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ABSTRACT 

To create asymmetric somatic hybrids, the genome of the so-called donor protoplast is fragmented prior to protoplast 
fusion. As a result, only a limited amount of the donor genome is transferred to the fusion product. This technique can 
circumvent some commonly observed problems related to symmetric fusion and offers a practical breeding tool for 
asexual hybridization. Genomes are typically fragmented by irradiation, microprotoplast production or application of 
metabolic inhibitors such as iodoacetamide. Irradiation and microprotoplast production fragment the nuclear genome, 
whereas iodoacetamide inactivates the cytoplasmic genome. It can therefore be used to introduce cytoplasmic male ste- 
rility, an important practical application. For hybrid verification and genome characterization, molecular markers and 
cytogenetic techniques are applied. This review highlights and discusses progress made during the last decade in sper- 
matophytes asymmetric protoplast fusion. 
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1. Introduction 

Plant cells from which the cell wall has been enzymati- 
cally or mechanically removed are called protoplasts. 
Theoretically, protoplasts are totipotent, meaning that 
after their isolation and subsequent culture they have the 
capability to dedifferentiate, re-start the cell cycle, go 
through repeated mitotic divisions and then proliferate or 
regenerate into various organs. Fusion of protoplasts 
from different species can therefore be a practical breed- 
ing tool [1] and circumvents sexual hybridization related 
prezygotic or postzygotic barriers [2]. Somatic hybridi- 
zation differs from other techniques in many respects. 
When comparing somatic hybridization to transgenic 
approaches, somatic hybridization enables broadening of 
the germplasm base, allows the transfer of uncloned mul- 
tiple genes and generates products that are not subjected 
to the same legal regulations as transgenic lines [3,4]. 
Also, it transfers both mono- and polygenic traits [5]. 
The first protoplast fusion was described more than a 
century ago by Küster [6]. Tobacco was the first crop in 
which successful interspecific somatic hybridization was  

reported [7]. Since then, improvements and somatic hy- 
brids have been made in many species and complete plant 
regeneration was accomplished. A detailed historical over- 
view of breakthroughs in protoplast related research is 
incorporated in Gamborg [8] and Davey et al. [9]. 

Protoplast fusion can be either symmetric or asymmet- 
ric depending on the nature of genetic contribution of the 
fusion partners. A somatic breeding protocol can typi- 
cally be subdivided into the following steps: isolation, 
fragmentation (in case of asymmetric hybridization), fu- 
sion, regeneration and selection [10,11] (Figure 1). In 
symmetric fusion the complete genomes of both parent 
protoplasts are fused. However, when two complete ge-
nomes fuse, a phenomenon called “gene conflict” may 
arise, because certain chromosomes repel one another. 
Moreover, the technique introduces a significant amount 
of unwanted genetic material. These limitations result in 
abnormal growth, regeneration of hybrids with low fertil-
ity, non-rooted shoots, slow hybrid growth, and recalci-
trant calli or microcalli [2]. 

In asymmetric fusion, after genome fragmentation 
only a limited amount of one genome is transferred to the  
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Figure 1. Schematic representation of symmetric and asym- 
metric somatic hybridization techniques. 
 
fusion product [12,13] (Figure 1). Cytoplasmic genomes 
can also be recombined with nuclear genomes for appli- 
cations such as cytoplasmic male sterility (CMS) intro- 
duction [11]. The technique is being applied to circum- 
vent the above mentioned barriers in symmetric fusion. 
For example, symmetric hybrids between Brassica napus 
and Lesquerella fendleri are self-sterile, whereas asym- 
metric hybrids between the same fusion parents are self- 
fertile [14]. Similarly, symmetric fusion between Ory- 
chophragmus violaceus and B. napus yields sterile hy- 
brids, whereas asymmetric hybrids are fertile and can set 
seeds [15]. By introgressing fewer genes than after sex- 
ual crossing or symmetric somatic fusion, the number of 
backcrosses can also be significantly reduced. Genome 
fragmentation of the donor parent encourages the elimi- 
nation of much of its redundant genetic material in the 
somatic hybrid. Moreover, in asymmetric fusions, most 
karyotype instability causing donor genes are eliminated 
during the first post-fusion mitoses, as opposed to sym- 

metrical fusions after which eliminations can occur up to 
the first sexually derived generation [16]. In other words, 
not only does asymmetric fusion introduce fewer genes 
in a recipient genome after fragmenting the donor ge- 
nome, but elimination of disadvantageous genes or chro- 
mosomes also proceeds quicker. Nevertheless, chromo- 
somes and chromosome fragments can still be lost during 
meiosis due to rearrangements [17]. 

