
Mon. Not. R. Astron. Soc. 424, 2914–2925 (2012) doi:10.1111/j.1365-2966.2012.21431.x

Asymmetric supernova in hierarchical multiple star systems and
application to J1903+0327

J. T. Pijloo,� D. P. Caputo�† and S. F. Portegies Zwart
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands

Accepted 2012 May 31. Received 2012 May 29; in original form 2011 September 15

ABSTRACT
We develop a method to analyse the effect of an asymmetric supernova on hierarchical multiple
star systems and present analytical formulas to calculate orbital parameters for surviving
binaries or hierarchical triples and runaway velocities for their dissociating equivalents. The
effect of an asymmetric supernova on the orbital parameters of a binary system has been
studied to a great extent, but this effect on higher multiplicity hierarchical systems has not
been explored before. With our method, the supernova effect can be computed by reducing the
hierarchical multiple to an effective binary by means of recursively replacing the inner binary
by an effective star at the centre of mass of that binary. We apply our method to a hierarchical
triple system similar to the progenitor of PSR J1903+0327 suggested by Portegies Zwart et al.
We confirm their earlier finding that PSR J1903+0327 could have evolved from a hierarchical
triple that became unstable and ejected the secondary star of the inner binary. Furthermore,
if such a system did evolve via this mechanism the most probable configuration would be a
small supernova kick velocity, an inner binary with a large semi-major axis, and the fraction of
mass accreted on to the neutron star to the mass lost by the secondary most likely be between
0.35 and 0.5.

Key words: methods: analytical – methods: numerical – binaries: general – pulsars:
individual: J1903+0327 – supernovae: general.

1 I N T RO D U C T I O N

Asymmetric supernovae (SNe) in binary and hierarchical multiple
star systems form a crucial phase in the formation of stellar systems
containing a compact stellar remnant – neutron star (NS) or black
hole. In previous studies of SNe in binaries, two effects of the SN
have been considered: (1) sudden mass loss and (2) a random kick
velocity imparted on the compact remnant of the star undergoing
the SN. The combined effect that changes the orbital parameters
causes the binary to dissociate in the majority of the cases.

The study of binaries surviving an SN explosion of one of its
components was first performed by Blaauw (1961) and Boersma
(1961), assuming a symmetric SN (i.e. only mass loss). The ne-
cessity of asymmetry in the SN, resulting in the kick velocity, was
first suggested by Shklovskii (1970). The statistical study on pul-
sar scale heights by Gunn & Ostriker (1970) firmly supported the
asymmetric SN model and to date the adding of the kick veloc-
ity to the newly born NS (or black hole) is a commonly excepted
mechanism (van den Heuvel & van Paradijs 1997). The type of
explosion mechanism and whether the exploding star is in a binary
system are found to influence the effect of the kick velocity (see e.g.
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Podsiadlowski et al. 2004), but the exact physical process under-
lying the production of kicks remains unclear. The analysis of the
effect of asymmetric SNe on binaries has been sufficient to explain
most of the observed post-SN stellar systems, and little to no ef-
fort has gone into studying the effect on hierarchical multiple star
systems.

Millisecond pulsar (MSP) J1903+0327 (spin period �2.15 ms),
first observed by Champion et al. (2008) and later, in more detail, by
Freire et al. (2011), is part of what may be the first observed MSP
binary to have evolved from a hierarchical triple progenitor. MSP
J1903+0327 is orbited by a main-sequence star in a wide (orbital
period �95.2 d) and eccentric (eccentricity e � 0.44) orbit. Based
on these observables, it seems impossible that this binary (hereafter
J1903+0327) formed via the traditional mechanism in a binary
progenitor (Champion et al. 2008). Portegies Zwart et al. (2011)
proposed that the progenitor system was a binary accompanied by
a third and least massive main-sequence star in a wider orbit about
this binary. During the low-mass X-ray binary (LMXB) phase of the
inner binary, the orbit of the LMXB expanded due to mass transfer
from the evolving inner companion (donor) star to the NS, which
was formed in the SN. This eventually caused the triple to become
dynamically unstable and to eject the inner companion resulting in
the observed system J1903+0327.

J1903+0327 is not a unique case, however; there are a significant
number of systems like the progenitor of J1903+0327 as suggested
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in Portegies Zwart et al. (2011) and similar hierarchical stellar
systems of higher multiplicity. The Multiple Star Catalogue lists
602 triples, 93 quadruples, 22 quintuples, nine sextuples and two
septuples (Tokovinin 1997) of which 90 systems contain at least
one star with a mass M ≥ 10 M�. Each of these multiples will
eventually experience a core-collapse SN of the most massive star.
After the SN these systems are either fully dissociated, dissociate
into lower multiplicity multiple star systems, or survive the SN.

We begin the study of the effect of an asymmetric SN on hierar-
chical multiple star systems by first readdressing the SN effect on a
binary and subsequently treating the effect in a hierarchical triple.
We show that a hierarchical triple can effectively be regarded as
a binary system comprising the centre of mass of the inner binary
and the tertiary star. The effect of an SN on a hierarchical triple
system, now reduced to an effective binary, can be calculated us-
ing the prescription for an SN in binary. We ultimately generalize
this effective binary method to hierarchical multiple star systems of
arbitrary multiplicity. In the second part of the paper we perform
Monte Carlo simulations of a hierarchical triple-star system similar
to the progenitor of J1903+0327 suggested in Portegies Zwart et al.
(2011) to determine the (stable) survival rates, and evaluate whether
such a formation route is plausible.

2 C A L C U L AT I O N O F P O S T- S N PA R A M E T E R S

2.1 Binary systems

We consider a binary system of stars with mass, position and veloc-
ity for the primary and secondary star, given by (m1,0, r1, v1,0) and
(m2, r2, v2,0), respectively,1 in which the primary undergoes an SN.
The binary system is uniquely described by the semi-major axis, a0,
eccentricity, e0, and true anomaly, θ0. The separation distance is r0.
We assume that the SN is instantaneous, meaning an instantaneous
removal of mass of the primary, no SN-shell impact on the compan-
ion (secondary) star and the orbital motion during this mass-loss
phase is neglected, i.e. r = r0 and v2 = v2,0.

After the SN the orbital parameters have changed to: semi-major
axis, a, eccentricity, e, and true anomaly, θ . For a general Kepler
orbit of two objects with masses m1 and m2, respectively, a relative
velocity, v, semi-major axis, a, and separation distance, r, the orbital
energy conservation equation is

v2 = G(m1 + m2)

(
2

r
− 1

a

)
, (1)

where G is Newton’s gravitational constant. The specific relative
angular momentum h is related to the orbital parameters as follows:

|h|2 = |r × v|2 (2)

= G(m1 + m2)a(1 − e2), (3)

where the first equality holds for all Kepler orbits and the second
only applies to bound orbits. For thorough studies on SNe in a
binary system, see Hills (1983), Kalogera (1996) and Tauris &
Takens (1998); the latter authors also take into account the shell
impact on the companion star using a method proposed by Wheeler,
Lecar & McKee (1975). Following the mentioned works as guides

1 The contingent suffix 1, 2, etc. indicates which star we are considering
(e.g. 1 for the primary). The contingent suffix 0 denotes the pre-SN state,
and when it is absent, it either refers to the post-SN state or indicates that
there is no difference in the pre- and post-SN states of that parameter.

