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Abstract. Truncated Toeplitz operators in a model space are C–symmetric with respect to a natural conju-
gation in that space. We show that this and another conjugation associated to an orthogonal decomposition
possess unique properties and we study their relations with asymmetric truncated Toeplitz operators in
terms of C–symmetry. New connections with Hankel operators are established through this approach.

1. Introduction

Let H be a complex Hilbert space, and denote by L(H) the algebra of all bounded linear operators on
H . A conjugation on H is an antilinear involution C : H → H such that 〈C f ,C1〉 = 〈1, f 〉 for all f , 1 ∈ H .
Conjugations and their relations with various classes of operators have been studied in Hilbert spaces for
many years. A new motivation to study them came from [7], and many interesting results have recently
appeared on this topic [2, 8, 10–12, 16]. In particular, the study of C–symmetric operators, i.e., operators
A ∈ L(H) such that CAC = A∗, has attracted much attention, with particular emphasis on the case where
the underlying Hilbert spaces are model spaces, defined as follows.

Let us denote by L2 the space L2(T,m), where T is the unit circle and m is the normalized Lebesgue
measure on T, and let H2 = H2(D) be the Hardy space on the unit disc, identified as usual with a subspace
of L2. If θ is an inner function, i.e., θ ∈ H∞ (H∞ = H∞(D) denotes the space of all bounded analytic functions
in D), |θ(t)| = 1 a.e. on T, the model space Kθ is defined by Kθ = H2

	 θH2. It follows from Beurling’s
theorem that these are the invariant subspaces for the classical backward shift S∗. We denote by Pθ the
orthogonal projection from L2 onto Kθ, and by K∞θ the dense subset of Kθ defined by K∞θ = Kθ ∩H∞ ([15]).

One of the most important classes of operators on model spaces is that of truncated Toeplitz operators
([15]), which have been widely studied recently (see for example [1, 5, 15]). For ϕ ∈ L2, a truncated Toeplitz
operator Aθ

ϕ is defined, for all f ∈ Kθ such that ϕ f ∈ L2 (and, in particular, for all f ∈ K∞θ ), by

Aθ
ϕ f = Pθ(ϕ f ).

2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H10, 47A15
Keywords. asymmetric truncated Toeplitz operator, conjugation, C–symmetry
Received: 10 November 2017; Accepted: 08 December 2017
Communicated by Vladimir Müller
Research of the first author was partially supported by Fundação para a Ciência e a Tecnologia (FCT/Portugal), through Project

UID/MAT/04459/2013. Research of the second and the third authors was supported by the Ministry of Science and Higher Education
of the Republic of Poland.

Email addresses: cristina.camara@tecnico.ulisboa.pt (M. Cristina Câmara), rmklis@cyfronet.pl (Kamila Kliś–Garlicka),
rmptak@cyf-kr.edu.pl (Marek Ptak)
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If this operator is bounded, then it can be uniquely extended to a bounded operator on Kθ; in that case we
say that Aθ

ϕ ∈ T (θ).
One can define a conjugation Cθ in L2, Cθ( f ) = θz̄ f̄ for f ∈ L2, which preserves the model space Kθ (i.e.,

CθPθ = PθCθ), and therefore induces a conjugation in Kθ, also denoted by Cθ. This conjugation plays an
important role in the study of truncated Toeplitz operators. In fact, the latter are Cθ–symmetric [7], i.e.,
CθACθ = A∗ for A ∈ T (θ) or, equivalently, ACθ − CθA∗ = 0.

More generally, one can consider asymmetric truncated Toeplitz operators between two (eventually) differ-
ent model spaces Kθ and Kα, where α and θ are nonconstant inner functions. For ϕ ∈ L2, we define

Aθ,α
ϕ : D ⊂ Kθ → Kα, Aθ,α

ϕ f = Pα(ϕ f ) (1.1)

with domain D = D(Aθ,α
ϕ ) = { f ∈ Kθ : ϕ f ∈ L2

} ⊃ K∞θ . Again, if this operator is bounded, it has a unique
bounded extension to Kθ, Aθ,α

ϕ : Kθ → Kα, and the class of all such operators is denoted by T (θ, α). Recall
after [3] that if Aθ,α

ϕ ∈ T (θ, α), then (Aθ,α
ϕ )∗ = Aα,θ

ϕ̄ ∈ T (α, θ). Asymmetric truncated Toeplitz operators were
studied in [3] in the context of H2(D), and in [4] in the context of the Hardy space on the upper half-plane
Hp(C+) (1 < p < ∞).