The objective of this review is to provide an overview 
of the development of technologies for fragmentation and 
screening. Besides the progress made in spermatophytes 
asymmetric protoplast fusion related research during the 
last decade is highlighted and discussed. 

2. Fragmentation Techniques 

In order to obtain asymmetric fusions, only partial ge- 
nomes are transferred. Several techniques can be used for 
genome fragmentation of the so-called “donor” genome: 
irradiation, microprotoplasts (MPPs), or metabolic in- 
hibitors as iodoacetamide (IOA). In some cases asym- 
metric fusions were realized without fragmentation treat- 
ment. The production of these asymmetric hybrids de- 
creased possible long term irradiation effects on hybrid 
growth and development [18]. 

2.1. Irradiation 

Genome fragmentation by irradiating can be achieved by 
using either ionizing radiation techniques (X or gamma 
rays) or non ionizing radiation (UV rays). Irradiation 
often induces random chromosome breakage, but also 
gene deletion and rearrangement and can be responsible 
for hybrid sterility [19]. The first application of X-rays to 
obtain asymmetric hybrids was performed in parsley [20]. 
UV light used to create asymmetric hybrids was used for 
the first time on Nicotiana donor protoplasts [21]. Earlier, 
X or gamma rays were more frequently used for donor 
protoplast fragmentation, but nowadays UV treated pro- 
toplasts are more widely applied. Both irradiation types 
efficiently induce asymmetric somatic hybrids in a dose- 
dependent manner, e.g., between Brassica napus and 
Arabidopsis thaliana [22]. Nonetheless, within a single 
species susceptibility towards different irradiation types 
can vary strongly [23]. Hall et al. [24] investigated 
whether UV radiation could be used as an alternative for 
ionizing radiation techniques. They found that UV had a 
detrimental effect on sugar beet protoplasts: resynthesis 
of a cell wall, cell growth and cell division were partially 
or totally eliminated. However, protoplast viability had 
not decreased after 6 days culture, but after 14 days, the 
UV treated cells died. On the other hand, a significant 
advantage of UV radiation over ionizing radiation was its 
easy application and high reproducibility. Similar obser- 
vations were made after exposure of Cichorium proto-  
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plasts to UV [25]. In cucumber, the negative effect of 
UV-C irradiation on cell wall regeneration, protoplast 
viability and the intensity of the nuclei after DAPI stain- 
ing was also demonstrated [26]. 

A general problem is the quantification of DNA dam- 
age after an irradiation treatment. Abas et al. presented 
Comet assay single cell gel electrophoresis (SCGE) as a 
reliable tool to observe single and double strand breaks in 
mesophyll protoplasts of Nicotiana plumbaginifolia [27]. 
Xu et al. revealed extensive DNA fragmentation in UV 
irradiated Citrus unshiu protoplasts with the terminal 
deoxynucleotidyl transferase biotin-dUTP nick end la- 
beling assay [28]. However, both methods are not gener- 
ally applicable. 

2.2. Microprotoplast Mediated Chromosome 
Transfer 

Next to donor protoplast irradiation, micronuclei and 
microprotoplasts mediated chromosome transfer (MMCT), 
which was originally developed for mammalian cells, has 
been considered as an alternative method for partial ge- 
nome transfer [29]. 