Figure 1. Schematic representation of a binary system in the pre- and post-
SN phase. The solid blue circles denote the primary and secondary stars;
the solid red circle denotes the cm. The solid arrows denote the velocities
the stars or cm have at that phase; the dashed arrows denote the velocity the
SN imposes on the stars or cm which will change its velocity in the next
phase. (a) In the pre-SN phase the coordinate system is centred on the cm
being at rest. (b) In the post-SN phase the coordinate system is no longer
centred on the cm – the cm has been translated in the y-direction, towards
the secondary, and has gained a velocity vsys. In both cases the inner binary
orbital plane lies in the xy-plane and the y-axis is the line connecting the
primary and the secondary.

for our calculations on the binary system we use a total pre-SN
mass of M0 = m1,0 + m2. Without loss of generality, we choose a
coordinate system in which at t = 0 the orbit lies in the xy-plane, the
centre of mass of the binary (cm) is at the origin, the y-axis is the
line connecting the primary and the secondary (the cm coordinate
system; see Fig. 1), and we choose a reference frame in which at
t = 0 the cm is at rest (the cm reference frame).

Before the SN the separation distance between the stars is

r = r1 − r2 =
(

0, − a0(1 − e2
0)

1 + e0 cos θ0
, 0

)
. (4)

Using the following notation

x = a0

√
1 − e2

0 cos γ0 cos θ0 + a0 sin γ0 sin θ0,

y = −a0

√
1 − e2

0 cos γ0 sin θ0 + a0 sin γ0 cos θ0,

v0x = v0
x√

x2 + y2
,

v0y = v0
y√

x2 + y2
,
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in which γ 0 is the pre-SN eccentric anomaly defined by r = a0(1 −
e0cos γ 0), the velocity of the primary relative to the secondary is

v0 = v1,0 − v2 = (v0x, v0y, 0). (5)

After the SN the primary has lost a part of its mass, � m, and has
obtained a velocity kick vk in a random direction, which makes an
angle φ with the pre-SN relative velocity v0. The velocity of the
primary relative to the secondary, after the SN, is

v = v0 + vk = (v0x + vkx, v0y + vky, vkz), (6)

the mass of the primary is m1 = m1,0 − �m and the total binary mass
is M = M0 − �m. Applying these relations and equations (1) and (2)
to the binary system, we obtain equations relating the post-SN semi-
major axis, a, and eccentricity, e, to both the pre- and post-SN orbital
parameters and velocities. Using vc,0 = v0|r=a0 = (GM0/a0)1/2 as
the pre-SN relative velocity (Hills 1983), we obtain

a

a0
=

(
1 − �m

M0

) (
1 − 2a0

r

�m

M0
− 2

v0

vc,0

vk

vc,0
cos φ − v2

k

v2
c,0

)−1

(7)

e2 = 1 −
(

1 − e2
0

) M2
0

(M0 − �m)2

(
1 − 2a0

r

�m

M0

− v2
k

v2
c,0

− 2
v0

vc,0

vk

vc,0
cos φ

)
(8a)

= 1 −
a2

0

(
1 − e2

0

)2

a(1 + e0 cos θ0)2

(v2
0x + v2

kx + v2
kz + 2v0xvkx)

G(M0 − �m)
,

(8b)

which are consistent with Kalogera (1996). In Section 2.3 we present
a few examples regarding the effect of mass loss and the SN kick
on the orbital parameters of hierarchical triples. To compute the
systemic velocity of the binary system due to the SN, we begin
by writing the pre-SN velocities of the primary and secondary in
the cm reference frame; using the pre-SN mass ratio μ0 = m2/M0,
these velocities are given by

v1,0 = μ0(v0x, v0y, 0), (9)

v2 = (μ0 − 1)(v0x, v0y, 0). (10)

As a result of the assumption of an instantaneous SN and neglect-
ing the shell impact, the instantaneous velocity of the secondary
remains unchanged after the SN, but the instantaneous velocity of
the primary changes to

v1 = (μ0v0x + vkx, μ0v0y + vky, vkz). (11)

We now use the post-SN mass ratio μ = m2/M, and find the systemic
velocity of the binary system:

vsys = (1 − μ)v1 + μv2

= (1 − μ)

(
μ0 − μ

1 − μ
v0x + vkx,

μ0 − μ

1 − μ
v0y + vky, vkz

)
.

(12)

These results are consistent with the previously mentioned studies
on SN in binaries. As a consequence a binary in which the compact
object does not receive a kick in the SN explosion moves through
space like a frisbee.

2.1.1 Dissociating binary systems

The mass loss and the kick velocity have a potentially disrupting
effect on the binary system. However, in cases where the mass
loss alone would have been large enough to unbind the binary, the
combination of the two can result in the binary system surviving
the SN (Hills 1983). If the binary system dissociates, the two stars
move away from each other on a hyperbolic or, in a limiting case, a
parabolic trajectory. This corresponds to the cases where a < 0 and
e > 1 (hyperbola) or a → ∞ and e = 1 (parabola). From equation (7)
we see that for a dissociating binary the angle φ between the kick
velocity vk and the pre-SN relative velocity v0 satisfies (Hills 1983)

cos φ ≥
(

1 − 2a0

r

�m

M0
− v2

k

v2
c,0

)(
2

vk

vc,0

√
2a0

r
− 1

)−1

. (13)

If the right-hand side of equation (13) is less than −1, the binary
dissociates for all φ; but if it is greater than 1 the binary survives
for all φ. If the right-hand side is within the range −1 to 1, the
probability of dissociating the binary is (Hills 1983)

Pdiss = 1

2

(
1 −

(
1 − 2a0

r

�m

M0
− v2

k

v2
c,0

)(
2

v0

vc,0

vk

vc,0

)−1)
. (14)

Tauris & Takens (1998) presented analytical formulas to calculate
the dissociation velocities for a binary with a pre-SN circular orbit.
Following Tauris & Takens (1998) calculations, though ignoring
the SN shell impact, we derive the runaway volocities of two stars
in dissociating binaries, however we do so for a pre-SN orbit with
arbitrary eccentricity. We use the cm coordinate system, explained
above. Using the following shorthand relations

m̃ = M

M0
,

j = v2
0x

v2
0

− 2m̃
a0

2a0 − r
+ v2

k

v2
0

+ 2v0xvkx

v2
0

,

k = 1 + j

m̃

2a0 − r

a0
− v2

ky

m̃v2
0

2a0 − r

a0
,

l = 1

μ

( √
j

m̃v0
vky

2a0 − r

a0
− j

m̃

2a0 − r

a0
− 1

)
,

n = 1

μ

(
1 + j

m̃

2a0 − r

a0
(k + 1)

