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Since the inception of Bitcoin in 2008, cryptocurrencies have played an
increasing role in the world of e-commerce, but the recent turbulence in the
cryptocurrency market in 2018 has raised some concerns about their stabil-
ity and associated risks. For investors it is crucial to uncover the dependence
relationships between cryptocurrencies for a more resilient portfolio diversi-
fication. Moreover, the stochastic behavior in both tails is important, as long
positions are sensitive to a decrease in prices (lower tail), while short po-
sitions are sensitive to an increase in prices (upper tail). In order to assess
both risk types, we develop in this paper a flexible copula model which is
able to distinctively capture asymptotic dependence or independence in its
lower and upper tails simultaneously. Our proposed model is parsimonious
and smoothly bridges (in each tail) both extremal dependence classes in the
interior of the parameter space. Inference is performed using a full or cen-
sored likelihood approach, and we investigate by simulation the estimators’
efficiency under three different censoring schemes which reduce the impact of
nonextreme observations. We also develop a local likelihood approach to cap-
ture the temporal dynamics of extremal dependence among pairs of leading
cryptocurrencies. We here apply our model to historical closing prices of five
leading cryotocurrencies which share large cryptocurrency market capitaliza-
tions. The results show that our proposed copula model outperforms alter-
native copula models and that the lower-tail dependence level between most
pairs of leading cryptocurrencies and, in particular, Bitcoin and Ethereum has
become stronger over time, smoothly transitioning from an asymptotic inde-
pendence regime to an asymptotic dependence regime in recent years, whilst
the upper tail has been relatively more stable overall at a weaker dependence
level.

1. Introduction. Because of the confidentiality, integrity, and speed of transactions of
virtual operations, the use of cryptocurrencies among private users and businesses has in-
creased at a fast rate since Bitcoin was initially created about a decade ago, and the trans-
action volume has grown considerably. However, cryptocurrencies have also been subject to
major shocks and a highly volatile “roller coaster” in recent years which has triggered im-
portant concerns about the stability and the risks associated with cryptomarkets. One of the
critical periods in the history of cryptomarkets is the 2017 boom, which was then followed
by a sudden major crash in 2018, where the Bitcoin price dropped from about 18,000 U.S.
dollars (USD) in December 2017 to only 3500 USD in December, 2018. Later, due to the
worldwide COVID-19 pandemic and a fear of a global recession, the year 2020 challenged
the traditional financial system, leading to a broader adoption of cryptocurrencies by vari-
ous reputable financial institutions. These conditions combined with the major investment of
1.5 billion USD by Tesla in cryptocurrencies, boosted cryptomarkets with Bitcoin reaching an
all-time high capitalization of more than 61,000 USD on March 12, 2021. But then in May,
2021, the Bitcoin price lost about half of its value, dropping quickly to about 30,000 USD,
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following suggestions that Tesla has sold or will sell its Bitcoin holdings and new regulations
from the Chinese government to support their cryptocurrency crackdown. Overall, cryptocur-
rency transactions are being increasingly scrutinized, are either adopted (even by countries,
such as El Salvador and Cuba, who were the first ones to consider Bitcoin as a legal tender
in June and August, 2021, respectively), and/or regulated, and in some cases banned (e.g.,
China declared all cryptocurrency transactions illegal in September 2021). As of October,
2021, the Bitcoin price has recovered to about 50,000 USD. Nevertheless, cryptcurrencies
remain highly volatile and their systemic risks mostly unknown.

For decades, the statistical modeling of extreme events has played a fundamental role
in a wide range of financial risk assessment studies (see, e.g., Castro-Camilo, de Carvalho
and Wadsworth (2018), Embrechts, Klüppelberg and Mikosch (1997), Poon, Rockinger and
Tawn (2003, 2004)), and Borri (2019) has recently shown that some leading cryptocurrencies
are indeed highly exposed to tail risk within cryptomarkets; see also de Carvalho, Leonelli
and Rossi (2020), Feng, Wang and Zhang (2018), Gkillas, Bekiros and Siriopoulos (2018),
Nguyen, Chevapatrakul and Yao (2020) for other papers studying tail risk in cryptocurren-
cies. In particular, Feng, Wang and Zhang (2018) have shown that the lower and upper tail
dependence structures among cryptocurrencies are asymmetric and have found that the de-
pendence strength has increased after August 2016, suggesting high and growing system-
atic extreme risks. Apart from these recent contributions, the tail dependence relationships
among the different cryptocurrencies, representing large simultaneous gains and losses, is
still largely unexplored. For investors the behavior in both tails is important, as long posi-
tions are sensitive to a decrease in prices (lower tail), while short positions are sensitive to
an increase in prices (upper tail). Huynh, Nguyen and Duong (2018) also pointed out that
contagion risk among cryptocurrency returns exists and portfolio diversification is required
for investors. Furthermore, asymmetric tail dependence structures are widely observed and
studied in the modeling of financial assets (Alcock and Satchell (2018), Patton (2004, 2006)),
yet the dependence structures commonly fitted to real data often tend to lack flexibility in the
tails which is crucial with regard to risk management and mitigation.

In order to assess such risks, theoretically justified models that are resilient for extrapolat-
ing joint tail probabilities to the most extreme levels are needed, and extreme value theory
(EVT) provides a natural theoretical framework; see Davison and Huser (2015) for a review
on statistics of extremes. In the multivariate framework the two most prominent classes of
asymptotic models in the extreme-value literature are max-stable distributions (Castruccio,
Huser and Genton (2016), Padoan, Ribatet and Sisson (2010), Tawn (1988, 1990), Vettori,
Huser and Genton (2018)) and multivariate Pareto distributions (Kiriliouk et al. (2019),
Rootzén, Segers and Wadsworth (2018), Rootzén and Tajvidi (2006)). While the former are
designed to model block maxima, the latter are used for high threshold exceedances. To use
them in practice, we first need to choose a finite block size (or threshold), and we then keep
only the block maxima (or observations exceeding the threshold) for fitting. While this mod-
eling approach has solid theoretical foundations based on asymptotic arguments, it leads,
in practice, to a large loss of information (by discarding all nonextreme data). Moreover, it
adds the difficulty of choosing an appropriate block size (or threshold), which is especially
tricky for nonstationary or heteroscedastic time series (Scarrott and MacDonald (2012)), and
it does not provide any information about the bulk of the distribution. By contrast, in this pa-
per we seek to develop a single flexible multivariate dependence model for the entire dataset
that possesses high flexibility in both the lower and the upper tails while keeping a smooth
transition between the two.

Essentially, two asymptotic regimes can prevail in each tail, namely, asymptotic depen-
dence (AD) or asymptotic independence (AI). Mathematically, let X = (X1,X2)

� ∼ FX be a
random vector with margins FX1,FX2 assumed to be continuous for simplicity and define the
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uniform random variables U1 = FX1(X1),U2 = FX2(X2) ∼ Unif(0,1) such that the vector
U = (U1,U2)

� follows the joint distribution

C(u1, u2) = FX
{
F−1

X1
(u1),F

−1
X2

(u2)
}
,(1.1)

called the copula of X. It is unique when the marginal distributions FX1,FX2 are continuous.
Then, X is said to be AD in the upper tail if

χU = lim
t→1

Pr(U1 > t | U2 > t) = lim
t→1

1 − 2t + C(t, t)

1 − t
> 0,(1.2)

whereas it is AI if χU = 0, implicitly assuming that the limit exists. An analogous, sym-
metric definition holds for the lower tail; see Section 3.3. Loosely speaking, AI implies that
the dependence strength weakens and eventually vanishes as events become more extreme,
whereas AD means that it eventually stabilizes to some positive level. In practice, this dis-
tinction is key, as it determines the risk that future unprecedented extreme events might occur
simultaneously. Under AD there is a positive probability that extreme events occur together,
no matter how extreme they are, while under AI, this probability is zero for the most extreme
events (i.e., in the limit). Max-stable distributions are always AD in the upper tail and AI
in the lower tail (Ledford and Tawn (1996)). Therefore, they are unsuitable for the model-
ing of a wide range of processes with weakening upper-tail dependence or strong lower-tail
dependence. Alternatively, various types of dependence structures may be used. The Gaus-
sian copula is the most widely-used dependence model, but it is tail-symmetric, AI in both
tails, and possesses a rigid-tail structure. The Student-t copula, which stems from a specific
Gaussian scale mixture and generalizes the Gaussian copula, is also tail-symmetric and is
AD in both tails. The tail properties of Gaussian scale mixtures and other types of elliptical
models have been explored in depth among others by Hashorva (2010), Huser, Opitz and
Thibaud (2017) and Engelke, Opitz and Wadsworth (2019) (see also the references therein).
In particular, Huser, Opitz and Thibaud (2017) proposed a specific copula model that has a
smooth transition between AD and AI on the boundary of the parameter space, but it remains
tail-symmetric. In the same vein, exploiting various types of random scale constructions,
Wadsworth et al. (2017) and Huser and Wadsworth (2019) proposed flexible bivariate and
spatial copula models that can capture AI and AD in the upper tail only with the transition
in the interior of the parameter space. Another related paper is Krupskii, Huser and Genton
(2018) who studied the tail properties of a certain class of factor copula models; see also
Zhang et al. (2021) for a related normal mean-variance mixture model capturing AI in both
tails.