Mass induction of micronucleation and efficient isola- 
tion of microcells are key steps in any MMCT for suc- 
cessful transfer of partial genomes [30]. Microtubules are 
involved in several processes such as chromosome mi- 
gration, cell structure, cellulose microfibrils guidance 
and arrangement, cell wall formation, intracellular move- 
ment and cell differentiation. Toxic substances as anti- 
mitotic herbicides or colchicine prevent their normal po- 
lymerization [31]. Application of these spindle toxins to 
synchronized cells generally blocks cells in metaphase 
and scatters chromosomes in the cytoplasm; subse- 
quently, those decondense into micronuclei. Subsequently, 
these micronucleated cells are stripped of their cell wall, 
and the resulting MPPs are ultracentrifuged to subdivide 
them into classes [32]. These can be further filtered through 
sequential filters of smaller pore width. Some recent 
examples of suspension cell derived MPPs are Citrus 
unshiu [33] and Beta vulgaris [34]. 

In developing microspores of ornamental species like 
Lilium and Spathiphyllum, micronuclei were induced 
through the action of mitosis arresting chemicals, without 
synchronization requirement [35,36]. By using micro- 
spores instead of suspension cultures the risk of mutation 
accumulation in suspension cells can be avoided [37]. 

Regardless of the source material, the efficiency of 
spindle toxins depends on their type, dose, incubation 
period and the plant genotype. Those parameters can be 
optimized, as recently demonstrated for Spathiphyllum 
wallisii [36]. For this crop, the highest micronuclei indi- 
ces were obtained after microspore treatment with 10 µM 
oryzalin for 72 h or 20 µM chlorpropham for 48 h for a 
particular model genotype. The maximal number of mi- 

cronuclei observed was 12, while the haploid chromo- 
some number amounts 15. Oryzaline is the most widely 
used mitosis inhibitor, but its efficiency varies based on 
the plant species [38,39]. Famelaer et al. quantified ge- 
nome fragmentation in Beta microprotoplasts through 
flow cytometry and confocal microscopy [34]. 

2.3. Cytoplasmic Inactivation 

Metabolic inhibitors, such as IOA and rhodamine 6-G 
can be used to obtain asymmetric fusions. The exact 
mode of action of IOA has not yet properly been de- 
scribed, the compound however inhibits protoplast divi- 
sion by irreversibly inactivating the cytoplasm. In red 
chicory mesophyll protoplasts division was totally inhib- 
ited after treatment with 2 - 4 mM iodoacetate [40]. 
When using IOA, a lower optimal concentration of 1.625 
mM was found [25]. The lower optimal IOA concentra- 
tions compared to iodoacetate might be explained by 
better cell penetration of IOA. Similar optimal IOA con- 
centration were found in Musa [41]. Lower IOA concen- 
trations (0.5 mM) stopped growth of Gossypium hirsu- 
tum protoplasts, whereas 3 mM and 7.5 mM IOA were 
required to stop cell proliferation in Citrus [42] and Bu- 
pleurum scorzonerifolium [43], respectively. 

Fusion of IOA-treated recipient parental protoplasts 
with irradiated donor protoplasts could produce cybrids. 
In Cichorium, successful asymmetric protoplast fusion 
has been performed between γ-rays-irradiated sunflower 
protoplasts and iodoacetate-treated red chicory proto- 
plasts [40]. IOA treatments prevent cell division, but 
fusion with non-IOA treated protoplasts restores cell di- 
vision ability, thus opening ways towards heterokaryon 
or cybrid selection. 

3. Asymmetric Hybridization 

In earlier protoplast reviews, the concept of asymmetric 
hybridization is well explained, but has not been the fo- 
cus of the review [11,12]. Fragmentation techniques have 
been highlighted, however, [24,29] also in practical 
manuals [44]. In the review by Xia [13], wheat is used as 
an example to discuss chromosome engineering through 
asymmetric fusion. 

Over the last decade, asymmetric fusion techniques 
have been widely applied and several new asymmetric 
hybrids were obtained (Table 1). The most studied fami- 
lies were Brassicacae and Poaceae, followed by Rutaceae. 
The number of asymmetric hybridization realized through 
PEG fusion was 4-fold the number of fusions generated 
by electrical fusion. 

Asymmetric hybridization has allowed new genome 
combinations that would be more difficult, if not impos- 
sible, to realize through classical symmetric fusion or 
sexual crossing. For the first time, an asymmetric hybrid 
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Table 1. Progress in asymmetric protoplast fusion in different plant families during last decade (2004-2013). 