)
,

we find the runaway velocities for the primary and secondary stars:

v1,diss =
(

vkx

(
1

l
+ 1

)
+

(
1

l
+ μ0

)
v0x, μ0v0y

+ vky

(
1 − 1

n

)
+ k

√
j

n
v0, vkz

(
1

l
+ 1

))
, (15)

v2,diss =
(

− vkx

m2l
−

(
1

m2l
+ 1 − μ0

)
v0x, (μ0 − 1)v0y

+ vky

m2n
− k

√
j

m2n
v0, − vkz

m2l

)
. (16)

2.2 Hierarchical triple systems

We now consider a hierarchical system of three stars with the pri-
mary, secondary and tertiary stars having mass, position and velocity
given by (m1,0, r1, v1,0), (m2, r2, v2) and (m3, r3, v3), respectively.
The primary star undergoes an SN and the inner binary configu-
ration and parameters are the same as mentioned in Section 2.1.
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The effective mass of the inner binary’s centre of mass (cm) is
mcm,0 = m1,0 + m2 = M0

rcm,0 = (1 − μ0)r1 + μ0r2 (17)

and has a velocity

vcm,0 = (1 − μ0)v1,0 + μ0v2. (18)

The cm and tertiary constitute an outer binary defined by the semi-
major axis, A0, eccentricity, E0, and true anomaly, �0. We denote
the separation distance between the cm and the tertiary star by R0.
Before the SN the outer binary orbital plane has an inclination i0

with respect to the inner binary and the separation distance of the
outer binary projected on to the xy-plane makes an angle α0 with
the separation distance of the inner binary. This inner–outer binary
configuration is to some extent acceptable, because the triple is
hierarchical. This implies that the separation distance of the cm
and the tertiary is large compared to the separation distance of the
primary and secondary, i.e. R0 	 r0, so that the tertiary experiences
gravitational influence of the inner binary as if it was coming from
one star at the cm. We assume an instantaneous SN.2 Due to the
primary undergoing an SN, the inner binary experiences a mass
loss �m and an effective kick velocity is imparted to the cm: the
systemic velocity of the inner binary vsys is given by equation (12).
In addition, because of the reduction in mass of the primary, the
position of the cm has changed due to an instantaneous translation
along the y-axis

�R = rcm − rcm,0

= (μ − μ0)
a0

(
1 − e2

0

)
1 + e0 cos θ0

(0, 1, 0). (19)

The orbital parameters change as a result of the SN: the inner binary
parameters change according to the description given in Section 2.1
and the outer binary orbital parameters change to semi-major axis,
A, eccentricity, E, and true anomaly, �. The hierarchical triple
before the SN has a total mass Mt,0 = M0 + m3. We use the cm
coordinate system to pin down the inner binary and add to this
coordinate system the tertiary at a position such that R0 	 r0 (see
Fig. 2). We now select a reference frame in which the centre of mass
of the triple (CM) is at rest (the CM reference frame).

Prior to the SN the separation distance between the cm and the
tertiary is

R0 =
A0

(
1 − E2

0

)
1 + E0 cos �0

(cos i0 sin α0, − cos i0 cos α0, sin i0),
(20)

and, using the following shorthand notation

X = A0

√
1 − E2

0 cos 	0 cos �0 + A0 sin 	0 sin �0

Y = −A0

√
1 − E2

0 cos 	0 sin �0 + A0 sin 	0 cos �0

X′ = X cos α0 − Y cos i0 sin α0

Y ′ = X sin α0 + Y cos i0 cos α0

Z′ = Y sin i0

2 See Section 2.1 and note that the statements about the inner companion
(the secondary) also hold for the outer companion (the tertiary).

Figure 2. Schematic representation of a hierarchical triple-star system in
the pre- and post-SN phase. The solid blue circles denote the primary and
secondary (inner binary); the solid red circles denote the cm and the tertiary
(outer binary); the green circle denotes the CM. The solid arrows denote the
velocities the stars or cm have at that phase; the dashed arrows denote the
velocity the SN imposes on the stars or cm which will change its velocity
in the next phase. (a) In the pre-SN phase the coordinate system is centred
on the cm and the CM is at rest. (b) In the post-SN phase the coordinate
system is no longer centred on the cm – the cm has been translated in the
y-direction, towards the secondary – and the CM is no longer at rest. In both
cases the inner binary orbital plane lies in the xy-plane and the y-axis is the
line connecting the primary and the secondary.

V0x = V0
X′

√
X′2 + Y ′2 + Z′2

V0y = V0
Y ′

√
X′2 + Y ′2 + Z′2

V0z = V0
Z′

√
X′2 + Y ′2 + Z′2

in which 	0 is the pre-SN outer orbit eccentric anomaly defined by
R0 = A0(1 − E0cos 	0), the velocity of the cm relative to the tertiary
is

V 0 = vcm,0 − v3 = (V0x, V0y, V0z). (21)

The effective kick velocity vsys makes an angle 
 with the pre-SN
relative velocity of the cm with respect to the tertiary star V 0. After
the SN the separation distance between the cm and the tertiary star
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is

R = R0 + �R,

=
A0

(
1 − E2

0

)
1 + E0 cos �0

(
cos i0 sin α0, (μ − μ0)

a0

(
1 − e2

0

)
1 + e0 cos θ0

× 1 + E0 cos �0

A0(1 − E2
0 )

− cos i0 cos α0, sin i0

)
,

(22)

the velocity of the cm relative to the tertiary star is

V = V 0 + vsys

= (V0x + vsys,x , V0y + vsys,y , V0z + vsys,z), (23)

the cm mass is mcm = M0 − �m and the total triple mass is Mt =
Mt,0 − �m. The inclination of the outer binary orbital plane with
respect to the inner binary orbital plane is given by

sin i = |R0|
|R| sin i0. (24)

The angle of the outer binary separation distance projected on to
the xz-plane relative to the inner binary separation distance is given
by

sin α = |R0|
|R|

cos i0

cos i
sin α0. (25)

Applying the relevant equations given above and equations (1) and
(2) to our triple system, we obtain equations relating the post-SN
semi-major axis, A, and eccentricity, E, to both the pre- and post-
SN orbital parameters and velocities. Using Vc,0 = V0|R0=A0 =
(GMt,0/A0)1/2 as the pre-SN relative velocity when R0 = A0, and
using ρ = (R0 − R)/(R0R), we obtain

A

A0
=

(
1 − �m

Mt,0

) (
1 − 2A0

R

�m

Mt,0
− 2

V0

Vc,0

vsys

Vc,0
cos 


− v2
sys

V 2
c,0

+ 2A0ρ

)−1

,
(26)

E2 = 1 −
(

1 − E2
0

) Mt,0

(Mt,0 − �m)

(
2A0

R
+ Mt,0

Mt,0 − �m

×
(

1 − 2A0

R0
− v2

sys

V 2
c,0

− 2
V0

Vc,0

vsys

Vc,0
cos 


))
. (27)