Building upon and extending the recent work of Huser and Wadsworth (2019) who pro-
posed a spatial extreme model for the upper tail only, we here develop in this paper a new
parsimonious copula model that is able to distinctively control the AD/AI regime in both the
lower and upper tails. Our proposed model has a small number of parameters, and yet, it
can capture a wide variety of dependence structures ranging from independence to complete
dependence, while including nontrivial AD and AI cases characterized by slow and rapid
joint-tail decay rates, respectively. Moreover, the transition between AD and AI takes place
in the interior of the parameter space (for each tail) which greatly facilitates inference on the
extremal dependence class. Unlike classical asymptotic extreme-value models, our model
possesses high flexibility at subasymptotic levels, and so it can also be used to model the full
dataset while still capturing the lower- and upper-tail behaviors accurately. We further extend
the model to a skewed version which enjoys even more flexibility. To make inference, we
propose and compare a full likelihood and various censored likelihood approaches, exploring
three different censoring schemes that are specifically designed to prioritize model calibration
in the lower and upper-tail regions while downweighting the contribution of nonextreme ob-
servations in the bulk. In particular, our full-likelihood approach is similar to other papers that
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study extremes and assess the joint-tail risk using the complete dataset (Aulbach, Bayer and
Falk (2012), Hazra, Reich and Staicu (2020), Leonelli and Gamerman (2020), Vrac, Naveau
and Drobinski (2007)). Furthermore, we also develop a (weighted) local likelihood approach
that can capture complex time-varying dependence behaviors, to uncover how the extremal
dependence among any two leading cryptocurrencies has evolved over time.

The paper is organized as follows. In Section 2 we present the dataset, namely the his-
torical closing prices of five leading cryptocurrencies, which currently share most of the
cryptocurrency market capitalizations, and we discuss some basic statistical preprocessing.
In Section 3 we detail the construction of our new copula model, and we formally derive
its tail dependence properties. In Section 4 we describe (global and local) likelihood-based
inference, using either the full likelihood or various censored likelihoods prioritizing cali-
bration in the tails, and conduct an extensive simulation study. In Section 5 we apply our
methodology to cryptocurrency data in order to uncover their complex time-varying extremal
dependence structures in both tails. We finally conclude in Section 6 with some discussion
and perspectives for future research.

2. Cryptocurrency market data and preprocessing. Unlike traditional currencies, a
cryptocurrency is a digital currency that is not emitted by a central bank, nor supported finan-
cially by the national currency. Being decentralized, a cryptocurrency is not as much affected
by political decisions nor any other intermediates, and it uses cryptographic algorithms to
secure financial activities and safeguard the confidentiality of transactions. For these attrac-
tive reasons the use of cryptocurrencies has grown considerably over the last decade. Bitcoin
(BTC), which was initially created by Satoshi Nakamoto (Nakamoto (2008)) in 2008 and re-
leased in 2009, was the first cryptocurrency. Nowadays, there are thousands of different cryp-
tocurrencies available in the market (see https://coinmarketcap.com/all/views/all/). Figure 1
shows the historical daily adjusted closing prices and log returns of five leading cryptocur-
rencies from December 31, 2015, to October 5, 2021. The values represent the relative prices
with respect to USD downloaded from Yahoo Finance on October 6, 2021. The cryptocur-
rencies represented in Figure 1 are Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin
(LTC), Monero (XMR) which occupied a large portion of the market capitalizations.

We split the entire dataset into two parts: a training set (December 31, 2015, to April 29,
2020), used for model fitting in our data analysis, and a validation set (April 30, 2020, to
October 5, 2021), used to assess the out-of-sample performance of our proposed model. We
chose the validation period to start on April 30, 2020, that is, just before the second booming
period in the cryptocurrency history characterized by major upward and downward shocks.
This allows us to assess whether our proposed model is resilient enough to accurately predict
joint-tail risk in a challenging, highly volatile situation.

Although cryptocurrencies are generally believed to behave differently from traditional
currencies, the log returns present similar characteristics, such as high volatility clusters and
heavy tails. In order to extract stationary residuals (from which we will estimate joint-tail
probabilities of simultaneous extremes), we then filter the log returns by fitting a time-varying
ARMA(1,1)–GARCH(1,1) model to each time series separately with a moving window
approach; see Brockwell and Davis (2002) and the Supplementary Material (Gong and Huser
(2022a)) for details on time series models. The chosen marginal model was found to perform
well and to be the best one after some experimentation and model selection procedure based
on the Bayesian information criterion.

Figure 2 displays bivariate scatterplots of standardized residuals for all pairs of cryptocur-
rencies during the training period. In the Supplementary Material (Gong and Huser (2022a))
we further report the same plots on standard uniform margins, obtained after transforming
the residuals using the empirical probability integral transform based on ranks. From a quick

https://coinmarketcap.com/all/views/all/
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FIG. 1. Historical daily adjusted closing prices (left) and log returns (right) of five leading cryptocurrencies
(from top to bottom: BTC, ETH, XRP, LTC, and XMR) for the period from December 31, 2015, to October 5,
2021. The values represent the relative prices with respect to USD (downloaded on October 6, 2021, from Yahoo
Finance). Training and validation sets are separated by the vertical dashed line.

glimpse the overall correlations between pairs of cryptocurrencies appear to be rather weak in
the bulk, while the dependence strength seems to be stronger in the lower tail than the upper
tail. Moreover, from the color of the points (indicative of time), more recent observations also
seem more strongly tail-dependent, as demonstrated by dark points being more concentrated
around the diagonal line. To further investigate whether the lower-tail dependence structure
between each pair of cryptocurrencies varies over time, we estimate the (symmetric version
of) the tail-dependence coefficient (1.2) using a simple nonparametric moving-window es-
timator with window size chosen to provide a reasonable bias-variance trade-off. Figure 3

FIG. 2. Bivariate scatterplots of standardized residuals extracted from fitting a time-varying
ARMA(1,1)–GARCH(1,1) model to the log returns of all five leading cryptocurrencies during the training
period. Darker points appear later in time.
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FIG. 3. Time-varying lower-tail dependence coefficients χL = limt→0 C(t, t)/t , estimated nonpara-
metrically using the moving window estimator χ̂L;i (t) = ∑

j∈Ji
I(uj1 < t,uj2 < t)/(|Ji |t), where

Ji = {max(i − τ,1), . . . ,min(i + τ,n)}, i = 1, . . . , n, with threshold t = 0.05 and window size τ = 500, based on
uniformly distributed residuals (u11, u12)�, . . . , (un1, un2)� for all pairs of cryptocurrencies during the training
period. Dark lines show point estimates, while light shaded areas display a 95% confidence envelopes obtained
by the Delta method.

reports the results. These nonparametric estimates clearly show that all pairs of cryptocurren-
cies under consideration have undergone a major shift in their lower-tail dependence struc-
tures over the study period, evolving from weak to very strong dependence in recent years,
and potentially indicating a regime switch from AI to AD. This suggests increasing systemic
risks. The upper-tail dependence coefficients, plotted in the Supplementary Material (Gong
and Huser (2022a)), suggest that the upper-tail dependence structure is generally weaker and
may also have evolved over time, though this is less clear. However, empirical estimates are
naturally very variable and also cannot provide deep insights into whether a regime switch
from AI to AD has truly occurred in each tail. This provides us with a strong motivation
to perform a more in-depth model-based study of the time-varying patterns driving the co-
occurrence of low or high values for the different pairs of cryptocurrencies under considera-
tion. In Section 5 we analyze the data further by fitting various copula models, using different
inference approaches, in order to assess both tail-dependence structures in a joint framework,
and to accurately quantify the tail risk among these five leading cryptocurrencies.

3. Modeling.

3.1. Model construction. We here describe the construction of our copula model used to
assess the lower and upper dependence structures among cryptocurrency data.

In order to construct a parsimonious dependence model that possesses high tail flexibil-
ity, we mix an asymptotically independent random vector with a perfectly dependent random
vector on a suitable marginal scale. Specifically, let R ∼ FR be a random variable with asym-
metric Laplace distribution, denoted AL(δL, δU),

FR(r) =

⎧⎪⎪⎨⎪⎪⎩
δL

δL + δU

exp(r/δL), r ≤ 0,

1 − δU

δL + δU

exp(−r/δU ), r > 0,
r ∈R,(3.1)

where δL, δU ∈ (0,1) are scale parameters for the lower and upper tails, respectively. Fur-
thermore, let W1,W2 ∼ FW have the AL(1 − δL,1 − δU) distribution, and assume that the
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FIG. 4. 1000 independent samples from model (3.3) with correlation ρ = 0.5 and tail parameters
δL = 0.7, δU = 0.2 (left), δL = 0.3, δU = 0.2 (middle) and δL = 0.6, δU = 0.7 (right). Simulated data are plotted
on the original scale of X in (3.3) (top) or transformed into the standard uniform marginal scale (bottom).

bivariate random vector W = (W1,W2)
� is driven by a Gaussian copula with correlation

ρ ∈ (−1,1). In other words, the joint distribution of W satisfies

Pr(W1 ≤ w1,W2 ≤ w2) = �ρ

[
�−1{

FW(w1)
}
,�−1{

FW(w2)
}]

,(3.2)

where � and �ρ denote the univariate standard Gaussian distribution and bivariate standard
Gaussian distribution with correlation ρ, respectively. Our dependence model is now defined
through the random vector X = (X1,X2)

� with components

X1 = R + W1, X2 = R + W2.(3.3)

As the random variable R is common to both X1 and X2, it can be interpreted through the per-
fectly dependent random vector R = (R,R)�, while the random vector W has a Gaussian de-
pendence structure and is, therefore, asymptotically independent. Noting that the AL(δL, δU)

distribution converges to a degenerate distribution with all its mass at zero as δL, δU → 0,
the dependence structure of X thus interpolates between that of W (Gaussian) as δL, δU → 0
and that of R (perfect dependence) as δL, δU → 1. Moreover, similarly to the model of Huser
and Wadsworth (2019), which is designed for capturing the upper-tail behavior only, when
δU > 0.5, R intuitively “dominates” W in the upper-tail region, which induces strong upper-
tail dependence, and the opposite is true when δU < 0.5. The same holds for the lower tail
controlled by the parameter δL. Hence, high flexibility can here be achieved in both the lower-
and upper-joint tails using this parsimonious three-parameter (δL, δU ,ρ) model. To illustrate
this, we plot in Figure 4 random samples from the model (3.3) with different parameter val-
ues, showing that a wide range of tail behaviors can be generated.
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REMARK 1. The construction (3.3) is only used to define a model with flexible lower-
and upper-tail dependence structures. In practice, however, we first transform the data to the
standard uniform scale and we then fit the copula associated with X. More details are given
in Section 3.2 and Section 4.