Characterization Plant family and species 
(acceptor + donor)t 

Aim 
Cell  

sourceu 
Fragmentation 

toolv 
Fusion 
toolw

Cytogeneticx DNA markers Other methods 
Ref.

Apiaceae + Gentianaceae         

Bupleurum scorzonerifolium  
+ Swertia mussottii* 

Secondary 
metabolites 

C UV PEG GISH 
RAPD,  

SQ RT-PCR 

Isozyme analysis,  
mitochondrial and cpDNA 
specific probes on Southern 
blots, HPLC 

[45]

Bupleurum scorzonerifolium 
+ Swertia tetraptera* 

Secondary 
metabolites 

SC + C UV PEG CC, GISH RAPD, SSR(C) Isozyme analysis, HPLC [46]

B. scorzonerifolium 
+ Gentianopsis paludosa* 

Secondary 
metabolites 

SC UV PEG CC RAPD, RFLP
Isozyme analysis, HPLC, 
GC-MS, 5S rDNA spacer 
sequence analysis 

[47]

Asteraceae         

Helianthus annuus + 
H. maximiliani* 

Biotic resistance H + M UV EF  RAPD Isozyme analysis [48]

Brassicaceae         

Brassica napus +  
Isatis indigotica* 

Genetic variation,  
Secondary 
metabolites 

M IOA(A) + UV PEG CC, GISH AFLP, CAPS(C)y Pollen fertility [49]

Brassica napus +  
Orychophragmus violaceus 

Chromosome  
addition lines 

M IOA(A) + UV - CC, GISH   [50]

Brassica oleracea + B. nigra 
Genetic variation,  
Biotic resistance 

H + M UV PEG
CC, FCM,

GISH 
AFLP, CAPS(C), 

CAPS(M)z 

MtDNA specific probes on 
Southern blots, resistance 
screening 

[51]

Brassica oleracea botrytis 
+ B. carinata 
+ B. juncea 
+ B.nigra 
+ Sinapis alba 

Biotic resistance H + M X PEG  RAPD Resistance screening [52]

Brassica oleracea capitata  
+ Barbarea vulgaris 
+ Capsella bursapastoris 
+ Diplotaxis tenuifolia 
+ Hesperis matronalis 
+ Matthiola incana 
+ Raphanus sativus 
+ Sinapis alba 

Biotic resistance H + M X PEG  RAPD Resistance screening [52]

Orychophragmus violaceus  
+ Lesquerella fendleri (GFP)* 

Plastome transfer M + C γ PEG  ITS, CAPS(M) Isozyme analysis, GFP [53]

Brassicaceae + Apiaceae         

Arabidopsis thaliana +  
Bupleurum  
scorzonerifolium* 

Secondary  
metabolites 

C IOA(A) + UV PEG CC, GISH, RAPD 
5S rDNA spacer sequence 
analysis 

[43]

Arabidopsis thaliana +  
Bupleurum scorzonerifolium 

Fragmentation 
 tool 

- UV PEG CC,GISH RAPD, SSR  [54]

Arabidopsis thaliana +  
Bupleurum scorzonerifolium 

Hybrid analysis,  
fragmentation tool 

C + SC γ PEG CC RAPD, SSR Histology [23]

Brassicaceae + Poaceae         

Arabidopsis thaliana +  
Triticum aestivum* 

Hybrid analysis SC + C UV PEG CC, GISH
RAPD, SSR, 

CAPS(C) 
Isozyme analysis [55]

Malvaceae         

Gossypium hirsutum + 
G. klozschianum 

Alternative for  
symmetric somatic 
hybridisation 

SC UV EF CC 
RAPD, SSR, 

CAPS(C) 
 [56]

Musaceae         

Musa “Guoshanxiang” +  
M. acuminate* 

Biotic resistance SC IOA(A) + UV PEG CC RAPD, ISSR  [41]
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Continued 

Poaceae         

Festuca arundinacea +  
Triticum aestivum* 

Hybrid analysis SC UV PEG CC, GISH
RAPD, SSR(C), 

MSAP 

Isozyme analysis, mtDNA 
specific probes on Southern 
blots 

[57]