With the pre-SN mass ratio ν0 = m3/Mt,0, the pre-SN velocities of
the cm and the tertiary in the CM reference frame are

vcm,0 = ν0(V0x, V0y, V0z) (28)

v3 = (ν0 − 1)(V0x, V0y, V0z). (29)

We calculate the instantaneous velocity of the cm after the SN
(as before, because of the assumption of an instantaneous SN, the

velocity of the tertiary after the SN remains unchanged):

vcm = ν0

(
V0x + vsys,x

ν0
, V0y + vsys,y

ν0
, V0z + vsys,z

ν0

)
. (30)

Using the post-SN mass ratio ν = m3/Mt, the systemic velocity of
the outer binary (and therefore of the triple) is

V sys = (1 − ν)vcm + νv3

= (1 − ν)

(
ν0 − ν

1 − ν
V0x + (μ0 − μ)v0x + (1 − μ)vkx,

ν0 − ν

1 − ν
V0y + (μ0 − μ)v0y + (1 − μ)vky,

ν0 − ν

1 − ν
V0z + (1 − μ)vkz

)
. (31)

Summarizing, one can consider a hierarchical triple system as an
effective binary system composed of an effective star [i.e. the inner
binary centre of mass (cm)] and the tertiary. The effective star
undergoes an effective asymmetric SN resulting in three effects:
(1) sudden mass loss �m; (2) an instantaneous translation �R;
and (3) a random kick velocity vsys. The calculation of the post-
SN parameters and velocities of a hierarchical triple system is now
reduced to the prescription for an SN in a binary as presented
in Section 2.1. Note that the mass loss does not occur from the
position of the effective star, but from the position of the primary
star; a clear distinction from a physical binary system. However,
from what position the mass loss occurs is not important when
an instantaneous SN is considered. When the effect of the shell
impact on the companion star(s) is considered, this off-centre mass
loss must be taken into account. In addition, if it were not the
primary which underwent the SN, but, for example, the tertiary, the
computation would have been done by reducing the inner binary to
an effective star, as shown in this section. One would again have
a binary configuration to calculate the effect of the SN; in such a
system there is no off-centre mass loss. In Section 2.4 we show how
one can reduce any hierarchical multiple star system to an effective
binary in a recursive way using the effective binary method and in
Section 2.4.3 we do the computation of the effect of an SN on a
binary–binary system.

2.2.1 Dissociating hierarchical triple systems

For the triple system, dissociation can occur in two ways: the inner
binary can dissociate (a < 0 and e > 1 or a → ∞ and e = 1) (see
Section 2.1) and the outer binary can dissociate (A < 0 and E > 1
or A → ∞ and E = 1), i.e. the inner binary and the tertiary become
unbound. The inner binary dissociation scenario generally results
in complete dissociation of the system. However, hypothetical sce-
narios exist in which one of the inner binary components is ejected
towards the tertiary star to either collapse with it or form a binary by
gravitational or tidal capture. Nevertheless, these scenarios have a
small probability since the ejection conditions (e.g. the solid angle
in which that particular inner binary component has to be ejected
in) and the capture conditions are extremely specific. From equa-
tion (26) we see that for the inner binary to dissociate from the
tertiary, the angle 
 has to satisfy

cos 
 ≥
(

1 − 2A0

R

�m

Mt,0
− v2

sys

V 2
c,0

+ 2A0ρ

)(
2

V0

Vc,0

vsys

Vc,0

)−1

.
(32)
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The probability of this type of dissociation is

P outer
diss = 1

2

(
1 −

(
1 − 2A0

R

�m

Mt,0
− v2

sys

V 2
c,0

+ 2A0ρ

)

×
(

2
V0

Vc,0

vsys

Vc,0

)−1
)

.
(33)

In the case of the dissociation of the outer binary, using the following
short hand relations

M̃ = Mt

Mt,0

J = V 2
0x

V 2
0

− 2M̃
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V 2
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R
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N = 1

ν

(
1 + J
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2A0 − R0

A0

R

R0
(K + 1)

)
,

the runaway velocities of the inner binary system and the tertiary
are [following and generalizing Tauris & Takens (1998)]:

vcm,diss =
(

vsys,x

(
1

L
+ 1

)
+

(
1

L
+ ν0

)
V0x, vsys,y

(
1 − 1

N

)

+ ν0V0y + K
√

J

N
V0, vsys,z

(
1

L
+ 1

))
(34)

v3,diss =
(

−vsys,x

m3L
−

(
1

m3L
+ 1 − ν0

)
V0x, (ν0 − 1)V0y

+ vsys,y

m3N
− K

√
J

m3N
V0, −vsys,z

m3L

)
. (35)

Note that these equations are more general than the ones in Sec-
tion 2.1.1, because we cannot assume R = R0 in the triple case.

2.3 An example of the effect of a supernova in
a hierarchical triple

For two simple sets of initial conditions we investigated the effect of
mass loss, �m, and kick velocity, vk, on the survivability of a triple
system. We distinguish between four different post-SN scenarios:
(1) the triple survives as a whole (e < 1 and E < 1) with new orbital
parameters; (2) the inner binary survives and the third star escapes
(e < 1 and E > 1); (3) the inner binary dissociates and the outer
binary survives (e > 1 and E < 1) and (4) the triple completely
dissociates (e > 1 and E > 1). The third scenario is a rather special
case and can only be of temporary nature: in this scenario, even
though the inner binary has just dissociated, the third star remains
bound to the inner binary centre of mass. This is a temporal solution
that will eventually lead to the full dissociation of the triple, except
in the extreme case in which the tertiary star captures one of the
ejected inner stars to form a new binary system.

For each set of initial conditions we used a hierarchical triple
system with primary, secondary and tertiary stars of masses m1,0,
m2, m3 = 3, 2, 1 M�, respectively, and inner and outer binary
semi-major axes a0, A0 = 10, 50 R�, respectively, and we varied
the kick velocity direction v̂k. For the two different sets of initial
conditions we determine for which combinations of �m and vk lead
to which post-SN scenario and we show our results in Fig. 3; the
initial conditions used are specified below the respective figures.

In Fig. 3(a) we used a circular inner and outer orbit, not in-
clined with respect to each other, with all stars on one line and
the kick velocity in the same direction as the pre-SN inner bi-
nary relative velocity. We see that for zero kick velocity, the inner
binary dissociates for a mass-loss ratio of �m/M0 = 0.5, which
is consistent with earlier work (e.g. Hills 1983). For zero mass
loss, we see that the inner binary dissociates for a kick velocity of
vk ∼ 128 km s−1 – this velocity is exactly the difference between the
inner binary escape velocity (vesc = √

2GM0/a0 ∼ 437 km s−1)
and pre-SN relative velocity (v0 = √

GM0/a0 ∼ 309 km s−1) –
but the third star escapes for a slightly lower value of the kick

Figure 3. The plots show the survivability of the hierarchical triple system for varying mass loss �m and kick velocity vk. The systems have masses of m1,0,
m2, m3 = 3, 2, 1 M�, respectively, and inner and outer binary semi-major axes a0, A0 = 10, 50 R�, respectively. There are four possible post-SN scenarios:
(1) the whole triple survives; (2) the inner binary survives but the third star escapes; (3) the inner binary dissociates and the outer binary survives or (4) the
triple completely dissociates. The areas in the plots are labelled according to their respective post-SN scenario.
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velocity. This is because the inner binary systemic velocity (which
is the effective outer orbit kick; see Section 2.2) plus the pre-
SN outer orbit relative velocity already exceeds the outer orbit
escape velocity. We furthermore see that the total triple survival
scenario allows lower kick velocities for higher mass losses. Above
a kick velocity of vk ∼ 128 km s−1 the inner binary always dis-
sociates, irrespective of the mass loss, (eventually) leading to total
dissociation.