When α divides θ (α 6 θ), i.e., θ
α is an inner function, then Kα ⊂ Kθ and we have the orthogonal

decomposition Kθ = Kα ⊕ αK θ
α
. This suggests to define another conjugation in Kθ, besides Cθ, denoted by

Cα, θα and defined by (3.1). It turns out that these conjugations are unique in the sense that they coincide,
on both Kα and αK θ

α
, with conjugations on L2 for which the operator of multiplication by the independent

variable, Mz, is C–symmetric (Theorem 4.7).
In this paper we investigate the relations of asymmetric truncated Toeplitz operators with these two

conjugations and we show that certain identities of C–symmetric type still hold for these operators when
the conjugation C is one of the above mentioned ones, Cθ or Cα, θα (Theorem 5.3). Moreover, since we no

longer have the equality Aθ,α
ϕ C − C(Aθ,α

ϕ )∗ = 0 in general, we study various differences of that type and we
show that they can be expressed in terms of Hankel operators.

2. The actions � and �

In the following section the lettersH , K , with or without indexes, denote complex Hilbert spaces. Let
L(H ,K ) (respectively, LA(H ,K )) denote the space of all bounded linear (respectively, antilinear) operators
from H to K . Recall that for X ∈ LA(H ,K ) there is a unique antilinear operator X], called the antilinear
adjoint of X, satisfying the equality

〈X f , 1〉 = 〈 f ,X]1〉, (2.1)

for all f ∈ H , 1 ∈ K . It is easy to see that the antilinear adjoint has the following properties:

Proposition 2.1. 1. If X ∈ LA(H ,K ), then (X])] = X.
2. If X1 ∈ LA(H1,H2) and X2 ∈ LA(H2,H3), then X2X1 ∈ L(H1,H3) and (X2X1)∗ = X]

1X]
2.

3. If A ∈ L(H1,H) and X ∈ LA(H ,K ), then (XA)] = A∗X].
4. If B ∈ L(K ,K1) and X ∈ LA(H ,K ), then (BX)] = X]B∗.

Let X1 : H → K1, X2 : H → K2, Y1 : K1 → H , Y2 : K2 → H be (linear or antilinear) operators. Define
the following actions:

X1 � X2 : H → K1 ⊕K2, (X1 � X2) f = X1 f ⊕ X2 f

and
Y1 � Y2 : K1 ⊕K2 →H , (Y1 � Y2)( f ⊕ 1) = Y1 f + Y21.

Proposition 2.2. Let X1,X2,Y1,Y2 be antilinear operators, then:
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1. (X1 � X2)] = X]
1 � X]

2;

2. (X1 � X2)] = X]
1 � X]

2;

3. if A ∈ L(K1 ⊕K2,K ), then (A(X1 � X2))] = (X]
1 � X]

2)A∗;

4. if B ∈ L(H1,K1 ⊕K2), then ((Y1 � Y2)B)] = B∗(Y]
1 � Y]

2).

Proof. To show (1) let us take f ∈ H , 11 ∈ K1, 12 ∈ K2. Then

〈(X1 � X2) f , 11 ⊕ 12〉 = 〈X1 f ⊕ X2 f , 11 ⊕ 12〉 = 〈X1 f , 11〉 + 〈X2 f , 12〉 =

〈 f ,X]
111〉 + 〈 f ,X]

212〉 = 〈 f , (X]
1 � X]

2)(11 ⊕ 12)〉.

The equalities (2), (3) and (4) follow directly from (1) and Proposition 2.1.

Remark 2.3. Note that the proposition above holds if we change antilinear operators to linear operators, ] to ∗ and
vice versa.

Now let us consider two conjugations C1, C2 onH . Define the following actions:

C� = 1
√

2
C1 � C2 : H →H ⊕H , and C� = 1

√
2
C1 � C2 : H ⊕H →H . (2.2)

Proposition 2.4. Let C1, C2 be conjugations onH . Then

1. C� ◦ C� : H →H and C� ◦ C� : H ⊕H →H ⊕H are linear operators;
2. C� ◦ C� = IH ;
3. (C�)] = C� and (C�)] = C�;
4. C� ◦ C� = Q, where Q is an orthogonal projection;
5. ker Q = {C2 f ⊕ −C1 f : f ∈ H};
6. ran Q = {C2 f ⊕ C1 f : f ∈ H}.

Proof. The statement (1) is immediate. To prove (2) let us take f ∈ H . Then we have

1
2 (C1 � C2)(C1 � C2) f = 1

2 (C1 � C2)(C1 f ⊕ C2 f ) = 1
2 (C2

1 f + C2
2 f ) = f .

The equalities in (3) follow from Proposition 2.2. Take now f , 1 ∈ H , then

1
2 (C1 � C2)(C1 � C2)( f ⊕ 1) = 1

2 (( f + C1C21) ⊕ (1 + C2C1 f )). (2.3)

Hence

( 1
2 (C1 � C2)(C1 � C2))2( f ⊕ 1) =

1
2 (C1 � C2)(C1 � C2)( 1

2 (( f + C1C21) ⊕ (1 + C2C1 f ))) = 1
2 (( f + C1C21) ⊕ (1 + C2C1 f )).

So (4) holds and (5) and (6) follow from (2.3).

The next proposition is related to (5.6) in the main theorem of the Section 5.