Oryza sativa japonica + 
O. meyeriana* 

Biotic resistance SC IOA(A) + X PEG CC RAPD Resistance screening [58]

Triticum aestivum +  
Avena sativa 

Hybrid analysis SC UV - ISH SSR  [59]

Triticum aestivum +  
Haynaldia villosa 

Biotic resistance, 
protein content 

SC + C γ PEG CC, GISH RFLP(C) 
Isozyme analysis, 5S rDNA 
spacer sequence analysis 

[60]

Triticum aestivum +  
Lolium multiflorum* 

Biotic resistance SC UV - CC RAPD, SSR 
Isozyme analysis, mtDNA 
specific probes on Southern 
blots 

[61]

Triticum aestivum +  
Lolium multiflorum 

Agronomic traits,  
biotic resistance 

SC IOA(A) + X EF CC RFLP, AFLP 
Isozyme analysis, mtDNA 
specific probes on Southern 
blots 

[62]

Triticum aestivum +  
Lolium multiflorum 

Radiation hybrid  
panel/ genome  
mapping 

- UV - GISH RFLP, SSR Sequencing [63]

Triticum aestivum +  
Setaria italic* 

Abiotic resistance 
(SC + 
C) + C 

UV PEG GISH, CC
RAPD, RFLP(C), 

RFLP(M) 
Isozyme analysis, 5S rDNA 
spacer sequence analysis 

[64]

Poaceae + Apiaceae         

Festuca arundinacea +  
Bupleurum  
scorzonerifolium* 

Hybrid analysis SC UV PEG CC RAPD 
Isozyme analysis, 5S rDNA 
spacer sequence analysis 

[65]

Triticum aestivum +  
Bupleurum  
scorzonerifolium* 

Genetic variation,  
genome mapping 

C + SC UV PEG GISH 
CAPS, RAPD,

SSR 
Isozyme analysis [66]

Rutaceae         

Citrus paradisi + C. sinensis Genetic variation SC IOA(A) + γ - FCM AFLP  [42]

(Citrus reticulata x  
C. sinensis) + C.sinensis 

Genetic variation SC IOA(A) + γ - FCM, AFLP  [42]

Citrus sinensis + C. unshiu Fragmentation tool SC UV EF CC, FCM
RAPD, AFLP,

CAPS(C) 
 [28]

Solanaceae         

Nicotiana tabacum +  
N. repanda 

CMS M 
Rhodamin 

6G (A) 
PEG CC 

RAPD,  
CAPS(M) 

Isozyme analysis [67]

Petunia hybrid +  
Nicotiana tabacum 

Plastome transfer M UV PEG  RAPD, CAPS(C) 

MtDNA specific probes on
Southern blots, chloroplast
RNA specific probes on  
Northern blot 

[68]

tSpecies labeled with * were fused for the first time; uC: callus; CO: cotyledon; H: in vitro hypocotyls; M: in vitro mesophyll cells; SC: suspension cells; -: 
described in earlier publications; v(A): for acceptor; IOA: iodoacetamide; UC: ultracentrifugation; UV: UV ray irradiation; X: X ray irradiation; γ: gamma-ray 
irradiation; wEF: electrofusion; PEG: chemical fusion with polyethylene glycol; -: described in earlier publications; xCC: chromosome counting; FCM: flow 
cytometry; (G) ISH: (genomic) in situ hybridization; y(C) on cpDNA; z(M) on mtDNA. 

 
was reported in banana [41]. Interfamilial asymmetric 
hybrids have been produced between the dicot Arabidop- 
sis thaliana and the monocot common wheat [55]. Fusion 
between phylogenetically remote tall fescue, Italian rye- 
grass and common wheat was achieved [57,61,62]. In 
cotton, asymmetric hybrids were obtained as an alterna- 
tive for symmetric hybrids [56]. New somatic hybrids 
were obtained between monocot Festuca arundinacea 
and dicot Bupleurum scorzonerifolium through symmet- 
ric as well as asymmetric fusions [65]. The first success- 
ful somatic hybrid regeneration between Oryza sativa L. 
ssp. japonica and O. meyerina L. was reported [58]. 