In Fig. 3(b), we keep the same configuration as described for
Fig. 3(a), but with a kick velocity in the opposite direction with
respect to the orbital velocity of the exploding star before the SN.
The triple can now lose more mass and receive a higher velocity kick
while still surviving. The ability to sustain greater kick velocities
is explained by the fact that, depending on the mass loss, the kick
velocity now has to exceed a fraction of the sum of v0 and vk

(for zero mass loss v0 + vk ∼ 746 km s−1) due to the opposing
directions of the two velocities. We also see that total triple survival
can occur beyond a mass-loss ratio of 0.5, because the kick velocity
can oppose the dissociating effect of the mass loss (as mentioned
in Hills 1983). Bear in mind that while the �m/M0 = 0 case is
non-physical we include it for the sake of completeness.

In Fig. 4 we show how the post-SN systemic velocity of the
triple depends on the mass loss �m for a hierarchical triple system
with primary, secondary and tertiary stars with masses (m1,0, m2,
m3) = (3, 2, 1) M�, inner and outer binary semi-major axes (a0,
A0) = (10, 50) R� and the kick velocity in the direction of the
pre-SN inner orbit relative velocity. We plot our results for the case
that the SN went off at the inner orbit apastron (θ0 = 180◦) or
at the inner orbit periastron (θ0 = 0◦) for a symmetric SN (i.e.
vk = 0 km s−1) and an SN with a kick vk ∼ 31 km s−1, in the cm
reference frame (i.e. with the cm at rest at t = 0). In the top panel
of Fig. 4 we see that for a symmetric SN, the systemic velocity of
the inner binary increases with the amount of mass loss, which is
an intuitive result. We see that even with zero mass loss the triple
has a systemic velocity, namely the velocity it started with in this
reference frame (Vsys ∼ 17.5 km s−1). We furthermore see that the
increase in the triple systemic velocity happens more steeply for
these cases where the SN goes off at periastron – with the steepest
curve for the highest inner binary eccentricity – than when the
SN goes off at apastron – with the steepest curve for the lowest
eccentricity. For an asymmetric SN with kick vk ∼ 31 km s−1 (see
the bottom panel of Fig. 4), we observe similar behaviour, but with
the difference of the zero mass-loss case: in this case the triple
system has a lower velocity than it started with (Vsys ∼ 2.5 km s−1),
which is due to the kick. This result is dependent on the direction of
the kick.

The pre-SN triple systemic velocity is dependent on both the in-
ner binary and the outer binary. Its dependence on the inner binary
is via the masses m1,0 and m2 of the primary and secondary, respec-
tively, and the inner binary orbital parameters that fully constrain
the relative velocity of these stars (see equation 5). Its dependence
on the outer binary is via the mass m3 of the tertiary and the outer
orbit orbital parameters that fully constrain the outer binary relative
velocity (see equation 21). The post-SN triple systemic velocity is
merely the sum of the pre-SN systemic velocity and its change,
which is only due to the inner binary through the mass loss �m and
kick velocity vk.

2.4 Hierarchical systems of multiplicity > 3

There exist two kinds of hierarchical multiple star systems with
more than three stars:

Figure 4. The post-SN systemic velocity of the triple as a function of mass
loss �m, when the SNe occurs at periastron (ϑ0 = 0, dashes) and apastron
(ϑ0 = 180◦, solid curves) of the inner binary, for a range of pre-SN inner
binary eccentricities. vk = 0 km s−1 in the top panel and ∼ 31 km s−1 in the
bottom panel.

(i) systems that have n stars and hierarchy n − 1, i.e. multiple star
systems with their stars hierarchically ordered in series (hereafter
serial systems). Examples of such systems include quadruples with
hierarchy 3, but also binaries and triples are serial systems.

(ii) systems that have n stars and hierarchy n − 2 or below, i.e.
multiples composed of serial systems that are hierarchically ordered
in parallel (hereafter parallel systems). An example of such a system
is a quadruple with hierarchy 2 (i.e. a binary–binary system).

2.4.1 Serial systems

The effect of an SN on a serial system is calculated by applying the
effective binary method (see Section 2.2) by recursively replacing
the inner binary by an effective star at the centre of mass of that
binary, until the total system is reduced to a single effective binary.
When considering a serial system of n stars each with mass, position
and velocity given by (m1,0, r1, v1,0), (m2, r2, v2), . . . , (mn, rn, vn),
respectively, in which the primary star undergoes an SN, one starts
by reducing the inner binary to an effective star, as was done in
Section 2.2. The inner binary consists of the primary and secondary
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stars at positions r1 and r2, respectively. This binary is reduced to
an effective star of mass mcm,0 = m1,0 + m2 at position rcm,0 given
by equation (17) and having velocity vcm,0 given by equation (18).
Due to the SN of the primary this effective star experiences a mass
loss �m, an instantaneous translation �R given by equation (19)
and a random kick velocity vsys given by equation (12). After ap-
plying these effects on this effective binary, one can calculate the
post-SN orbital parameters and velocities and the systemic velocity
v(2)

sys = V sys of this effective binary, given by equation (31), using
the prescription for an SN in a binary.3 The total system is now
reduced to a serial system of n − 1 objects (real and effective stars).

Subsequently, one reduces the current inner binary – consisting of
the effective and tertiary star at positions rcm,0 and r3, respectively
– to an effective star of mass m

(2)
cm,0 = mcm,0 + m3, at position

r (2)
cm,0 = mcm,0rcm,0 + m3r3

mcm,0 + m3
(36)

with a velocity

v
(2)
cm,0 = mcm,0vcm,0 + m3v3

mcm,0 + m3
. (37)

Due to the SN of the primary star, this effective star also experi-
ences a mass loss �m, an instantaneous translation �R(2) – this
time, the translation vector has non-zero y- and z-components – and
a random kick velocity v(2)

sys. After applying these effects on this
effective binary, one can calculate the post-SN orbital parameters
and velocities and the systemic velocity v(3)

sys of this effective binary
using the prescription for an SN in a binary. The total system is now
reduced to a serial system of n − 2 objects (real and effective stars).

