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Abstract

We describe herein an asymmetric synthesis of ageliferin. A Mn(III)-mediated oxidative radical

cyclization reaction was used as the key step to construct the core skeleton of this pyrrole-

imidazole dimer. This approach resembles the bio-genic [4+2] dimerization in an intramolecular

fashion.

Pyrrole-imidazole alkaloids are a family of highly nitrogenated and halogenated natural

products that possess unique molecular skeletons and significant biological activities.1

Ageliferin (1) is a dimeric member found in many Agelas and Stylissa sponges.2

Conceptually, it is a [4+2] dimer of two molecules of hymenidin (2) (Figure 1). Together

with the [2+2] and [3+2] congeners, these alkaloids provide valuable opportunities for

studying chemistry. Over the past decades, chemists have developed various strategies to

address the issues associated with their laboratory synthesis.3 Notably, the synthesis of the

[2+2] dimer sceptrin has been achieved by Baran4 and Birman,5 and the [4+2] and [3+2]

dimers ageliferin (1),6 axinellamine,7 massadine,8 and palau’amine9 by Baran. Ohta has also

reported a synthesis of 12,12′-dimethylageliferin.10 Complementary to these elegant

approaches, we seek to examine the potential of radical addition reactions in mimicking the

putative [4+2] biosynthesis pathway. We further wish to use laboratory synthesis to support

the viability of the biosynthetic hypotheses. We report herein the successful implementation

of such an approach in the synthesis of 1.

One prevailing biosynthesis proposal for these alkaloids is that the [2+2] and [4+2] dimers

are generated by direct dimerization11 while the [3+2] dimers are derived from the [4+2]

dimers through an oxidative ring-contraction reaction.12 We therefore sought to explore the

hypothetical central role of 1 in the biosynthesis of this family of natural products. This

direction of research has also been pursued by Romo, Lovely, and Baran.13 Regarding the

[4+2] dimerization, a Diels–Alder reaction has been used by Romo, Lovely, and Ohta in

their biomimetic synthesis.14 We envisioned that oxidation of β-ketoester 3 would initiate a

radical tandem cyclization reaction affording 4 after removing the tether (Figure 1). We

anticipated that mimicking this dimerization in an intramolecular way would allow for better

efficiency and stereochemical controls. In addition, an asymmetric synthesis can be achieved

with a chiral R* group. This transformation resembles the biogenic formation of the C9–C9′
and C10–C15′ bonds in producing 1.
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We have recently demonstrated that oxidation of an allylic γ-imidazolinoyl-β-ketoester (3,

X=O) with Mn(OAc)3 readily provides the core skeleton of 1,15,16 which can further be

transformed to 13,13′-dioxoageliferin. However, all attempts to convert the imidazolinone

groups to aminoimidazole groups failed. We therefore redesigned our route and introduced

the 13- and 13′-amino groups at an early stage. An allylic γ-imidazolyl-β-ketoester (3, X=N)

was employed despite the difficulty of radical addition to imidazole.17

Starting from BOM-protected imidazole 5,18 chlorination at the 2-position and formylation

at the 4-position can be carried out in one-pot to give 6 (Scheme 1). The BOM group serves

as a good directing group for the second lithiation reaction providing good regioselectivity.

The azido group can then be introduced easily by aromatic substitution to give 7. Separately,

allylic alcohol 8, obtained from Garner’s aldehyde according to known procedures,19 was

coupled to Boc-β-Ala-OH to afford 9. Both crude 7 and 9 were used directly in the

subsequent reaction.

β-Ketoester 10 for the critical Mn-oxidation reaction was synthesized from 7 and 9 through

an aldol reaction and Dess-Martin oxidation (Scheme 2). Treating 10 with Mn(OAc)3 in

acetic acid at 50–60 °C or Mn(picolinate)3 in methanol at 90 °C gave 11 and 12 in a 2.5–3:1

ratio. The major product 11 was isolated in 18–25% yield and the minor product 12 in ca.

9% yield over four steps based on 8.20 Lactones 11 and 12 differ only in their C9′
stereochemistry as the two compounds gave rise to the same product 13 after

decarboxylation. These results suggest that only one face of the olefin was accessible for the

radical addition. However, the facial selectivity is opposite to that predicted based on the

A1,3 strain model,21 giving ent-1 at the end of the synthesis. The stereoselectivity for

reactions of homologated Garner’s aldehyde derivatives has been shown to be less

predictable.22

Removal of the tether for the manganese oxidation reaction can be done under mild

conditions. As previously described, decarboxylation of both 11 and 12 gave 13. The initial

trans decarboxylation product epimerized rapidly at the C9′ position to give cis-13. This

rather unexpected stereochemical preference presumably helps release the unfavorable steric

interactions among the three side-chains while maintaining the carbonyl-imidazole

conjugation on a flattened half-chair cyclohexenone ring.23 Considering the propensity of

this C9′ epimerization, we decided to correct this stereochemical issue at a late stage and

focus on the installation of the remaining functional groups.