REMARK 2. The assumption (3.2) that the vector W has a Gaussian dependence struc-
ture is mainly made for computational convenience and to obtain the Gaussian copula model
as a special case for X when δL, δU → 0. However, evidence of both tail asymmetry and per-
mutation asymmetry (i.e., asymmetry with respect to two diagonals of the unit square) has
been found in some financial applications; see, for example, Krupskii (2017). In our model
construction the Gaussian copula may be replaced by any other copula model that is asymp-
totically independent in both tails without affecting the tail dependence structures of X. An-
other interesting model for W is the skew-normal copula (Azzalini and Dalla Valle (1996)),
which has additional “skewness” or “slant” parameters and can capture both permutation and
tail asymmetry, thus increasing flexibility in the bulk and tail regions. This proposed model
extension is illustrated in the Supplementary Material (Gong and Huser (2022a)) with simu-
lated samples and fitted in our application in Section 5.

In the following section, Section 3.2, we derive the expressions related to the copula as-
sociated with our model (3.3), and in Section 3.3 we formally derive its tail dependence
properties.

3.2. Expressions for the associated copula. We first derive the marginal and joint distri-
butions and densities of the vector X = (X1,X2)

�, as defined in (3.3), from which the cor-
responding copula expressions can then be deduced. Let fR denote the AL(δL, δU) density
of R obtained by differentiating (3.1) with respect to the argument, r . The common marginal
distribution FX of Xi , i = 1,2, is thus

FX(x) = Pr(Xi ≤ x) = Pr(R + Wi ≤ x)

=
∫
R

Pr(Wi ≤ x − r)fR(r)dr

= 1

δL + δU

{∫ 0

−∞
Pr(Wi ≤ x − r) exp(r/δL)dr

+
∫ ∞

0
Pr(Wi ≤ x − r) exp(−r/δU )dr

}
.

(3.4)

By plugging the AL(1 − δL,1 − δU ) distribution of Wi , i = 1,2, into (3.4), we can estab-
lish after some tedious but straightforward calculations that for δL, δU �= 1/2, the marginal
distribution of our model is equal to

FX(x) =

⎧⎪⎪⎨⎪⎪⎩
K1(δL, δU) exp

(
x

δL

)
− K2(δL, δU) exp

(
x

1 − δL

)
, x ≤ 0,

1 + K3(δL, δU) exp
(
− x

δU

)
− K4(δL, δU) exp

(
− x

1 − δU

)
, x > 0,

where the normalizing constants are K1(δL, δU) = δ3
L{(δL + δU )(2δL − 1)(1 + δL − δU )}−1,

K2(δL, δU) = (δL − 1)3{(2δL − 1)(δL − δU − 1)(2 − δL − δU )}−1, K3(δL, δU) = δ3
U {(δL +

δU )(2δU − 1)(δL − δU − 1)}−1, and K4(δL, δU) = (δU − 1)3{(2δU − 1)(1 + δL − δU )(2 −
δU − δU)}−1. The intermediate cases when δL = 1/2 and/or δU = 1/2 can be established
separately, and are reported in Appendix A for completeness. The marginal density fX is
easily derived from the above formula for FX by differentiation.
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Using (3.2), the joint distribution FX(x1, x2) of X1 and X2 may be expressed as

FX(x1, x2) = Pr(X1 ≤ x1,X2 ≤ x2) = Pr(R + W1 ≤ x1,R + W1 ≤ x2)

=
∫
R

Pr(W1 ≤ x1 − r,W2 ≤ x2 − r)fR(r)dr(3.5)

=
∫
R

�ρ

[
�−1{

FW(x1 − r)
}
,�−1{

FW(x2 − r)
}]

fR(r)dr,

which involves the bivariate standard Gaussian distribution �ρ , the standard Gaussian quan-
tile function �−1, the AL(δL, δU) density, fR , and the AL(1 − δL,1 − δU) distribution, FW .
By differentiating under the integral sign, we obtain the joint density fX(x1, x2) as

fX(x1, x2)

=
∫
R

∂2

∂x1∂x2
Pr(W1 ≤ x1 − r,W2 ≤ x2 − r)fR(r)dr(3.6)

=
∫
R

φρ

[
�−1{

FW(x1 − r)
}
,�−1{

FW(x2 − r)
}] 2∏

i=1

fW(xi − r)

φ{FW(xi − r)}fR(r)dr,

where φ and φρ denote the univariate standard Gaussian density and the bivariate standard
Gaussian density with correlation ρ, respectively. Similarly, we can derive the partial deriva-
tives of the distribution FX(x1, x2) which are required for the censored likelihood inference
approach described in Section 4. Writing ∂1 and ∂2 to denote differentiation with respect to
the first and second arguments, respectively, we have

∂1FX(x1, x2) =
∫
R

�
([

�−1{
FW(x2 − r)

} − ρ�−1{
FW(x1 − r)

}]
/

√
1 − ρ2

)
× φ

[
�−1{

FW(x1 − r)
}] fW(x1 − r)

φ{FW(x1 − r)}fR(r)dr,

(3.7)

while ∂2FX(x1, x2) may be obtained by interchanging the labels.

REMARK 3. If the vector W = (W1,W2)
� is chosen to have a different dependence

structure (e.g., with a skew-normal copula), the marginal distribution (3.4) and its density
remain unchanged, while the joint distribution, density, and partial derivatives in (3.5), (3.6),
and (3.7) are obtained in a similar form but with some slight modifications.

Now, define Ui = FX(Xi) ∼ Unif(0,1), i = 1,2. The copula C, associated with X =
(X1,X2)

�, contains all the information about the dependence structure and is obtained as
in (1.1), while its density and partial derivatives may be expressed as

c(u1, u2) = fX{F−1
X (u1),F

−1
X (u2)}

fX{F−1
X (u1)}fX{F−1

X (u2)}
,

∂iC(u1, u2) = ∂iFX{F−1
X (u1),F

−1
X (u2)}

fX{F−1
X (ui)}

,

(3.8)

for i = 1,2. Notice that FX and fX are here available in closed form, which makes copula
computations much more efficient than, for example, the models of Huser, Opitz and Thibaud
(2017), where the marginal distribution and density are known only up to a unidimensional
integral. The marginal quantile function F−1

X , however, is not available in closed form but can
be approximated efficiently using numerical root-finding algorithms. Similarly, it is impossi-
ble to obtain explicit expressions for FX , fX, and ∂iFX in (3.5), (3.6), and (3.7), respectively,



ASYMMETRIC TAIL DEPENDENCE MODELING 1831

but numerical integration routines may be used to accurately approximate them, and we have
found that a simple finite integral computed from 104 subintervals works quite well for most
parameter values. Overall, the computational burden, due to (3.5), (3.6), and (3.7), is roughly
equivalent to that required for the model proposed by Huser and Wadsworth (2019).

3.3. Tail dependence structures. We now detail the lower- and upper-tail properties of
our proposed model (3.3) and show that it can indeed capture a wide range of joint-tail decay
rates in each tail.

We consider, for each threshold t ∈ (0,1), the tail coefficients

χL(t) = Pr(U1 < t | U2 < t) = C(t, t)

t
,

χU(t) = Pr(U1 > t | U2 > t) = 1 − 2t + C(t, t)

1 − t
,

(3.9)

and their limits χL = limt→0 χL(t) and χU = limt→1 χU(t), expressed through the copula
C of the random vector U = (U1,U2)

�. The coefficients χL and χU determine the asymp-
totic dependence class (AI/AD) in the lower and upper tails, respectively; recall the definition
(1.2). In the asymptotically independent case the extremal dependence strength is more pre-
cisely described using the coefficient of tail dependence (Ledford and Tawn (1996)), some-
times also called the residual dependence coefficient, characterizing the rate of tail decay
toward independence. Assume that the lower- and upper-tail coefficients admit the following
expansions:

χL(t) ∼ LL

(
t−1)

t1/ηL−1, t → 0, χU(t) ∼ LU

{
(1 − t)−1}

(1 − t)1/ηU−1, t → 1,

where the tail-specific functions LL/U (·) are slowly-varying at infinity, that is, they satisfy
LL/U (ax)/LL/U (x) → 1, as x → ∞ for any real a > 0, and 0 < ηL/U ≤ 1 are the coef-
ficients of lower- and upper-tail dependence, respectively. If ηL/U < 1 or LL/U (x) → 0 as
x → ∞, then χL/U = 0, and we get asymptotic independence with ηL/U controlling the
tail-decay rate toward independence. In other cases, χL/U > 0, and we get asymptotic depen-
dence.

