Electronic Supplementary Information

Asymmetric Synthesis of a Tricyclic Benzofuran motif: A Privileged Core Structure in Biologically Active Molecules

Henrik Sundén and Roger Olsson

General

Chemicals and solvents were purchased from Sigma-Aldrich. Reactions involving oxygen and/or moisture sensitive reagents were carried out under an atmosphere of nitrogen using anhydrous Toluene. Toluene was distilled from benzophenone/sodium and used freshly distilled. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a JEOL JNM-EX 400-spectrometer at 400 and 100 MHz, respectively or ¹³C NMR spectra on a 500 Varian Unity Inova-spectrometer at 126 MHz. Chemical shifts are reported in ppm with the solvent residual peak as internal standard (CHCl₃ δ 7.26, CDCl3 δ 77.0). The reactions were monitored by thin-layer chromatography (TLC), on silica plated aluminum sheets (Silica gel 60 F254, E. Merck) detecting spots by UV (254 and 365 nm). Flash chromatography was performed on Merck Silica gel 60 (0.040-0.063 mm). Optical rotation was measured on a Perkin Elmer polarimeter 341 LC. Gas chromatography/mass spectrometry analyses were performed on a Varian Saturn 2000 GCMS with a Supelco SLB-5ms fused silica capillary column using helium as carrier gas. Injector temperature 300°C, temperature program: 70 to 330 °C (12 °C/min) with 4 minutes hold time. The MS detector consisted of an ion trap with 70eV ionization. The HRMS-analyses were conducted by SP Sveriges Tekniska Forskningsinstitut Kemi och Materialteknik- Organisk analytisk kemi. Chiral HPLC chromatography analyses were performed on a Varian 9012Q/9050 UV-VIS detector using HPLC-grade solvents; n-hexane and isopropanol.

8: To a stirred solution of cyclohex-2-enone (3 g, 31.2 mmol) in 1:1 THF-H₂O (100 mL) was added K₂CO₃ (5.18 g, 37.5 mmol), I₂ (1.18 g, 46.8 mmol) and DMAP (669 mg, 6.24 mmol) successively. The reaction was stirred for 16 h and then diluted with EtOAc (100 mL) and washed with sat. Na₂S₂O₃ (20 mL) and 0.1 M HCl (20 mL), dried over MgSO₄, concentrated *in vacuo* and purified by flash chromatography (pentane:EtOAc, 5:1). α-iodoenone **8** isolated as colorless wet crystals in 82% yield.^{1 1}H NMR (400 Hz; CDCl₃) δ 7.76 (t, *J* = 4.4 Hz, 1H), 2.65 (d, *J* = 6.8 Hz, 2H), 2.43 (dd, *J* = 10.5, 6.0 Hz, 2H), 2.08 (dt, *J* = 12.6, 6.1 Hz, 2H); ¹³C NMR (101 MHz; CDCl₃) δ 192.15, 159.43, 103.80, 37.19, 29.87, 22.78; *m/z* (EI) 222 (M+, 100%), 194 (50), 166 (14).

OBn

OBn

(HO)₂B (4-(benzyloxy)phenyl)boronic acid. 4-Benzyloxyphenylbromide (14.0 g, 53.2 mmol) was dissolved in distilled THF (100 mL) in a septa equipped round-bottom flask. The solution was purged with N₂ and cooled to -75 °C in a CO₂/acetone bath. N-Butyllithium (2.5 M in hexanes, 27 mL) was added slowly while maintaining the temperature below -65 °C. The mixture was stirred for 1 h below -65 °C and then triisopropyl borate (39 mL, 170 mmol) was added while maintaining the temperature at -65 °C. The resulting clear solution was warmed to room temperature and stirred for 16 h. Conc. HCl was added until a pH of 6-7 was reached. The reaction mixture was poured into diethyl ether (200 mL) and the organic layer was washed three times with water, dried over anhydrous MgSO₄ and filtered. The solvent was removed and the product was recrystallized from EtOAc/hexanes (1:10). Yield: 82%. ¹H NMR (400 MHz; CDCl₃) δ 8.17 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.35 (dd, *J* = 8.4, 5.8 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 5.16 (s, 2H); ¹³C NMR (101 MHz; CDCl₃) δ 162.38, 137.51, 136.67, 128.63, 128.07, 127.53, 114.36, 99.77, 69.82.