Converting the hydroxyl group of 13 to an amino group was surprisingly difficult, due

presumably to the congested steric environment. After extensive studies, we found that 13

can first be mesylated and then converted to an iodide. Reaction of this iodide with NaN3 in

warm DMSO gave 14 in moderate yields.

To install the pyrrole side-chains, the azido groups were first reduced by a Staudinger

reaction. Interestingly, we found the triphenylphosphine imide of aminoimidazole to be

quite stable toward hydrolysis, rendering it a good protecting group for our synthesis. The

acetonide and Boc groups can be removed selectively to yield triamine 15, which was

crashed out from the ether solution to remove the excess reagents and triphenylphosphine

oxide. Installation of the pyrrole groups was done with good regioselectivity, giving a 3:1

ratio of 16 and the mono-pyrrole product, which can be resubjected to the reaction to

improve the overall efficiency.

With the pyrrole side-chains in place, our next task was to introduce the second

aminoimidazole group. After evaluating several routes, we found the following one most

efficient and reliable. A guanidine group was first introduced selectively to 16. Oxidation of

the hydroxyl group then gave an aldehyde that slowly cyclized with the guanidine to give

Wang et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2012 October 5.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



aminoimidazole 17. Addition of 0.5 equivalent of TFA after oxidation facilitated this

cyclization.

At this stage, we found that the C9′ epimerization can be easily done to provide the correct

C9′ configuration under acidic conditions. The C10′ carbonyl group was then removed with

sequential reductions to afford 18. The BOM protecting group was subsequently removed by

a two-step process. The benzyl group was first cleaved by BCl3. The resulting

hydroxymethyl group was then removed by basic hydrolysis. Finally, the

triphenylphosphine imide group was hydrolyzed by HCl at 60 °C to afford ageliferin, whose

CD spectrum indicated that ent-1 was obtained. The absolute configuration of 1 has been

assigned by Baran.6b

In summary, utilizing an oxidative radical tandem cyclization reaction as the key step, we

successfully synthesized ent-ageliferin (ent-1) in a biomimetic fashion. Our synthesis

supports the possibility that a single-electron transfer (SET) reaction is used in nature to

dimerize 2 to form 1.24 We are currently applying this strategy to the biomimetic synthesis

of the [3+2] pyrrole-imidazole dimers.
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Figure 1.

Ageliferin and its hypothetical biosynthetic pathway.
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Scheme 1.

Preparation of 7 and 9.a

a Conditions: (a) n-BuLi, NCS, THF, −78 °C; then n-BuLi, DMF, THF, −78 °C, 56% yield

after recrystallization. (b) NaN3, DMF, 50 °C, 92% crude yield. (c) Boc-β-Ala-OH, DCC,

DMAP, CH2Cl2, 23 °C.
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Scheme 2.

Completion of synthesis of ageliferin.a

a Conditions: (a) LiHMDS, THF, −78 °C. (b) Dess-Martin periodinane, H2O, CH2Cl2, 23

°C. (c) Mn(OAc)3•2H2O, HOAc, 50–60 °C, 11: 18–25%, 12: ca. 9% yield for four steps. (d)

LiOH, THF, H2O, 23 °C. (e) MsCl, NEt3, CH2Cl2, 23 °C. (f) NaI, acetone, 70 °C. (g) NaN3,

DMSO, 60 °C, 36% yield for four steps. (h) PPh3, H2O, THF, 70 °C. (i) TFA, CH2Cl2, 23

°C. (j) 4-bromo-2-(trichloroacetyl)pyrrole, NEt3, DMF, 0 °C, 66% yield for three steps. (k)

1-[N,N′-(di-Boc)amidino]pyrazole, NEt3, DMAP, CH3CN, 40 °C, 60% yield. (l) IBX,

DMSO, 40 °C; then TFA 40 °C, 54% yield. (m) TFA, CH2Cl2, 23 °C. (n) Ca(BH4)2•2THF,

THF, 23 °C. (o) NaBH3CN, HOAc, 50 °C, 38% yield for three steps. (p) BCl3, CH2Cl2, −10

°C. (q) NH4OH, H2O, CH3CN, 23 °C, 77% yield for two steps. (r) HCl, EtOH, H2O, 60 °C,

88% yield.
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