The following proposition details the lower- and upper-tail structures of Model (3.3) and
establishes the corresponding extremal dependence classes. The proof relies on general re-
sults for random scale constructions (Engelke, Opitz and Wadsworth (2019)) and is postponed
to Appendix B.

PROPOSITION 1 (Asymptotic dependence class and χL/U , ηL/U coefficients). Consider
a random vector X, defined as in (3.3). Then, we have the following cases:

(i) Case 1: δL/U ≤ 1/2. Then, X is asymptotically independent in its lower/upper tail
with χL/U = 0 and coefficient of lower/upper tail dependence obtained as

ηL/U =
{
δL/U/(1 − δL/U ), δL/U > (1 + ρ)/(3 + ρ),

(1 + ρ)/2, δL/U ≤ (1 + ρ)/(3 + ρ).

(ii) Case 2: δL/U > 1/2. Then, X is asymptotically dependent in its lower/upper tail with
coefficient of tail dependence ηL/U = 1 and, writing sL = −1 and sU = 1,

χL/U = E
(

min
[ exp(

sL/U

δL/U
W1)

E{exp(
sL/U

δL/U
W1)}

,
exp(

sL/U

δL/U
W2)

E{exp(
sL/U

δL/U
W2)}

])
.

In order to visualize the various types of dependence structures that our model can produce,
Figure 5 displays χL(t) and χU(t) for t ∈ (0,1). The next section discusses how to perform
(full or censored and global or local) likelihood inference for our model.
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FIG. 5. Coefficients χL(t) = Pr(U1 < t | U2 < t) (left) and χU (t) = Pr(U1 > t | U2 > t) (right), with threshold
t ∈ [0.01,0.99], for a random vector U = (U1,U2)� on the uniform scale stemming from the model (3.3) with
correlation ρ = 0.5 and tail parameters δL = 0,0.2,0.5,0.8 (black, red, blue, orange), δU = 0,0.2,0.5,0.8 (thin
to thick curves).

4. Inference.

4.1. Full and censored likelihood approaches. Let Y 1, . . . ,Y n denote n independent
copies from a random vector Y = (Y1, Y2)

� that shares the same copula as the vector X

in (3.3) but possesses potentially different marginal distributions FY,1,FY,2. In other words,
the joint distribution of Y may be expressed as

FY (y1, y2) = Pr(Y1 ≤ y1, Y2 ≤ y2) = C
{
FY,1(y1),FY,2(y2)

}
,

where C is our copula model, defined in Section 3.2. In order to estimate the underlying
copula C from an observed random sample (y11, y12)

�, . . . , (yn1, yn2)
�, we adopt a two-step

estimation approach. First, we estimate marginal distributions and transform the data to the
standard uniform scale. To achieve this goal, we may either estimate FY,1 and FY,2 by fitting
a parametric model to each margin or, more simply, by using the (nonparametric) empirical
distribution functions F̂Y,1, F̂Y,2 based on ranks. The probability integral transform can then
be used to get pseudo-uniform scores as uj1 = F̂Y,1(yj1) and uj2 = F̂Y,2(yj2), j = 1, . . . , n.
If the assumption of temporal stationarity is doubtful, it may also be possible to fit a dynamic
model for the margins of Y by assuming that they vary over time according to some temporal
covariate or, more flexibly, by adopting a local (parametric or nonparametric) estimation
approach akin to the one discussed in Section 4.2 for the copula structure. Second, to estimate
the dependence parameters, we adopt a likelihood-based approach. Under stationarity the full
likelihood for our copula model (3.3) may be written as

L(θ) =
n∏

j=1

c(uj1, uj2), θ = (δL, δU ,ρ)� ∈ (0,1) × (0,1) × (−1,1),(4.1)

where the copula density c, defined in Section 3.2, depends on the model parameters
θ = (δL, δU ,ρ)�. Maximizing (4.1) yields the full likelihood estimator ̂θFull which has well-
known appealing large-sample properties.
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FIG. 6. Three different censoring schemes putting the emphasis on the lower- and upper-joint tails which may
be used in the censored likelihood approach.

To prioritize calibration in the tails and reduce the influence of nonextreme observations
(from the bulk), we can use instead various censored likelihoods of the form

(4.2) L(θ) = ∏
j∈A

LNC(uj1, uj2) ×
KB∏
k=1

∏
j∈Bk

Lk
PC1

(uj1) ×
KC∏
k=1

∏
j∈Ck

Lk
PC2

(uj2) × ∏
j∈D

LFC,

where LNC(uj1, uj2) = c(uj1, uj2) are all noncensored likelihood contributions, while LFC

denotes fully censored likelihood contributions, involving the copula C, and Lk
PC1

(uj1) and

Lk
PC2

(uj2) are (different types of) partially-censored likelihood contributions, the computa-
tion of which relies on the partial derivatives ∂1C and ∂2C, respectively. Typically, the set A

will correspond to noncensored points lying in the lower- and upper-joint tail regions (i.e.,
“genuine joint extremes” where both variables are small or large simultaneously);

⋃KB

k=1 Bk

and
⋃KC

k=1 Ck will correspond to partially censored points located along the edges of the
unique square (i.e., “partial extremes” with one component being extreme and the other not),
and the set D will correspond to censored points lying in the bulk near the center of the unit
square (i.e., “nonextremes” where none of the variables are small or large). Here, we propose
three censoring schemes that are illustrated in Figure 6 which correspond to different defini-
tions of what “joint extremes” actually means. Scheme 1 is perhaps the most natural one, as
it only exploits information from extreme points near the joint upper and lower tails, while
Scheme 2 uses extra information from points that are extremely large (respectively, small) in
one variable and moderately small (respectively, large) in the other variable, and Scheme 3
also fully uses information from points that are extremely large (respectively, small) in one
variable with extremely small (respectively, large) in the other. We stress here that, whatever
the censoring scheme chosen, we always assume that our copula model is valid to describe
the whole dataset (even in censored or partially censored subregions). The purpose of our
proposed censoring schemes is thus simply to provide an inference method for estimating all
three parameters δL, δU , and ρ jointly, while prioritizing calibration in the joint tails to make
sure that the model fits joint extremes as best as possible subject to the model constraints.
The choice of censoring scheme should be dictated by the application. The corresponding
likelihood contributions are specific to each censoring scheme; see Appendix C for more de-
tails. Each of these censoring schemes depends on two quantiles tL, tU ∈ (0,1), defining the
lower-tail and upper-tail censoring levels, respectively. In the sequel we take tL to be a low
quantile (such as, e.g., 0.01 or 0.1) and tU = 1 − tL. In Section 4.3 we perform an exten-
sive simulation study to assess the performance of the censored likelihood estimators ̂θCens,
maximizing (4.2) under the censoring Schemes 1, 2 and 3 and various censoring levels.
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4.2. Local estimation approach for time-varying copula models. As exemplified in Fig-
ure 1, financial market data are often nonstationary over time with volatility clusters ap-
pearing in periods of stress, and recent papers have proposed methods to estimate extremal
(marginal) trends in heteroscedastic time series (de Haan and Zhou (2021), Einmahl, de Haan
and Zhou (2016)). Beyond marginal distributions, Poon, Rockinger and Tawn (2003) and
Castro-Camilo, de Carvalho and Wadsworth (2018) have realized and demonstrated that the
dependence structure of such data may also vary over time. We also observe this phenomenon
in Figure 3 for the cryptocurrencies under investigation with the lower-tail dependence be-
coming stronger in recent years. To estimate the temporal dynamics of extremal dependence,
Castro-Camilo, de Carvalho and Wadsworth (2018) and Mhalla, de Carvalho and Chavez-
Demoulin (2019) suggested using a (nonparametric) kernel estimator and (semiparametric)
vector generalized additive models of the spectral density, respectively. We here instead ad-
dress this issue by proposing a local copula-based likelihood estimation approach that can
capture complex trends in a very flexible way.

Each full or censored likelihood in (4.1) and (4.2), respectively, can be rewritten as a
product of likelihood contributions, namely, L(θ) = ∏n

j=1 Lj(θ). We now assume that the
dependence structure smoothly evolves over time, and so we estimate a family of parameters
θ1, . . . , θn (one for each time point). To do this, we replace the (full or censored) likelihood
function by a family of weighted local likelihoods to be maximized, which have the form

L(θ i) =
n∏

j=1

ωτ

(|j − i|)Lj(θ i ), i = 1, . . . , n,(4.3)

where ωτ (h) ≥ 0 is a nonnegative weight function (or “kernel”) with bandwidth τ > 0, down-
weighting observations that are distant in time. For example, we can take the biweight func-
tion ωτ (h) = {1 − (h/τ)2}2+ with compact support [−τ, τ ] which smoothly decays to zero
at the endpoints −τ and τ . Other (symmetric or asymmetric) kernels may also be used. As
always with local approaches, the choice of the kernel is not so important but the bandwidth
is crucial, as it leads to a bias-variance trade-off which controls the smoothness of trends in
estimated parameters. Small bandwidths lead to parameter estimates that are very variable
but with a lot of local detail, while large bandwidths lead to smooth estimates with low vari-
ability. A good bandwidth usually lies in between these two extremes and is typically chosen
pragmatically based on the results’ interpretability.