This procedure is carried on until the entire multiple is reduced
to a single effective binary, consisting of the nth star at position rn

and an effective star of mass m
(n−2)
cm,0 = m

(n−3)
cm,0 + mn−1 at position

r (n−2)
cm,0 = m

(n−3)
cm,0 r (n−3)

cm,0 + mn−1rn−1

m
(n−3)
cm,0 + mn−1

(38)

with a velocity

v
(n−2)
cm,0 = m

(n−3)
cm,0 v

(n−3)
cm,0 + mn−1vn−1

m
(n−3)
cm,0 + mn−1

. (39)

This effective star also experiences mass loss �m, an instantaneous
translation �R(n−2) and a random kick velocity v(n−2)

sys . After apply-
ing these effects on this (final) effective binary, one can calculate the
post-SN orbital parameters and velocities and the systemic velocity
v(n−1)

sys for this effective binary (and therefore of the total system)
using the binary method.

When it is not the primary star that undergoes an SN, but the mth
star in the hierarchy, the procedure is carried out by first reducing
the inner serial system of m − 1 stars to an effective star at its
centre of mass. One can then apply the above explained method, as
there is no computational difference in whether the primary or the
secondary of a (effective) binary undergoes the SN.

2.4.2 Parallel systems

The effect of an SN on a parallel system is calculated by reducing
each parallel branch (which itself is a serial system) to an effective
star until an effective serial configuration is reached; after this, one
can use the method explained in the previous section. We consider

3 The number between parentheses denotes the hierarchy up to which the
system has been reduced to an effective star.

a parallel system of i parallel branches, each consisting of an ar-
bitrary number ni of stars with mass, position and velocity given
by (m1, r1, v1), . . . , (mni

, rni
, vni

) respectively, in which the mth
star – which is part of branch j – undergoes an SN. One starts by
reducing all i − 1 branches = j to effective stars. One then calcu-
lates the effect of the SN on branch j (i.e. systemic velocity and
mass loss) using the method described in Section 2.4.1. The total
system is now reduced to an effective serial system of i effective
stars in which the jth effective star undergoes an effective SN with
the systemic velocity of branch j as the kick velocity. The effect of
this effective SN on the total system can be calculated by applying
the method described in Section 2.4.1 to this effective serial system.
As an example we will now demonstrate the effect of an SN on a
binary–binary system.

2.4.3 An example of the effect of a supernova in a
binary–binary system

We consider a hierarchical binary–binary system of stars with
mass, position and velocity given by (m1,0, r1, v1,0), (m2, r2, v2),
(m3, r3, v3) and (m4, r4, v4), respectively, in which the primary
star undergoes an SN. The binary consisting of the primary and the
secondary star (primary binary) has the configuration and the pa-
rameters as given in Section 2.1 and has a centre of mass (cm1, i.e.
effective star 1) of mass mcm1,0 = m1,0 + m2 = M0 at position given
by equation (17) with a velocity vcm1,0 given by equation (18). The
secondary binary consists of the tertiary and quaternary star and its
centre of mass (cm2, i.e. effective star 2) has a mass mcm2 = m3 +
m4 = M2, is at position

rcm2 = (1 − κ)r3 + κ r4

and has velocity

vcm2 = (1 − κ)v3 + κv4,

before the SN, where κ = m4
M2

. The cm1 and cm2 constitute an
effective binary defined by semi-major axis, A0, eccentricity, E0,
and true anomaly, �0. The separation distance is denoted by R0.
Before the SN the effective binary orbital plane has inclination i0

with respect to the primary binary orbital plane and the separation
distance of the effective binary projected on to the xy-plane makes
an angle α0 with the separation distance of the primary binary.
We assume an instantaneous SN.4 In the effective SN the cm1

experiences a mass loss �m, an instantaneous translation �R along
the x-axis given by equation (19) and a random kick velocity vsys

given by equation (12). The orbital parameters change as a result
of the SN: the primary binary parameters change according to the
description in Section 2.1 and the effective binary orbital parameters
change to semi-major axis A, eccentricity E and true anomaly �; the
secondary binary orbital parameters do not change when SN-shell
impact is not taken into account. Before the SN the binary–binary
system has a total mass Mbb,0 = mcm1,0 + mcm2; we use the cm1

coordinate system to pin down the primary binary and add to this
coordinate system the tertiary and quaternary at a position such that
R0 	 r0, and we choose a reference frame in which the centre of
mass of the total binary–binary system (CMbb) is at rest (the CMbb

reference frame) and in which the cm1 is at the origin at t = 0. The

4 See Section 2.1 and note that these statements about the inner companion
(secondary) star also hold for the outer companion (tertiary and quaternary)
stars.
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separation distance between the cm1 and the cm2, R0, is given by
equation (20) and the velocity of the cm1 relative to the cm2 is

V 0 = vcm1,0 − vcm2 = (V0x, V0y, V0z) (40)

prior to the SN. The effective kick velocity vsys makes an angle 


with the pre-SN relative velocity V 0. After the SN the separation
distance between the cm1 and the cm2 is R given by equation (22)
and the velocity of the cm1 relative to the cm2 is V given by equa-
tion (23), the cm1 mass mcm1 = mcm1,0 − �m = M and total binary–
binary mass Mbb = mcm1 + mcm2 = M + M2. Applying the relations
given above and equations (1) and (2) to our binary–binary system,
we obtain relations for the post-SN semi-major axis A and eccen-
tricity E in terms of both the pre- and post-SN orbital parameters
and velocities given by equations (26) and (27), respectively, with
Mt,0 replaced by Mbb,0. To compute the systemic velocity due to the
SN, we express the pre-SN velocities of the cm1 and the cm2 in
the CMbb reference frame. Using the pre-SN mass ratio λ0 = mcm2

Mbb,0
,

the pre-SN velocities are given by

vcm1,0 = λ0(V0x, V0y, V0z) (41)

vcm2 = (λ0 − 1)(V0x, V0y, V0z). (42)

We calculate the instantaneous velocity of the cm1 after the SN (due
to the assumption of an instantaneous SN, the velocity of the cm2

after the SN remains unchanged):

vcm1 = λ0

(
V0x + vsys,x

λ0
, V0y + vsys,y

λ0
, V0z + vsys,z

λ0

)
. (43)

With the post-SN mass ratio λ = mcm2
Mbb

, the systemic velocity of the
effective binary (and therefore of the binary–binary system) is

V sys = (1 − λ)vcm1 + λvcm2

= (1 − λ)

(
λ0 − λ

1 − λ
V0x + (μ0 − μ)v0x + (1 − μ)vkx,

λ0 − λ

1 − λ
V0y + (μ0 − μ)v0y + (1 − μ)vky,

λ0 − λ

1 − λ
V0z + (1 − μ)vkz

)
. (44)

Note that because the branch harbouring the SN-progenitor (SN
branch) is a binary, this calculation of the SN effect on the binary–
binary system is almost identical to the calculation of the SN effect
on a hierarchical triple. The computations become more interesting
for systems with an SN branch of higher multiplicity.

