}

, (27)

where

tLC(λ) = TL/TC , (28)

and

γm = −(3 +m)
Γ[−2/(3 +m)]

Γ[+2/(3 +m)]
, (29)
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Fig. 2. Continuum normalized emission line profiles for
the case of m = −0.5. The 4 panels are: upper left for
δLC = −0.15, lower left for δLC = +0.23, upper right
for δLC = +0.62, and lower right for δLC = +1.0. In
each panel, the 5 line profiles are shown for tLC = 0.32

(dot-dashed), 0.56 (long dashed), 1.0 (short dashed), 1.8
(dotted), and 3.2 (solid), from the weakest line to the
strongest. Lines are plotted against normalized velocity
shift. Note that each panel has a different scale.

where the negative anticipates that the Gamma func-
tion in the numerator is also negative.

Note the following special cases. Of course, where
there is no line opacity, the radio SED will be a power
law in wavelength with

fν ∝ Bν T
2/(3+m)
c ∝ g2/(3+m)

ν λ−2(1+m)/(3+m) ,
(30)

for SC = Bν(TC). The opposite extreme occurs
when the line opacity is significant, but the contin-
uum is negligible. The emission line profile shape
becomes

f(wz) ∝ SL (TL)
2/(3+m)

(

1− w2
z

)1/(3+m)
. (31)

Note that the line shape is symmetric about line cen-
ter in the limit of a strong line. Wavelength depen-
dence pertinent to the specific line transition is im-
plied through the factors SL and TL.

Equation (27) is the main result of this study.
The first term represents a symmetric component to
the emission line profile. The subsequent two terms
contribute generally to asymmetric influences to the

Fig. 3. As in Figure 2, except for m = 0.

line in the form of Gm(θ). These influences depend
on the clumping power-law exponent m, on the ratio
of the source functions SL/SC , and on the ratio of
optical depths TL/TC . Note that if δLC > 0, the
line is in emission, whereas for δLC < 0, the line is
in absorption. Illustrative examples are given in the
following section.

3. RESULTS

Figures 2–4 provide illustrative results for line
profile shapes. Figure 2 shows results for m = −0.5
(i.e., clumping that increases with radius); Figure 3
for m = 0 (i.e., clumping that is constant with ra-
dius); and Figure 4 for m = +1 (i.e., clumping
that declines with radius). Each figure has 4 pan-
els: upper left is for δLC = −0.15, lower left is for
δLC = +0.23, upper right is for δLC = +0.62, and
lower right is for δLC = +1.0 for Figures 2 and 3, but
δLC = −0.1, 0.4, 0.9, and 1.4 for Figure 4. Each panel
has 5 line profiles, with tLC = 0.32, 0.56, 1.0, 1.8, and
3.2, from the weakest line to the strongest. The pro-
files are continuum normalized and plotted against
velocity shift, wz. Note that each panel has a differ-
ent ordinate scale.

When δLC < 0, the line profile is actually in
absorption. For m = +1, the line shape takes
the appearance of a weak P Cygni line shape, with
blueshifted net absorption and redshifted net emis-
sion.

For m = −0.5, the line profiles are more symmet-
ric about line center as compared to either m = 0.0
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Fig. 4. As in Figure 2, except for m = 1 and with δLC =

−0.1, 0.4, 0.9, and 1.4.

or m = +1.0. As m approaches −1, the line pro-
file becomes perfectly symmetric, because the fac-
tor contributing to the line asymmetry cancels ex-
actly when 2/(3 +m) = 1. As m increases, the line
shapes become increasingly asymmetric with the line
skewed preferentially toward blueshifted velocities.
This is natural generally because the attentuation
of line emission from the far-side hemisphere of the
wind is greater than from the near-side hemisphere.
When SL = SC , absorption is exactly compensated
by emission, and no asymmetry in the line can re-
sult. For the given assumptions, the line asymmetry
occurs only when the source functions are unequal.

The line profiles display some degeneracy be-
tween δLC and tLC . As tLC becomes large, asym-
metry in the line shape lessens, in the sense that the
peak emission shifts closer to line center. A large
line optical depth means that a (positive) δLC has
less influence on the line shape. Generally, tLC con-
trols the degree of asymmetry in the line, and δLC

acts as an overall amplitude for the line emission (or
line equivalent width).

4. CONCLUSIONS

The focus of this contribution has been to high-
light the asymmetry of RRLs arising from a spheri-
cal wind using an analytic derivation. Previous ana-
lytic work produced symmetric line shapes. Numeri-
cal calculations have demonstrated that asymmetric
lines can be produced. Here, with the assumption

Fig. 5. The line profiles for the case m = 0.0 shown to
highlight the evolution of line asymmetry as a function
of tLC . The line profiles have been continuum subtracted
and normalized to a peak emission of unity. The parame-
ter δLC = 0.5 was held fixed. The line profiles are shown
for log tLC = −0.5 (red), −0.125 (blue), +0.25 (green),
+0.625 (magenta), and +1.0 (black). The color figure
can be viewed online.

of constant but unequal line and continuum source
functions, asymmetric line shapes are produced. The
derivation allows for the presence of microclumping
in the wind in terms of a power-law distribution (ris-
ing or declining with radius from the star). While
the clumping distribution can impact line asymme-
try, the line asymmetry results even with constant
clumping, or no clumping whatsoever. Under the
model assumptions, emission line asymmetry arises
from the continuum opacity (specifically the appear-
ance of the term with Gm(θ) in equation [27]) that
absorbs the redshifted emission from the far hemi-
sphere more than the blueshifted emission from the
near hemisphere. The result is a line shape with
blueshifted emission peak. (The same effect arises in
X-ray lines; c.f., Ignace 2016b).

RRLs are vigorously pursued as a diagnostic of
source properties, from kinematics to geometrical as-
pects. Peters, Longmore, & Dullemond (2012) have
made an in-depth study of various factors that af-
fect the flux of line emission and the shape of the
line profile, including line asymmetry. Observa-
tional motivation for understanding line asymmetry
of RRLs includes some objects as the early-type bi-
nary MWC349, specifically the H76α line (Escalante
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et al. 1989). Understanding the line formation is key
for distinguishing between radiative transfer effects
for the line formation versus the influence of aspher-
ical effects intrinsic to the source, such as binarity,
or asymmetric mass-loss, or flow geometry. Appli-
cations for such effects include emission-line objects
like MWC349 (e.g., LkHα 101; Thum et al. 2013),
outflow from star-forming clumps (e.g., Kim et al.
2018), and planetary nebulae (e.g., Ershov & Berulis
1989; Sánchez Contreras et al. 2017). Analytic so-
lutions are valuable to these studies in two main re-
spects: (a) they allow for rapid evaluation of pa-
rameter space that can be honed with more detailed
numerical calculations to fit the data, and (b) they
are important for providing non-trivial benchmarks
against which numerical codes can be tested.

The author expresses appreciation to an anony-
mous referee for several helpful comments.
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