4.3. Simulation study. To compare full and censored likelihood estimators, based on
(4.1) and (4.2), respectively, we now conduct an extensive simulation study in well-specified
and misspecified settings. Furthermore, we also demonstrate the performance of the local
estimation approach based on (4.3) in a time-varying context.

4.3.1. Well-specified stationary setting. We start by simulating n = 1000 independent
samples from the model (3.3) with correlation ρ = 0.5 and tail parameters δL = 0.7, δU = 0.2
(Case 1: strong lower-tail dependence, weak upper-tail dependence), δL = 0.3, δU = 0.2
(Case 2: weak lower- and upper-tail dependence), and δL = 0.6, δU = 0.7 (Case 3: strong
lower- and upper-tail dependence). These cases, illustrated in Figure 4, cover various combi-
nations of extremal dependence classes in each tail. We then estimate the model parameters
θ = (δL, δU ,ρ)�, using the full likelihood estimator ̂θFull in (4.1) and the three censored like-
lihood estimators ̂θCens in (4.2), illustrated in Figure 6, using lower-tail censoring levels of
tL = 0.01,0.02,0.05,0.1,0.2 and upper-tail censoring levels equal to tU = 1− tL. This yields
16 estimators in total (1 full likelihood, + 3 censoring schemes, times 5 censoring levels).
We then repeat this experiment 300 times to produce boxplots of estimated parameters. The
results for Case 1 are reported in Figure 7. Results for Cases 2 and 3 are similar and reported
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FIG. 7. Results for Case 1 in the well-specified stationary setting with true values set to
δL = 0.7, δU = 0.2, ρ = 0.5. The panels display boxplots of estimated values for δL (left), δU (middle),
and ρ (right), based on the full likelihood estimator (yellow), and censored likelihood estimators, based
on censoring scheme 1 (red), scheme 2 (blue), and scheme 3 (green). Lower-tail censoring levels of
tL = 0.01,0.02,0.05,0.1,0.2 (from lighter to darker red/blue/green colors) and upper-tail censoring levels equal
to tU = 1 − tL.

in the Supplementary Material (Gong and Huser (2022a)). Essentially, the results show that
all estimation approaches work well, and the full likelihood estimator is the most efficient as
expected. All three types of censored likelihood estimators perform similarly. Moreover, high
censoring levels (such as tL = 0.01, tU = 0.99 or tL = 0.02, tU = 0.98), which put a strong
emphasis on the tails and prioritize model calibration for joint extreme events, result in much
higher uncertainty, owing to the largely reduced effective sample size. In contrast, with low
censoring levels (such as tL = 0.2, tU = 0.8 or tL = 0.1, tU = 0.9), the variability of censored
likelihood estimators is almost equivalent to the full likelihood case.

We then repeat the simulation study for Case 1 but consider increasing sample sizes
n = 500,1000,2000. The results are reported in the Supplementary Material (Gong and
Huser (2022a)). As expected, the variability of estimated parameters is reduced by increasing
the sample size, and the boxplots’ interquartile ranges roughly decrease at rate n1/2 which
corroborates asymptotic theory.

4.3.2. Misspecified stationary setting. To assess the flexibility of our parsimonious cop-
ula model and explore the effect of censoring nonextreme observations, we now investigate a
misspecified setting, whereby the data are simulated from the bivariate Gumbel (also called
“logistic”) extreme-value copula, that is,

CGum(u1, u2) = exp
(−[{− log(u1)

}1/α + {− log(u2)
}1/α]α)

,(4.4)

where α ∈ (0,1] is the dependence parameter, interpolating from independence (α = 1) to
perfect positive dependence (α → 0). This extreme-value copula is known to be asymptoti-
cally dependent in the upper tail with χU = 2 − 2α and ηU = 1 and asymptotically indepen-
dent in the lower tail with χL = 0 and ηL = 2−α ; see Tawn (1988, 1990) and Ledford and
Tawn (1996). We simulate n = 1000 independent samples from (4.4) with α = 0.2,0.5,0.8
(from strong to weak dependence) and then fit our model (3.3) instead to assess its flexibility
in capturing the lower and upper extremal dependence classes in this misspecified setting. We
consider the full likelihood estimator and the three censored likelihood estimators presented
above with censoring level tL = 0.01,0.02,0.05 and tU = 1 − tL. As before, we repeat the
experiment 300 times to compute performance metrics. Table 1 reports the results for the case
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TABLE 1
Results for misspecified stationary setting by simulating data from the Gumbel copula model (4.4) with α = 0.5,
but fitting our copula model stemming from (3.3). For each estimator (left column), we report (from left to right)
the percentage of times that χL is estimated to be zero (the true value), the median and median absolute deviation
(MAD) of the ηL and χU estimates, and the percentage of times that ηU is estimated to be one (the true value)

True values χL = 0 ηL = 0.71 χU = 0.59 ηU = 1

Estimators %{χ̂L = 0} η̂L, Median/MAD χ̂U , Median/MAD %{η̂U = 1}
Full likelihood 99% 0.75/0.07 0.67/0.12 100%

Cens., Scheme 1, tL = 0.01 97% 0.77/0.13 0.68/0.17 97%
Cens., Scheme 1, tL = 0.02 98% 0.76/0.10 0.69/0.17 99%
Cens., Scheme 1, tL = 0.05 99% 0.75/0.08 0.69/0.16 100%

Cens., Scheme 2, tL = 0.01 98% 0.74/0.09 0.69/0.16 100%
Cens., Scheme 2, tL = 0.02 98% 0.73/0.08 0.69/0.16 99%
Cens., Scheme 2, tL = 0.05 100% 0.74/0.06 0.68/0.14 100%

Cens., Scheme 3, tL = 0.01 96% 0.79/0.14 0.71/0.22 97%
Cens., Scheme 3, tL = 0.02 99% 0.76/0.09 0.69/0.16 100%
Cens., Scheme 3, tL = 0.05 99% 0.75/0.07 0.68/0.15 100%

α = 0.5. The cases α = 0.2 and α = 0.8 are reported in the Supplementary Material (Gong
and Huser (2022a)). When the dependence strength is moderate, our model succeeds in es-
timating the tail dependence classes in most cases, and there is little difference between the
estimators considered in this simulation experiment. The coefficients ηL and χU appear to be
quite well estimated in most cases, albeit with a slight positive bias. This might be due to the
shared correlation parameter ρ being common to both tails, hence restricting the possible tail
structures that can be estimated.

We further perform another experiment by simulating data from the (misspecified) Coles–
Tawn extreme-value copula model (Coles and Tawn (1991)), which captures permutation-
asymmetry (i.e., nonexchangeability in both arguments) and has two dependence parameters
controlling the overall dependence strength and the extent of asymmetry. The results reported
in the Supplementary Material (Gong and Huser (2022a)) are very similar to Table 1 under
both mild and strong asymmetry, showing an almost-perfect identification of the asymptotic
dependence class but a slight positive bias for η̂L and χ̂U . Our proposed copula model is thus
very flexible and our inference approach robust enough to provide accurate tail dependence
estimates, even in highly misspecified settings.

4.3.3. Dynamic time-varying setting. Finally, we simulate data in a nonstationary setting,
where both marginal parameters and the copula structure vary smoothly over time, similarly
to our real data analysis in Section 5. The goal is to assess whether our proposed weighted
local likelihood approach, based on (4.3), can accurately recover the underlying dynamic
dependence structure. To mimic the real data application, we simulate two time series ac-
cording to different ARMA(1,1)–GARCH(1,1) models with time-varying parameters, and
we link them together through our copula model (3.3) with constant δU and ρ parameters
but time-varying δL parameter, representing increasing lower tail dependence strength over
time. Further details about the marginal model, including plots of true marginal parameters,
are given in the Supplementary Material (Gong and Huser (2022a)), while the true copula
parameters θ i = (δL;i , δU ;i , ρi)

� for the n = 1500 time points i = 1, . . . , n are shown in Fig-
ure 8. Specifically, the data are simulated with δL;i = 0.4�(10i/n − 5) + 0.2, where �(·)
is the standard Gaussian distribution, δU ;i = 0.3 and ρi = 0.5, i = 1, . . . , n. Thus the true
lower tail dependence structure transitions from asymptotic independence (with δL;1 ≈ 0.2)
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FIG. 8. Time-varying copula parameter estimates θ̂ i = (̂δL;i , δ̂U ;i , ρ̂i )
� (first three panels) and the correspond-

ing lower- and upper-tail coefficient estimates χ̂L;i (0.05) and χ̂U ;i (0.95) (last two panels), i = 1, . . . , n, for the
dynamic copula model simulation study (see Section 4.3.3 for more details). True parameters are plotted as
dashed lines. Pointwise medians across the 100 experiments are plotted as dark solid lines. Light shaded areas
are pointwise 95% confidence intervals calculated from the 100 experiments.