3 A P P L I C AT I O N : F O R M AT I O N O F J 1 9 0 3+0 3 2 7

PSR J1903+0327 was observed by Champion et al. (2008) who
determined it to be an MSP. This MSP is observed to have a 1 M�
main-sequence companion with a highly eccentric and distant orbit
(e � 0.44, orbital period �95.2 d). These properties are atypical for
MSPs because MSPs are expected to be spun-up via mass transfer
(Bhattacharya & van den Heuvel 1991), which in turn widens and
circularizes the orbit, while its companion evolves through a giant
phase. Phinney (1992), for example, suggests an eccentricity e <

10−3 is typical for MSP binaries. The exception to this has been
MSPs in globular clusters which have interactions with other objects
that may perturb the orbit of the binary. However, Freire et al.
(2011) find it to be unlikely that this MSP system has its origin in
an exchange interaction in such a dense stellar environment.

It has been suggested that J1903+0327 may be the result of
a hierarchical triple (Champion et al. 2008; Bejger et al. 2011;

Portegies Zwart et al. 2011); where the inner companion has been
lost after spinning-up the MSP, leaving only the MSP and the former
tertiary to be observed. Should J1903+0327 be the result of such
a system the methods in the previous sections provide a strong
beginning to investigate how such a system might evolve.

3.1 Initial conditions

We generate sets of 105 initial conditions, as described below, with
each set constituting a stable triple system, and then simulated
the effect of an instantaneous SN occurring at the primary star.
The model we follow [many of our initial conditions are drawn
from Portegies Zwart et al. (2011)] consists of a primary, sec-
ondary and tertiary star with zero age masses of 10 M�, 1 M�
and 0.9 M�, respectively. The initial conditions are generated by
selecting the semi-major axis, A0, eccentricity, E0, and the orbital
inclination, i, for the tertiary. A0 takes values on the range [200,
10 000]R� from a flat distribution, E0 is chosen on the range
[0, 1) from a distribution that is flat in log space and i0 is cho-
sen on the range [0, π ] with a sinusoidal distribution. Combining
these values with the zero age masses of the stars as well as a pre-
set value for the initial semi-major axis of the inner binary, a0 =
200 R� we then test the stability of the system using:

A0(1 − E0)

a0
> 3

(
1 + m3

M0

)1/3( 7

4
+ 1

2
cos i0 − cos2 i0

)1/3

× (1 − E0)−1/6 (45)

(Zhuchkov, Kiyaeva & Orlov 2010). If the system is stable with this
set of parameters, we choose the remaining parameters, namely the
angle α0 described in the previous sections, and the direction and
magnitude of the kick. Because we have assured that the system is
dynamically stable before starting our simulations our assumption
of a hierarchical system is guaranteed. We observe that due to the SN
kick, systems with very high inclination are preferentially removed
or their inclination is reduced, thus as a result we do not include the
effects of Kozai iterations.

3.2 Simulations

The inner binary undergoes a common envelope (CE) phase, cir-
cularizing the orbit, reducing the inner semi-major axis to a value
between 5 R� and 60 R�, and reducing the mass of the primary
to 2.7 M�. The effect of these changes on the stability of the sys-
tem can immediately be seen in equation (45). Then, due to the
SN, the primary undergoes a mass loss of 1.3 M� and receives a
corresponding kick. The velocity of the kick is fixed between 5 and
160 km s−1 for each set of simulations and the kick direction is ran-
domly chosen such that for all simulations the direction is isotropic.
We then analyse the survivability and stability of each system. A
system survives the SN and resulting kick if it remains bound, and
it is determined to be stable if, while remaining bound, the system
also satisfies the stability criterion in equation (45).

We ran Monte Carlo simulations for four different inner binary
semi-major axes (10, 20, 30 and 50 R�). For each semi-major axis
value we run 25 simulations (each of the 25 simulations consists of
105 sets of initial conditions) each with a constraint kick velocity
(between 0 and 130 km s−1). In Fig. 5 we plot the kick velocity
versus the fraction of surviving and stable systems. For each pair
of curves the thin red upper curve corresponds to the survivability
fraction and the thick black lower curve to the fraction that survives
and remains stable. Curves with the same kick velocity have the
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Figure 5. The fraction of surviving and stable system [thin red and thick
black (colours online only) lines, respectively] as a function of the kick
velocity. The lines in each set correspond to different semi-major axis, 50,
30, 20 and 10 R� (circle, cross, diamond and square, respectively). All
curves are normalized to the total number of surviving systems with a semi-
major axis of 50 R�.

same point-symbols. Each point represents the fraction of surviving
or stable systems normalized to the total number of surviving sys-
tems with a semi-major axis of 50 R�. Increasing the semi-major
axis from 10 to 30 R� strongly increases the overall probability of a
system to survive and remain stable. However, with a kick velocity
of 45 km s−1 and higher the probability of a system remaining sta-
ble is nearly the same when the semi-major axis is ≥20R�. Fig. 5
shows the effect of the Blaauw & Boersma recoil (Blaauw 1961;
Boersma 1961) on the system when the SN kick is small; as the SN
kick velocity approaches the Blaauw & Boersma recoil velocity the
stability increases due to the kick and recoil off-setting one another,
in part or in full. As the SN kick velocity increases it begins to
overwhelm the Blaauw & Boersma effect.

In Fig. 6 we show the effect the inner semi-major axis has on
survivability and stability (the upper and lower lines, respectively)
using a constant kick velocity of 20 km s−1. Again each data point
represents the fraction of systems that survive, or survive and in
addition remains stable out of a set of 105 initial conditions. Here
we see the significant role of the inner semi-major axis on the
survivability of the system. If we note for a particular kick velocity
which value of a0 the stability fraction begins to level, we can see
it corresponds to the merging of the stability curves in Fig. 5. For
the case of a 20 km s−1 SN kick velocity, as in Fig. 6, we see that
any value of a0 greater than about 30 R� will have similar stability
fractions while systems with lower values of a0 should have a lower
stability fraction as we see in Fig. 5.

Next, we chose all of the systems that remain stable after the
SN and subject them to a mass transfer phase. Here we iteratively
remove one one-hundredth of the mass of the secondary and transfer
a fraction of it to the primary, which after the SN would have formed
a NS. Following the work of Pols & Marinus (1994) we find

af = ai

[(
m1,f

m1i

)(1/(1−χ))
m2,f

m2i

]−2

×
(

Mi

Mf

)
(46)

where af is the new semi-major axis, ai is the semi-major axis
before the mass transfer, m1,i and m2,i are the masses of the pri-
mary and secondary before the mass transfer, m1,f and m2,f are
the masses of the primary and secondary after the mass transfer,
Mi and Mf are the total masses of the binary before and after the
mass transfer, and, finally, χ is the ratio of the change in mass of

Figure 6. The fraction of surviving and stable systems (upper and lower
lines respectively) with respect to the inner semi-major axis. A constant kick
velocity of 20 km s−1 is used.