9: To a Mw-vial containing, iodoenone **8**, (167 mg, 0.75 mmol), Na₂CO₃ (159 mg, 1.5 mmol), Ar-B(OH)₂ (342 mg, 1.5 mmol), and Pd/C (40 mg, 5 mol%) was added DME (1.5

mL) and H₂O (1.5 mL). The mixture was degassed by alternating vacuum and N₂ three times, pre stirred for 5 min and then subjected to microwave irradiation (80 °C) for 15 min. Without removing the Mw-cap the reaction mixture was extracted with diethylether (5 x 3ml), the combined organic phase was dried (Na₂SO₄), evaporated and purified by flash chromatography (pentane:EtOAc, 5:1). The title compound **9** was obtained in 168mg, 80% yield as an of white solid.² ¹H NMR (400 MHz; CDCl₃) δ 7.46 – 7.35 (m, *J* = 7.6, 6.6 Hz, 4H), 7.35 – 7.30 (m, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 6.99 (t, *J* = 4.3 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.07 (s, 2H), 2.58 (t, *J* = 6.9 Hz, 2H), 2.52 (dd, *J* = 10.4, 6.0 Hz, 2H), 2.10 (p, *J* = 6.1 Hz, 2H); ¹³C NMR (101 MHz; CDCl₃) δ 198.24, 158.36, 146.96, 139.74, 137.02, 129.76, 129.25, 128.56, 127.92, 127.43, 114.39, 69.98, 39.11, 26.60, 22.96; *m/z* (EI) 278 (M+, 48%), 187 (9), 91 (100).

OBn

OH

10: A prestirred (10 min, rt) solution of (S)-(-)-2-Methyl-CBSoxazaborolidine (60mg, 0.22 mmol) and borane dimethyl sulfide complex (BMS) (0.377 mL, 0.75 mmol, 2M solution in toluene) in toluene (3 mL) was placed in an ice bath. The cold reaction mixture was then added a solution of 9 (200 mg, 0.72 mmol) in toluene (3 mL) via a syringe pump over 2h. The reaction was continued at 0 °C for an additional 2h before it was guenched with 2 ml of 1M HCl and diluted with 75 mL diethylether, extracted, washed with water (5mL), brine (5mL) and dried over MgSO₄. The crude product was purified by silica gel chromatography (pentane:EtOAc, 10:1) to give the allylic alcohol 10 (168 mg, 83% yield and 98% ee) as an of white solid ¹H NMR (400 MHz; CDCl₃) δ 7.49 – 7.37 (m, 6H), 7.36 – 7.29 (m, 1H), 6.97 (d, J = 8.6 Hz, 2H), 6.14 - 6.07 (m, 1H), 5.08 (s, 2H), 4.68 (t, J = 3.5 Hz, 1H), 2.35 - 2.09 (m, 2H), 2.03 - 1.93 (m, 1H), 1.91 - 1.57 (m, 4H); ¹³C NMR (101 MHz; CDCl₃) δ 158.00, 138.31, 136.97, 132.87, 128.54, 127.91, 127.43, 127.18, 127.03, 114.82, 69.96, 65.42, 31.51, 25.97, 17.26; *m/z* (EI) 281 (M+1, 24%), 171 (11), 128 (7), 91 (100); $[\alpha]_D^{20}$ =+66.1 (c 1, CHCl₃); HPLC: Diacel Chiralpak AD column (n-hexane: 2-Propanol = 95:5, flow rate 1 mL/min, λ = 254 nm). Retention time (min): 27.9 (minor) and 31.3 (major). The racemic standard was prepared by reducing 9 under Luche conditions.³

12: To a stirred solution of **10** (85mg, 0.30 mmol), 2-iodophenol (133mg, 0.61 mmol), and PPh₃ (159 mg, 0.61 mmol) in toluene (15ml) was added DIAD (122 mg, 0.61 mmol) at 0°C. The solution was allowed to reach room temperature and stirred over night and then diluted with 15 mL toluene and quenched with 4ml 1 M NaOH. The organic layer was separated and washed with water (5 ml), brine (5ml) and dried over MgSO₄ and concentrated. The crude product was purified by flash chromatograph (pentane:EtOAc, 20:1) to render the product in 88mg, 60% yield. ¹H NMR (400 MHz; CDCl₃) δ 7.77 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.45 – 7.22 (m, 8H), 6.92 (d, *J* = 8.6 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.69 (td, *J* = 7.4, 1.1 Hz, 1H), 6.28 (dd, *J* = 5.0, 2.8 Hz, 1H), 5.17 (t, *J* = 3.0 Hz, 1H), 5.04 (s, 2H), 2.45 – 2.37 (m, 1H), 2.26 – 2.13 (m, 2H), 2.07 – 1.95 (m, 1H), 1.75 – 1.63 (m, 2H); ¹³C NMR (126 MHz; CDCl₃) δ 157.82, 156.63, 139.70, 137.04, 135.07, 134.05, 129.81, 129.23, 128.50, 127.84, 127.40, 127.04, 122.41, 114.60, 113.55, 88.40, 73.24, 69.92, 27.42, 25.89, 17.10; [α]²⁰_{*p*}=-26.9 (c 1, CHCl₃); HPLC: Diacel Chiralpak AD column (nhexane: 2-Propanol = 95:5, flow rate 1 mL/min, λ = 254 nm). Retention time (min): 6.6 (minor) and 7.3 (major).