to asymptotic dependence (with δL;n ≈ 0.6), while the upper tail dependence structure re-
mains at a weak asymptotic independence level. We estimate marginal parameters in a first
step by fitting a time-varying ARMA(1,1)–GARCH(1,1) using a moving window approach;
then, after transforming the data to the uniform scale, we estimate the dependence parame-
ters, based on (4.3), with full (i.e., noncensored) likelihood contributions and weight func-
tion ωτ (h) = {1 − (h/τ)2}2+ with bandwidth τ = 500. The bandwidth is chosen similarly
for marginal and dependence parameter estimation in a way to provide a reasonable bias-
variance trade-off. We repeat the experiment 100 times to assess the overall estimation un-
certainty (representing both marginal and dependence estimation uncertainties). The results
are presented in Figure 8. The pointwise median of parameter estimates across the 100 exper-
iments follows the true parameters very closely, even in the middle of the time period when
the parameter δL;i is evolving quite rapidly. There seems to be a slight positive bias in δ̂L;i for
the initial time points which might be due to edge effects that are characteristic of local esti-
mation approaches. Nevertheless, the parameter estimate δ̂L;i appears unbiased for later time
points, and the estimates of the tail summary statistics χL;i (0.05) and χU ;i(0.95) are very
well estimated. Overall, our proposed approach works well for estimating dynamic depen-
dence structures: it can clearly capture time-varying patterns and extract signal from the data,
although the estimation uncertainty is relatively large, especially for low values of δL;i and
δU ;i . This is due to the lower effective sample size of local estimation approaches. Variability
of parameter estimates may be reduced by increasing the bandwidth τ (i.e., considering less
local estimators), though at a cost in larger bias. Therefore, this emphasizes once more the
importance of having a parsimonious (but flexible) copula model which makes our proposed
model (3.3) especially appealing. Moreover, despite the variability of parameter estimates,
the summaries χL;i (0.05) and χU ;i(0.95) are very well estimated with low uncertainty.

5. Application: Assessment of tail risk among leading cryptocurrencies.

5.1. Global estimation of extremal dependence. We now come back to the analysis that
we started in Section 2. To uncover the tail dependence structure among leading cryptocur-
rencies, we fit our proposed copula model (3.3) to the historical daily prices of pairs of cryp-
tocurrencies (pretransformed to the uniform scale) during the training period. In this section
we first assume that the dependence structure is stationary and use the various (global) full
and censored likelihood estimators detailed in Section 4.1, while in Section 5.2 we further
explore its time evolution using the local estimation approach from Section 4.3.3. We here fo-
cus on the pair BTC–ETH for illustration, as it corresponds to the two cryptocurrencies with
the largest market capitalizations, while in Section 5.2 we also discuss results for others pairs
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FIG. 9. Coefficients χL(t) (left) and χU (t) (right), for t ∈ (0,1), estimated nonparametrically (black), using
Model (3.3) (red), the skewed version of Model (3.3) (purple), the Gaussian copula (blue), the skew-normal
copula (orange), the Student-t copula (pink) and the skew-t copula (green), from the BTC–ETH training data
with corresponding 95%-bootstrap confidence envelope (grey). Results are based on the (global) full likelihood
approach.

of cryptocurrencies (reported in the Supplementary Material (Gong and Huser (2022a)) for
completeness). For comparison purposes and to illustrate the performance of our proposed
copula model, we also fit the skewed version of our model (based on the skew-normal copula
for the vector W in (3.3)) as well as more traditional copula models, including the Gaus-
sian copula, the skew-normal copula (Azzalini and Dalla Valle (1996)), the Student-t copula
(Demarta and McNeil (2005)), and the skew-t copula (Arellano-Valle and Genton (2010),
Demarta and McNeil (2005)).

Figure 9 plots the coefficients χL(t) and χU(t) in (3.9), estimated nonparametrically or
from the fitted copula models using the full likelihood (4.1). While the upper tail (joint gains
of BTC and ETH) appears to be asymptotically independent, with χU(t) decreasing to zero
as t → 1, the lower tail (joint losses of BTC and ETH) has much stronger dependence and
appears to be asymptotically dependent. However, the uncertainty surrounding these empiri-
cal estimates is also quite high, and so the fit of our model bridging AD/AI classes provides
more insight. As the data appear to be clearly tail asymmetric from Figure 9, the symmetric
copula models (Gaussian and Student-t) provide a poor fit in one or both tails. Moreover,
the skew-normal copula is AI in both tails and underestimates the lower tail probabilities.
From Figure 9, our proposed model (3.3), its skewed version, and the skew-t copula seem to
provide the best fits in the lower tail. Among these three models, our proposed copula model
(3.3) performs best in the upper tail, at least visually. However, as the coefficients χL(t) and
χU(t) plotted in Figure 9 provide only partial information about the dependence structure,
we also consider more comprehensive information criteria to quantitatively determine which
model provides the best overall fit.

Table 2 reports the estimated parameters for all models based on the (global) full likeli-
hood approach and the censored likelihood based on censoring scheme 1 and censoring level
tL = 0.1, tU = 1 − tL = 0.9. To objectively compare the models, we also report the Akaike
information criterion (AIC). Note that the censored likelihood is a valid likelihood function
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TABLE 2
Estimated parameters δ̂L (lower tail), δ̂U (upper tail), ρ̂ (correlation), α̂1 (skewness for first margin), α̂2
(skewness for second margin), and ν̂ (degrees of freedom) with 95% confidence intervals (CI), based on a

parametric bootstrap procedure, and the Akaike information criteria (AIC), obtained by fitting the different
copula models to the cryptocurrency training dataset (here, for the pair BTC and ETH). The estimators used are

based on the (global) full likelihood and the censored likelihood estimator using censoring scheme 1 and
censoring level tL = 0.1, tU = 1 − tL; recall Section 4.1. For each inference approach, the best model (lowest

AIC value) appears in bold

δ̂L δ̂U ρ̂ α̂1 α̂2 ν̂

Copula Cens. level (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) AIC

Model (3.3) full lik. 0.65 0.50 −0.30 – – – −775.3
(0.65, 0.75) (0.50, 0.61) (−0.97, −0.30)

tL = 0.1 0.77 0.53 −1.00 – – – 504.4
(0.68, 0.84) (0.45, 0.58) (−1.00, −0.35)

Skew-Model (3.3) full lik. 0.71 0.57 −0.80 −0.16 1.25 – −803.3
(0.68, 0.75) (0.55, 0.62) (−0.96, −0.63) (−0.15, 0.80) (−0.25, 0.82)

tL = 0.1 0.63 0.45 0.68 −0.26 0.53 – 355.8
(0.43, 0.81) (0.39, 0.56) (−0.03, 0.93) (−2.26, 0.94) (−2.11, 0.93)

Gaussian full lik. – – 0.51 – – – −463.2
(0.46, 0.56)

tL = 0.1 – – 0.80 – – – 595.2
(0.74, 0.85)

Skew-normal full lik. – – 0.70 0.09 −4.74 – −489.0
(0.36, 0.77) (−7.93, 1.42) (−7.90, 1.54)

tL = 0.1 – – 0.92 −3.29 0.0006 – 541.7
(0.89, 0.94) (−7.56, 0.85) (−8.72, 0.003)

Student-t full lik. – – 0.57 – – 1.89 −767.3
(0.52, 0.61) (1.66, 2.22)

tL = 0.1 – – 0.50 – – 1.85 540.5
(0.44, 0.57) (1.59, 2.42)

Skew-t full lik. – – 0.66 −0.38 −0.63 1.83 −811.7
(0.60, 0.72) (−0.74, −0.10) (−1.05, −0.30) (1.62, 2.14)

tL = 0.1 – – 0.66 −0.47 −0.83 1.85 520.3
(0.55, 0.76) (−0.94, −0.13) (−2.50, −0.34) (1.61, 2.50)

itself (based on a different dataset comprised of threshold exceedances together with ex-
ceedance indicators) so that the AIC can be used as a sensible model selection criterion in that
setup also. The ranking of models is consistent with Figure 9. Without surprise, the Gaussian
copula is by far the worst, followed by the skew-normal copula, both of which cannot cap-
ture AD. The Student-t copula can capture AD and thus has an increased performance with a
lower AIC value but is worse than the skew-t copula and our proposed copula model (3.3) or
its skewed version which have additional flexibility to capture tail asymmetry. Overall, these
three best models have fairly equivalent goodness-of-fit performances, although the skew-t
copula has here a slightly lower AIC value when considering the full likelihood approach.
We note, however, that our proposed model (3.3) (with three parameters) is more parsimo-
nious than the skew-t model (with four parameters), and this is a crucial aspect to take into
consideration with low sample sizes or local likelihood approaches. Interestingly, when the
censored likelihood approach is used, our copula model (3.3) and its skewed version have by
far the best performances. This may be explained by the higher tail flexibility of our proposed
model, as the censored likelihood approach precisely emphasizes calibration in the lower and
upper tail regions.