Scholze et al. produced the first Raphanus-Brassica so- 
matic hybrids with fungal and virus disease resistance 
[52]. Cybrids were produced between chloroplast trans- 
formant tobacco and petunia [68]. Using UV irradiated 
asymmetric hybrids a radiation hybrid panel was estab- 
lished for Lolium multiflorum [63]. Taski-Adjukovic et al. 
[48] regenerated an asymmetric hybrid between sun- 
flower and Helianthus maximiliani for the first time. 

Acceptor protoplast sources for asymmetric hybridiza- 
tion existed mainly of suspension cell cultures, meso- 
phyll, callus and hypocotyls. The donor protoplast source 
differed in about 30% of the cases from the one for the 
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acceptor. Brassicaceae and Asteraceae hypocotyl accep- 
tor protoplasts were combined with mesophyll donor 
protoplasts [48,51,52]. 

Biotic resistance introduction, genetic variation, agro- 
nomic traits such as seedless fruits, hybrid analysis, frag- 
mentation technology development and secondary me- 
tabolite production were the most important recent aims 
for asymmetric hybridization. Abiotic resistance intro- 
duction, hybridization, genome mapping and the estab- 
lishment of chromosome addition lines were rare objec- 
tives (Table 1). In Bupleurum scorzonerifolium, asym- 
metric hybrids were obtained after protoplast fusion of 
UV treated B. scorzonerifolium and wheat protoplasts. 
However, instead of generating wheat carrying B. scor- 
zonerifolium chromosome fragments, the reverse was 
found. This study can be of major interest for the con- 
struction of physical maps of the wheat genome [66]. 
The same was observed when untreated Arabidopsis tha- 
liana protoplasts were fused with UV treated Bupleurum 
protoplasts [43].  

Other motives were plastome and/or CMS transfer 
[67]. The latter is an important practical application of 
new genome/cytoplasmome combinations. Fitter et al. 
[69] demonstrated the possibility of introgressing CMS 
carried by mtDNA from a wild species into the cultivated 
crop. In Cichorium, CMS was introduced after asymmet- 
ric fusion with sunflower [40]. Sheahan et al. [70] re- 
ported the phenomenon of massive mitochondrial fusion 
(MMF) which leads to near-complete mixing of the mi- 
tochondrial population within 24 h. MMF appears spe- 
cific to dedifferentiation, since it also occurs in meso- 
phyll protoplasts of Arabidopsis and Medicago but not in 
protoplasts from already dedifferentiated cells such as 
tobacco BY-2 or callus cultures. These results allow a 
clearer interpretation of how novel mitochondrial geno- 
types develop following cell fusion. In other investiga- 
tions, Sytnik et al. [71] demonstrated that also chloro- 
plasts can be transferred to remote species by protoplast 
fusion. 

4. Characterization of Asymmetric Somatic 
Hybrids and Genome Stability 

Apart from morphological characterization, the majority 
of the publications reporting on complete plant regenera- 
tion describe the use of molecular tools to unravel the 
genomic constitution of the alleged hybrids (Table 1). 
DNA markers were sometimes complemented with iso- 
zyme analysis, sodium dodecyl sulphate polyacrylamide 
gel electrophoresis or sequence analysis. The most fre- 
quently employed molecular markers were Random Am- 
plification of Polymorphic DNA (RAPD), Simple Se- 
quence Repeats (SSR), Amplification Fragment Length 
Polymorphism (AFLP), Restriction Fragment Length 
Polymorphism (RFLP) and Cleaved Amplified Poly-  

morphic Sequence (CAPS). PCR-RFLP and CAPS ana- 
lysis using mitochondrial or chloroplast universal primer 
pairs were efficient and reliable methods for characteriz-
ing the cytoplasmic genome. This technique was applied 
for both chloroplast and mitochondria screening, whereas 
SSR was only used once for chloroplast evaluation. 
Southern blotting for cpDNA and mtDNA was employed 
to screen cytoplasmic DNA, whereas Northern blotting 
was used once for chloroplast evaluation. Compared to 
RFLP with labeled probes, CAPS is simpler, more rapid 
and less expensive [72]. Chloroplast SSR is even more 
convenient and efficient since enzyme cutting following 
PCR reaction is not needed [73]. Also sequencing of 
common bands and searching for restriction endonucle-
ase sites could be cheaper and more convenient than ac- 
tual CAPS analysis (though after sequencing CAPS could 
be used to confirm the results). 