Figure 7. The number of occurrences for which the system becomes un-
stable due to mass transfer at a given mass of the primary. The curves
correspond to Facc values of 0.3, 0.4, 0.5, 0.6 and 0.9 as shown in the key.
The peak value and FWHM for each curve in this figure, as well as similar
curves for other values of Facc, are plotted in Fig. 8.

the system to the change in mass of the donor (i.e. the secondary).
If we define the fraction of mass accreted, Facc, as the fraction of
mass lost from the secondary which is accreted on to the primary
we find that the 1/(1 − χ ) term simply becomes 1/Facc. After each
iterative mass transfer, and the resulting change in the semi-major
axis, we test the triple for stability using equation (45). When the
system becomes dynamically unstable we stop simulating as the
assumption of a hierarchical system has broken down. We record
the mass of the primary when the system becomes dynamically
unstable and plot the mass in Fig. 7 versus the number of times
systems become unstable at that mass. For this plot we used Facc

values of 0.3, 0.4, 0.5, 0.6 and 0.9, which correspond to the lines
which peak from the left to right respectively, and a constant kick
velocity. We see that the peak value for each Facc shifts to a larger
primary mass as Facc increases. This relation is expected since as
Facc becomes larger more of the mass lost from the secondary is
accreted on to the primary. So for the case of Facc = 0.3 only
30 per cent of the mass lost from the secondary could ever accrete
on to the primary, thereby reducing the maximum possible mass of
the primary. If we assumed that all of the mass of the secondary
is lost (an unphysical case since the mass transfer would end be-
fore this could happen, but this provides an extreme upper limit)
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Figure 8. The final mass of primaries with respect to the fraction of ac-
creted mass. The dashed horizontal line is placed at the observed mass of
J1903+0327. The points represent the peak value of curves that plot the
number of times a system becomes unstable while at a given mass of the
primary (like those in Fig. 7); the upper and lower bars represent the FWHM
of the curves. The values that are coloured (online) and that have different
line types correspond to the curves in Fig. 7 (e.g. the blue, dot–dashed line
at Facc = 0.9 is obtained from the right most peaked curve in Fig. 7, which
is also a blue, dot–dashed line).

then while the secondary would have lost 1 M� the primary would
have only accreted 0.3 M� resulting in a maximum primary mass
of 1.7 M�. If we were to assume that mass transfer would stop
when the secondary decreased to a mass of 0.3 M� then the sec-
ondary would have lost 0.7 M� and only 0.21 M� (or 30 per cent
of 0.7 M�) would have been accreted by the primary resulting in a
mass of 1.61 M�. We have examined 21 curves like those in Fig. 7;
we measured and plotted their peak value and the full-width at half-
maximum (FWHM) in Fig. 8. The error bars denote the FWHM of
the curves, the plotted point is the peak value for each curve and
the mass of J1903+0327 is shown as a dashed line. Examination of
Fig. 8 shows that given the observed mass and the assumptions we
used in preparing the simulated systems, J1903+0327’s progenitor
system would have most likely had an Facc value between 0.35 and
0.5, with the peak value of 0.4 most closely matching the observed
mass.

It should be noted, however, not all of the baryonic mass trans-
ferred results in an equivalent increase in gravitational mass of
the primary since Maccrete = �Mgrav + �Ebinding/c2 (Bagchi 2011),
where Maccrete is the mass accreted from the secondary, �Mgrav is
the change in gravitational mass of the primary and �Ebinding is the
binding energy of the system. We find that for the masses being
transferred in our simulations the effect of using Maccrete = �Mgrav

is less than the our uncertainty in the final results.
Finally, we perform the same analysis that produced Fig. 7 but

use an initial primary mass of 1.2, 1.3, 1.4 (as used in all of the
previous simulations), 1.5 and 1.6 M�. These simulations were
preformed for eight inner semi-major axes (10, 20, 30, 40, 50, 60,
70 and 100 R�) at the start of mass transfer. The Facc value with
the peak number of occurrences closest to the observed mass of
J1903+0327 (1.667 M�) was recorded, as was the number of
occurrences at that peak; these values were plotted in Fig. 9. Upon
examining Fig. 9 we find that as the initial mass of the primary
increases the most likely Facc value and its domain decrease. To
understand these results we recall that as the initial mass of the
primary increases the amount of mass needed to reach the observed
mass of J1903+0327 is decreased. So, for example, if the initial

Figure 9. The number of systems per million simulations with a final pri-
mary mass of 1.667 M� (the observed mass of J1903+0327) as a function
of the fraction of accreted mass, for different initial primary masses (shown
in the key).

mass of the progenitor of J1903+0327’s primary (before it began
to accrete material from the secondary) was 1.6 M� it would only
need to accrete 0.067 M� before the system reached the observed
mass. A very small Facc value can result in the transfer of such a
small amount of material allowing the Facc to stay low; with a lager
Facc value the system will often reach a final primary mass greater
than 1.667 M� thus limiting the domain. Whereas if the initial
primary mass was 1.2 M�, an Facc value of 0.1 would never allow
for enough mass to be transferred, but there are a large range of Facc

values that can allow for that amount of mass transfer that would not
quickly overshoot the observed mass. This assumes, as we have in
all of the simulations, that the mass transfer is stable as long as the
triple is dynamically stable. We find that for an initial primary mass
of 1.4 M�, the value used in all previous simulations, the peak
Facc value is not sensitive to the semi-major axis at the beginning
of the mass transfer; the Facc value ranges between 0.35 and 0.45,
which lies within our expected range of 0.35 to 0.5 found above
from Fig. 8.

4 C O N C L U S I O N

We have examined the effect of an asymmetric SN on a hierarchical
multiple star system and considered how it can be modelled by
applying the effective binary method. This is done by recursively
replacing the inner binary by an effective star at the centre of mass
of that binary. The effective star experiences an effective SN with
the effects of sudden mass loss, an instantaneous translation and an
effective kick velocity, i.e. the systemic velocity of the inner binary.
We have coded the equations in this paper in a small python script,
which is publicly available.5

We point out that the effective SN is different from a physical
SN in that for a physical SN the mass is lost from the position
of the physical star, whereas for an effective SN the mass is lost
from the effective star. The off-centre mass loss in an effective SN
becomes important only if the shell impact on the companion(s)
is considered, and otherwise causes no difference between a real
and an effective SN calculation. Furthermore, we calculated the
runaway velocities for dissociating binaries and effective binaries.

5 The source code is publicly available at http://castle.strw.leidenuniv.nl/
software.html.
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We subsequently demonstrated how calculating the effect of an SN
on a multiple can be generalized to multiples in which a star other
than the primary is undergoing the SN.

We used this method to examine the case for J1903+0327 form-
ing from a hierarchical triple. We assume initial masses of 10, 1.0
and 0.9 M� for the primary, secondary and tertiary, respectively,
as well as an inner semi-major axis of 200 R�. We find that if
J1903+0367 was to form through such a mechanism it would be
most likely to have a very low SN kick velocity so that it would
remain stable after the SN, and a large inner semi-major axis after
the CE phase to increase the likelihood that the triple would become
unstable once the NS/MSP reached a mass of 1.667 M� (Freire
et al. 2011). We also find that, given our assumptions, the transfer
efficiency, Facc, for J1903+0327 would have likely been between
0.35 and 0.5.
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