From Table 2 the estimated lower tail parameter δ̂L in our model (3.3), or its skewed
version, is estimated to be larger than 0.5 (with a 95% confidence interval, excluding 0.5)
which confirms that big losses of BTC and ETH are indeed asymptotically dependent. The
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FIG. 10. Time-varying copula parameter estimates θ̂ i = (̂δL;i , δ̂U ;i , ρ̂i )
� (first three panels) and the corre-

sponding lower and upper tail coefficient estimates χ̂L;i (0.05) and χ̂U ;i (0.95) (last two panels), i = 1, . . . , n,
obtained by fitting the copula model (3.3) to cryptocurrency data (BTC and ETH) over the training period, using
the local likelihood approach (4.3) with a biweight kernel ωτ (h) = {1 − (h/τ)2}2+ and bandwidth τ = 500. In
each panel, dashed lines are model-based estimates based on full likelihood contributions. The horizontal grey
lines at 0.5 in the first two panels correspond to the boundary between AI and AD regimes. Shaded areas (first
three panels) are 95%-parametric bootstrap confidence envelopes for the model-based estimates, and dark solid
lines are pointwise bootstrap medians. Dark solid lines (last two panels) show nonparametric estimates of the
tail coefficients χL(0.05) and χU (0.95) based on a moving window approach (similar to Figure 3), while the
corresponding shaded areas are 95% theoretical confidence envelopes.

asymptotic dependence class in the upper tail controlled by the parameter δU is less clear, and
so we cannot make any firm statements about the limiting joint behavior of BTC and ETH in
the upper tail. A benefit of our proposed model is that it can account for the uncertainty of the
asymptotic dependence class, and it can estimate it without making any prior assumptions.

5.2. Time-varying estimation of extremal dependence. While the models fitted in Sec-
tion 5.1 already provide helpful insights into the asymmetric tail dependence structure of
BTC and ETH, this analysis (based on a stationarity assumption) only reveals the “time-
averaged” dependence behavior between these cryptocurrencies, thus lacking important in-
formation about any changes that might have occurred during the study period. Since ETH
is a much more recent cryptocurrency than BTC and ETH was still very “immature” in early
2016, we might expect that their tail dependence structure has evolved over time. Similar
considerations hold for the other pairs of cryptocurrencies. In our preliminary exploratory
analysis reported in Figure 3 and the Supplementary Material (Gong and Huser (2022a)),
empirical results indeed strongly suggest that cryptocurrencies have become more interde-
pendent over the training period, especially in terms of their joint extremes (both gains or
losses); see also the two right-most panels of Figure 10 for the pair BTC–ETH. However,
whether a regime shift from AI to AD has truly occurred is not clear from purely nonpara-
metric estimates of the tail coefficients χL;i (0.05) and χU ;i(0.95), i = 1, . . . , n. In order
to assess this more precisely, we now fit our copula model (3.3) to the training BTC–ETH
dataset, using the weighted local likelihood approach outlined in Section 4.2, with a biweight
kernel ωτ (h) = {1−(h/τ)2}2+ and bandwidth τ = 500 (as in the simulation study). Given that
local estimation approaches always suffer from small effective sample sizes (thus increased
variability), we here consider the local likelihood (4.3) with full (rather than censored) like-
lihood contributions, and we specifically choose our model (3.3) for its parsimony and tail
flexibility. The bandwidth τ = 500 was chosen to provide reasonably smooth estimates and
performed well in our simulation study. Moreover, notice that, despite this quite large band-
width, the estimates at a given point in time will be mostly influenced by observations in the
relatively near past or future, since the biweight function ωτ (h) decays to zero as h → ±τ

with ωτ (h) ≈ 0.5 when h = 270.
Figure 10 displays the time-varying parameter estimates θ̂ i = (̂δL;i , δ̂U ;i , ρi)

� (red dashed
lines in the three leftmost panels) as well as the resulting time-varying tail coefficients
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FIG. 11. Joint lower-tail probabilities Pr(U1 < t,U2 < t), t ∈ (0,0.1), estimated for all pairs of cryptocurren-
cies (different panels). Dashed lines are model-based estimates obtained from the local fit of the April 29, 2020,
considering the bootstrap median as estimated parameters. Dark solid lines are empirical estimates based on the
validation dataset (from April 30, 2020, to October 5, 2021), while light shaded areas display a 95% confidence
envelopes obtained by the Delta method.

χ̂L;i (0.05) and χ̂U ;i(0.95), i = 1, . . . , n. The horizontal grey lines in the plots of δ̂L;i and δ̂U ;i
represent the critical threshold of 0.5, defining the boundary between AI and AD regimes.

While the upper tail parameter δ̂U ;i is fairly constant and often around 0.5 or below (im-
plying AI), the lower tail parameter δ̂L;i is quite low and remains below 0.5 until early 2017,
before quickly rising around mid 2017 and reaching the level of δ̂L;i ≈ 0.8 (implying AD)
in 2018. The lower joint tail of ETH and BTC has thus transitioned from an AI regime to an
AD regime. Similar patterns emerge in the tail coefficients χ̂L;i (0.05) and χ̂U ;i(0.95). Inter-
estingly, this fast regime switch coincides with the 2017 boom, while the strong dependence
period coincides with the 2018 cryptocurrency crash and the period of high market stress.

Furthermore, the corresponding χ̂L;i (0.05) and χ̂U ;i(0.95) (red dashed lines) in the last
two plots follow quite well the nonparametric time-varying empirical estimates of tail coeffi-
cients, providing evidence that the model is able to capture the true tail dependence structures
accurately. Overall, our results, therefore, agree with Feng, Wang and Zhang (2018) who
found that systemic extreme risks in cryptomarkets have grown considerably in recent years.
We expect that our analysis, when extended to other cryptocurrencies, might be helpful to
investors who want to build a resilient portfolio through diversification. The full results of all
10 pairs of cryptocurrencies under study can be found in the Supplementary Material (Gong
and Huser (2022a)).

5.3. Model validation based on the most recent historical period. In order to assess the
out-of-sample performance of our proposed copula model (3.3) in a challenging, strongly
volatile situation of high market stress and to see if it can accurately predict joint tail risk in
the near future, we now estimate the joint tail probabilities Pr(U1 < t,U2 < t), t ∈ (0,0.1),
and Pr(U1 > t,U2 > t), t ∈ (0.9,1), for all 10 pairs of cryptocurrencies considered, based on
the estimated models obtained from the local likelihood fit of April 29, 2020, that is, on the
last day of the training period. We then compare these model-based estimates with empirical
probability estimates obtained from the validation dataset, that is, from April 30, 2020, to
October 5, 2021, under the working assumption of stationarity. Figures 11 and 12 show the
results for the lower and upper tails, respectively. Each panel in these figures corresponds to a
different pair of cryptocurrencies. Model-based estimates (obtained from the training dataset)
are displayed as dashed lines, while empirical estimates (obtained from the validation dataset)
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FIG. 12. Joint upper-tail probabilities Pr(U1 > t,U2 > t), t ∈ (0.9,1), estimated for all pairs of cryptocurren-
cies (different panels). Dashed lines are model-based estimates obtained from the local fit of the April 29, 2020,
considering the bootstrap median as estimated parameters. Dark solid lines are empirical estimates based on the
validation dataset (from April 30, 2020, to October 5, 2021), while light shaded areas display a 95% confidence
envelopes obtained by the Delta method.

are displayed as dark solid lines. Light shaded areas correspond to 95% confidence envelopes
computed by the Delta method.

For the lower tail (Figure 11), model-based estimates are strikingly similar to empirical
estimates. This shows that our proposed model performs very well at capturing the lower tail
dependence structure over the validation period and that our methodology is useful to accu-
rately assess tail risk related to downward shocks in the relatively near future. For the upper
tail (Figure 12), however, there are some discrepancies between model-based and empirical
estimates, showing that our model has a tendency to overestimate the upper-tail dependence
structure. This can be explained in two ways: first, the local model fitted at the end of the
training period might suffer from mild edge effects (as often the case with local estimation
approaches) which might prevent it from accurately capturing the weakening upper-tail de-
pendence behavior around the end of the training period. Second, the upper-tail dependence
structure might have significantly weakened over the validation period in a way that our local
fit of April 29, 2020, cannot foresee nor predict.

Overall, the out-of-sample performance of our proposed model appears to be reasonable,
especially in the left tail. In future research it would be interesting to further investigate
whether the lower- and upper-tail dependence structures among cryptocurrencies have again
been subject to significant changes in the most recent period.

6. Conclusion. In this paper we have proposed a new parsimonious copula model that
possesses high flexibility in both the lower and upper tails. This model bridges asymptotic de-
pendence and independence in the interior of the parameter space which simplifies inference
on the extremal dependence class. Our model has similarities with the model proposed by
Huser and Wadsworth (2019), but, unlike the latter, it is also very flexible in the lower tail. To
the best of our knowledge, it is the first copula model that can capture and separately control
both asymptotic dependence and independence in each joint tail with a smooth transition be-
tween dependence classes. Inference can be performed by maximum likelihood, using either
full likelihood contributions or various types of censored likelihood contributions designed
to prioritize calibration in the tails. Furthermore, we have also developed a local likelihood
approach that can be used to uncover complex time trends driving the lower- and upper-tail
dependence structures.
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We have applied our new model to understand the tail dependence dynamics of cryptocur-
rency market price data, focusing on five leading cryptocurrencies. We have shown that our
proposed model, despite its simplicity, outperforms other popular copula models, and we also
note that the appealing parsimony of our proposed model becomes a crucial aspect to take
into consideration in case of low sample sizes or when a local likelihood inference approach
is used, as in our case study. Our analysis suggests that the upper-tail dependence strength
has remained relatively stable at a moderate level for most pairs of cryptocurrencies under
study, whereas the lower tail, representing the big joint losses, has become more and more
dependent in recent years, transitioning from a weak asymptotic independence regime to a
strong asymptotic dependence regime in some cases (e.g., Bitcoin–Ethereum). Interestingly,
we have found that this regime switch coincides with the fast 2017 boom followed by the
2018 cryptocurrency crash. From a practical perspective our results could help to detect mar-
ket risk contagion and be a useful source of information for investors who seek to diversify
their portfolio. In this paper we analyzed the data until April 29, 2020, which just precedes
a major rise in cryptocurrency prices, and we used the most recent market data until Octo-
ber 5, 2021, for model validation. Overall, we have found that our proposed model provides
satisfactory performances both in-sample and out-of-sample, especially as far as the lower-
tail dependence structure is concerned, and we thus conclude that our methodology can be
helpful for assessing tail risk in the near future under high market stress.