Besides molecular markers, cytogenetic tools as chro- 
mosome counting, flow cytometry and genomic in situ 
hybridization (GISH) can be used to distinguish asym- 
metric hybrids (Table 1). Especially the latter technique 
enables to visualize the hybrid genomic constitution and 
to follow genomic stabilization. After a symmetric fusion 
of two Triticum genotypes with Psathyrostachys, GISH 
analysis showed that the hybrids were highly asymmetric 
and contained only wild rye chromosome fragments, 
whereas the strong relationship of the hybrids and wheat 
was demonstrated by SSR markers [18]. Also the chloro- 
plasts of the hybrids and wheat were identical. Appar- 
ently the genetic complementation of 2 Triticum parents 
stimulates the rejection of wild rye donor chromosomes. 
In the asymmetric Triticum aestivum + Setaria italica 
fusion, genome complementation can be used as a selec- 
tion tool. The only regenerative callus type has 5 recom- 
binant chromosomes and a chromosome count of 48, 
exceeding the 42 of normal wheat [64]. In non-regenera- 
tive calli, only 0 - 2 Setaria chromosomes were present. 
Symmetric [74] as well as asymmetric [43] Arabidopsis 
thaliana + Bupleurum scorzonerifolium somatic fusions 
were made. The symmetric hybrids contain the complete 
B.s. chromosome set, 0 - 2 A.t. chromosomes and some 
nuclear or cytoplasmic A.t. fragments. Also after B.s. UV 
irradiation, surprisingly A.t. genes were introgressed in 
the B.s. genome whereas the opposite was expected. In 
other words, A.t. chromatine is preferentially eliminated, 
the type of cross merely defines whether full chromo- 
somes or DNA fragments were integrated. 

Like nuclear genomes, cytoplasmic genomes are not 
always stable upon fusion. Intergenomic chloroplast re- 
combination is a rare event in higher plants in contrast to 
mitochondrial genomes that show high recombination 
levels [75]. Sequencing, used for searching restriction 
endonuclease sites, can be efficiently combined with 
CAPS to demonstrate mtDNA recombination. MtDNA  
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recombination was proven in Triticum aestivum + Setaria 
italica [64] and Arabidopsis thaliana + Brassica oleracea 
[76]. The latter authors proposed mitochondrial recom- 
bination as a tool for CMS introduction in cabbage. Al- 
though more rarely occurring, cpDNA recombination in 
hybrids has been demonstrated. In Triticum aestivum + 
Setaria italica hybrids, cpDNA coexistence as well as 
recombination occur [64]. It was also observed in Bu- 
pleurum scorzonerifolium + Swertia mussottii [46]. 

5. Conclusions 

Recently, interest in protoplast related research has been 
renewed. Fusion of protoplasts allows us to move from 
traditional plant breeding methods to asexual methods. 
Compared to symmetric somatic hybridization, asym- 
metric fusion has some important advantages as it may 
limit genome conflicts. As shown in recent publications 
asymmetric fusion can create genomic variation for plant 
quality and yield improvement in agricultural or indus- 
trial crops. Especially the possibility to introduce CMS in 
important agricultural crops offers the breeders a tool 
towards hybrid seed production. 

Interesting opportunities for further research may be 
found in the development of advanced methods for ge- 
nome fragmentation including the combination of multi- 
ple techniques, such as the irradiation of MPPs, or the 
creation of MPPs from unreduced gametes formed by 
interspecific hybrids. The latter might open the possibil- 
ity to transfer recombined chromosomes in a single step. 
Moreover, MPPs could be selected based on filtration 
properties, which would result in different genome types, 
enabling researchers to attribute plant traits to particular 
chromosomes and further utilize MPPs accordingly. 
Furthermore, the fast evolution in marker development 
will allow more profound studies on genome stability. 
Furthermore, the contribution of GISH to genome char- 
acterization studies after fusion will further increase and 
can be used as a tool for monitoring genomic stabiliza- 
tion. 
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