BnO **13**: To a vial containing Ag₂CO₃ (56 mg, 0,20 mmol), PPh₃ (5.2 mg, 0.020 mmol) and Pd(OAc)₂ (2.2 mg, 0.010 mmol) was added a solution of aryl ether **12** (33 mg, 0.068 mmol) in toluene (1.5 mL). The mixture was degassed by alternating vacuum and N₂ three times and heated at 80° C in a sealed vial for 16h at which the completion and selectivity of the reaction was measured by crude-NMR. The reaction was directly purified by silica gel chromatography (pentane:EtOAc, 20:1) to yield the cyclic product as a colorless oil in 95% yield. ¹H NMR (400 MHz; CDCl₃) δ 7.50 – 7.27 (m, 7H), 7.17 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.00 – 6.93 (m, 3H), 6.91 – 6.82 (m, 2H), 6.02 – 5.93 (m, 1H), 5.72 – 5.64 (m, 1H), 5.06 (s, 2H), 4.73 (t, J = 1.7 Hz, 1H), 2.41 – 2.29 (m, 1H), 2.22 – 2.12 (m, 1H), 2.12 – 2.01 (m, 1H), 1.87 – 1.69 (m, 1H); ¹³C NMR (126 MHz; CDCl₃) δ 159.94, 157.75, 136.96, 136.69, 134.42, 129.51, 129.38, 128.58, 128.36, 127.97, 127.48, 126.75, 124.67, 120.92, 114.56, 109.95, 89.59, 70.04, 53.27, 21.56, 18.96; m/z (EI) 354 (M+, 100%), 235 (2), 91 (7); $[\alpha]_{D}^{20}$ =+60.2 (c 1, CHCl₃).

O M

HO 14: To a stirred solution of 13 (99mg, 0.28 mmol) in ethanol (3mL) was added Pd/C (10mg, 10% wt). The reaction vessel was purged by alternating vacuum and H₂ three times before it was subjected to an atmosphere of H₂. When complete conversion of starting material could be determined (TLC) the reaction was directly purified by silica gel chromatography (pentane:EtOAc, 5:1) to yield the final product as a colorless oil in 49 mg, 67% yield. ¹H NMR (400 MHz; CDCl₃) δ 7.24 (d, *J* = 8.7 Hz, 2H), 7.19 – 7.11 (m, 1H), 6.90 – 6.83 (m, 3H), 6.78 (d, *J* = 8.7 Hz, 2H), 4.83 (t, *J* = 3.6 Hz, 1H), 4.68 (s, 1H), 2.37 – 2.24 (m, 1H), 2.08 – 1.95 (m, 1H), 1.87 – 1.51 (m, 6H); ¹³C NMR (101 MHz; CDCl₃) δ 158.63, 153.97, 137.98, 136.84, 128.79, 127.95, 123.63, 120.84, 115.05, 110.12, 89.78, 50.95, 33.81, 26.19, 21.44, 19.64; *m/z* (El) 266 (M+, 100), 223 (84), 195 (17); [α]²⁰_D=+2.5 (c 0.4, CHCl₃); HRMS (FI-ICR-MS) *m/z* Calcd for: C₁₈H₁₈O₂ [M+H]⁺ 267.1379, (found) 267.1385.

^{1.} C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P. M. Wovkulich and M. R. Uskokovi'c, *Tetrahedron Lett.*, 1992, **33**, 917-918.

^{2.} F.-X. Felpin, J. Org. Chem., 2005, 70, 8575-8578.

^{3.} A. L. Gemal and J. L. Luche, J. Am. Chem. Soc., 1981, **103**, 5454-5459.

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

----5.16

10.0

10.0

5.0 f1 (ppm)

		 	129.76 129.25 128.56 127.92 127.43	 77.32 76.68 		
O OB	3n					
			!. 			
****					1	

Т f1 (ppm)

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2010

8.5 8.0 5.0 f1 (ppm) 3.0 2.5 10.0 9.5 9.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 2.0 1.5 1.0 4.5

0.5

	Supplementary Material (ESI) for Organic and Biomolecular Chemistry				This journal is © The Royal Society of Chemistry 2010					
	— 159.9 — 157.8	∠ ^{137.0} _ 136.7 134.4	129.4 128.6 127.5 120.9					- 53.3	— 21.6 — 19.0	
					'	'				
	,NH									
	Reo C									
	BNO									
						1				
			.							
		L					I	1	1	
									and a state of the	
180	170 160 150	140	130 120		110 100	90 80	70 60	50 40 30	20 10	