We emphasize that our model is useful to analyze the extremal dependence of losses and
gains jointly in a single statistical model. As our copula model describes the full range of the
distribution (unlike most models for extremes which usually focus on one tail only), it may
also be used as a building block for improving existing stochastic financial data simulators.

Although we focused in this paper on the bivariate setting, there is no conceptual problem
for generalizing our model to the multivariate or spatial case (by taking a D-dimensional
vector W in Section 3), but inference would be more challenging. This opens the door to the
joint modeling of multiple cryptocurrencies, although it would be tricky to design a multivari-
ate model with distinct asymptotic dependence regimes among different pairs of variables.
Moreover, while we have here assumed that W has a Gaussian or skew-normal copula, it
could be replaced by any other copula model that is asymptotically independent in both tails,
without affecting the asymptotic tail results. Thus, the model construction is quite general
and could be extended to a wide range of more complex and flexible copula models.

APPENDIX A: MARGINAL DISTRIBUTIONS OF OUR MODEL IN THE CASES
WHERE δL = 1/2 AND/OR δU = 1/2

When δL, δU �= 1/2, the marginal distributions of our model (3.3) are given in Section 3.2.
The intermediate cases when δL = 1/2 and/or δU = 1/2 may be established separately or as
the limits δL → 1/2 and/or δU → 1/2. When δL = 1/2 and δU �= 1/2, we have

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x

(1 + 2δU )(2δU − 3)
exp(2x) − −12δU + 12δ2

U − 5

(1 + 2δU )2(2δU − 3)2 exp(2x),

x ≤ 0,

1 − 4δ3
U

(1 + 2δU )2(2δU − 1)
exp

(
− x

δU

)
− 4(δU − 1)3

(δU − 3)2(2δU − 1)
exp

(
− x

1 − δU

)
,

x > 0;
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when δL �= 1/2 and δU = 1/2, we have

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4δ3
L

(1 + 2δL)2(2δL − 1)
exp

(
x

δL

)
+ 4(δL − 1)3

(2δL − 3)2(2δL − 1)
exp

(
x

1 − δL

)
,

x ≤ 0,

1 + 2x

(1 + 2δL)(2δL − 3)
exp(−2x) + −12δL + 12δ2

L − 5

(1 + 2δL)2(2δL − 3)2 exp(−2x),

x > 0;
finally, when δL = δU = 1/2, we have

FX(x) =
⎧⎪⎨⎪⎩

1

2
(1 − x) exp(2x), x ≤ 0,

1 − 1

2
(1 + x) exp(−2x), x > 0.

APPENDIX B: PROOF OF PROPOSITION 1 ON TAIL DECAY RATES

To prove Proposition 1, we will exploit results on the extremal dependence of random
scale constructions from Engelke, Opitz and Wadsworth (2019). In order to apply these re-
sults, we need first to put our model (3.3) in random scale form. By taking the exponential on
both components of the random vector X = (X1,X2)

�, we obtain the vector X̃ = (X̃1, X̃2)
�

with components X̃1 = R̃W̃1, X̃2 = R̃W̃2, where R̃ = exp(R) and W̃i = exp(Wi), i = 1,2.
Notice that, because the exponential is a monotone increasing function, the new random
vector X̃ has the same dependence structure (i.e., copula) as X. Now, for r > 1, we obtain
from (3.1) that Pr(R̃ > r) = Pr{R > log(r)} = δU

δL+δU
r−1/δU which implies that R̃ is regu-

larly varying at infinity with index −1/δU . Similarly, for w > 1, Pr(W̃i > w) = Pr{Wi >

log(w)} = 1−δU

2−δL−δU
w−1/(1−δU ) which implies that W̃i is regularly varying at infinity with in-

dex −1/(1 − δU ). Moreover, clearly Pr(W̃i > 0) = 1, i = 1,2. Furthermore, let ε > 0, and
define ε̃ = εδU > 0. We have

E
(
W̃

1/δU +ε
i

) =
∫ ∞

0
Pr

(
W̃

1/δU+ε
i > w

)
dw =

∫ ∞
0

Pr
(
W̃i > wδU/(1+ε̃)) dw

=
∫ 1

0
Pr

(
W̃i > wδU/(1+ε̃)) dw︸ ︷︷ ︸

:=I1

+ 1 − δU

2 − δL − δU

∫ ∞
1

w−δU /{(1+ε̃)(1−δU )} dw︸ ︷︷ ︸
:=I2

.

While the integral I1 is bounded above by one, the integral I2 is finite if and only if δU/{(1 +
ε̃)(1− δU ) > 1, that is, δU > 1/(2+ ε̃). Letting ε → 0, we conclude from Table 2 of Engelke,
Opitz and Wadsworth (2019) that, when δU > 1/2, the coefficient of tail dependence of X is
ηU = 1 and

χU = E
[
min

{
W̃

1/δU

1

E(W̃
1/δU

1 )
,

W̃
1/δU

2

E(W̃
1/δU

2 )

}]
.

This coincides with the results of Proposition 1, Case 2, by plugging W̃i = exp(Wi), i = 1,2.
The lower-tail coefficient χL can be derived by symmetry when flipping the sign of X in
(3.3).

On the other hand, when δU < 1/2, then 1/δU > 1/(1 − δU ). Therefore, because W =
(W1,W2)

� is Gaussian with correlation ρ (and thus has χU = 0 and ηU = (1 + ρ)/2 ac-
cording to Sibuya (1960) and Ledford and Tawn (1996)), we deduce from Proposition 5 of
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Engelke, Opitz and Wadsworth (2019) that the vector X has χU = 0 and that the coefficient
of tail dependence is equal to

ηU =
{
δU/(1 − δU ), δU > (1 + ρ)/(3 + ρ),

(1 + ρ)/2, δU ≤ (1 + ρ)/(3 + ρ),

as needed. The expressions for χL and ηL are obtained by symmetry.
The case δU = 1/2 can be deduced by applying Proposition 6(3c) of Engelke, Opitz and

Wadsworth (2019).

APPENDIX C: CENSORED LIKELIHOOD EXPRESSIONS

In Section 4, we describe censored likelihoods of the form (4.2) and consider three dif-
ferent censoring schemes, illustrated in Figure 6. For illustration, we here detail the cen-
sored likelihood contributions for Scheme 3. Assume that the censoring levels for the lower
and upper tail are 0 < tL < tU < 1 for both margins, and write the censored likelihood as
L(θ) = ∏n

j=1 Lj(θ). Then, the censored likelihood contributions Lj(θ) are

Lj(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(uj1, uj2), j ∈ A;
∂1C(uj1, tU ) − ∂1C(uj1, tL), j ∈ B1;
∂2C(tU ,uj2) − ∂2C(tL,uj1), j ∈ C1;
C(tL, tL) + C(tU , tU ) − C(tL, tU ) − C(tU , tL), j ∈ D,

where the sets are A = {j = 1, . . . , n : {uj1 < tL or uj1 > tU } and {uj2 < tL or uj2 > tU }}
(noncensored, NC), B1 = {j = 1, . . . , n : {uj1 < tL or uj1 > tU } and tL ≤ uj2 ≤ tU } (par-
tially censored, PC1), C1 = {j = 1, . . . , n : tL ≤ uj1 ≤ tU and {uj2 < tL or uj2 > tU }} (par-
tially censored, PC2), and D = {j = 1, . . . , n : tL ≤ uj1, uj2 ≤ tU } (fully censored, FC). The
expressions for the other censoring schemes are similar, although Scheme 1 has two different
types of partial censoring likelihoods with KB = KC = 2 in (4.2) (rather than KB = KC = 1
for Schemes 2 and 3), and the formula is thus slightly more involved.
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SUPPLEMENTARY MATERIAL

Supplement to “Asymmetric tail dependence modeling, with application to cryp-
tocurrency market data” (DOI: 10.1214/21-AOAS1568SUPPA; .pdf). We provide in Gong
and Huser (2022a) further details about the skewed version of our Model (3.3), extra simu-
lation results in well-specified and misspecified settings, our treatment of marginal distribu-
tions, as well as more details on our cryptocurrency application (detailing in particular the
results for all ten pairs of cryptocurrencies under study).

R code for “Asymmetric tail dependence modeling, with application to cryptocur-
rency market data” (DOI: 10.1214/21-AOAS1568SUPPB; .zip). We provide in Gong and
Huser (2022b) the R code to fit our proposed copula model using a full likelihood approach,
or any of the censored likelihood approaches proposed in the paper.

https://doi.org/10.1214/21-AOAS1568SUPPA
https://doi.org/10.1214/21-AOAS1568SUPPB
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