Proposition 2.5. Let C1,C2 be conjugations inH and let C�,C� be defined as in (2.2). Let A ∈ L(H) be C1–symmetric
and C2–symmetric. Then

C�(A ⊕ A)C� = A∗.

Recall that any unitary operator U ∈ L(H) is a product of two conjugations C1, C2 ([9]). Moreover, as
it was shown in [6], such a unitary operator is both C1 and C2–symmetric. Hence any unitary operator
satisfies the assumptions of Proposition 2.5 for suitable conjugations.
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3. Conjugations in model spaces: Cθ and Cα, θα
Let α and θ be nonconstant inner functions such that α 6 θ. Then by [5, Lemma 5.10] the model space

Kθ can be decomposed as Kα ⊕ αK θ
α

or K θ
α
⊕

θ
αKα. Hence Pθ = Pα + αP θ

α
ᾱ and Pθ = P θ

α
+ θ

αPα θ̄ᾱ .

Proposition 3.1 (Proposition 2.3, [3]). Let α, θ be nonconstant inner functions such that α 6 θ. If f1 ∈ Kα and
f2 ∈ K θ

α
, then

1. Cθ( f1 + α f2) = C θ
α

f2 + θ
αCα f1,

2. Cθ( f2 + θ
α f1) = Cα f1 + αC θ

α
f2.

The orthogonal decomposition Kθ = Kα ⊕ αK θ
α

suggests to consider another conjugation Cα, θα on Kθ
defined as

Cα, θα :=Cα ⊕ αC θ
α
ᾱ,

Cα, θα (11 + α12) =Cα11 + αC θ
α
12 = αz̄ 1̄1 + θz̄ 1̄2

(3.1)

for 11 ∈ Kα, 12 ∈ K θ
α
. To see that Cθ, θα is a conjugation it is enough to show that C2

θ, θα
= IKθ . Namely,

(Cα ⊕ αC θ
α
ᾱ)(Cα ⊕ αC θ

α
ᾱ) = Pα ⊕ αC θ

α
ᾱαC θ

α
ᾱ = Pα ⊕ αIK θ

α
ᾱ = Pα + αP θ

α
ᾱ = IKθ .

For any inner function θ and λ ∈ D, denote

kθλ(z) =
1−θ(λ)θ(z)

1−λ̄ z and k̃θλ(z) =
θ(z)−θ(λ)

z−λ .

Recall that kθλ are reproducing kernel functions for the model space Kθ, i.e., 〈 f , kθλ〉 = f (λ) for all f ∈ Kθ.
Assume that α 6 θ, the conjugations Cθ and Cα, θα act on reproducing kernel functions kθλ as follows:

Cθ kθλ = k̃θλ and Cα, θα kθλ = k̃αλ + α(λ)α k̃
θ
α

λ .

We have also the following ”reproducing” properties. For any f ∈ Kθ:

〈 f ,Cθ kθλ〉 = (Cθ f )(λ) and 〈 f ,Cα, θα kθλ〉 = (Cα, θα f )(λ).

Moreover, Cα, θα Cθ and CθCα, θα are unitary operators (as compositions of two conjugations, see [6], [9]), which
are inverses of each other. More precisely:

Proposition 3.2. Let α, θ be nonconstant inner functions such that α 6 θ. Then Cα, θα Cθ : Kθ = K θ
α
⊕
θ
αKα → Kθ =

Kα ⊕ αK θ
α

and CθCα, θα : Kθ = Kα ⊕ αK θ
α
→ Kθ = K θ

α
⊕

θ
αKα are unitary operators such that

1. CθCα, θα = P θ
α
ᾱ + θ

αPα,

2. Cα, θα Cθ = Pα θ̄ᾱ + αP θ
α
.

As a special case of Proposition 2.4 we have:

Proposition 3.3. Let α, θ be nonconstant inner functions such that α 6 θ. Define the following actions:

C� = 1
√

2
Cα, θα � Cθ : Kθ → Kθ ⊕ Kθ, (Cα, θα � Cθ) f = Cα, θα f ⊕ Cθ f

and
C� = 1

√
2
Cα, θα � Cθ : Kθ ⊕ Kθ → Kθ, (Cα, θα � Cθ)( f ⊕ 1) = Cα, θα f + Cθ1.

Then
1. C� ◦ C� : Kθ → Kθ and C� ◦ C� : Kθ ⊕ Kθ → Kθ ⊕ Kθ are linear operators,
2. C� ◦ C� = IKθ ,
3. C� ◦ C� = Q, where Q is an orthogonal projection in Kθ ⊕ Kθ,
4. ker Q = {Cα, θα f ⊕ −Cθ f : f ∈ Kθ},
5. ran Q = {Cα, θα f ⊕ Cθ f : f ∈ Kθ}.
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4. Mz–conjugations in L2

In this section we will show that the conjugations Cθ and Cα, θα are in a certain sense unique.
Since we are motivated by truncated Toeplitz operators, we will concentrate on conjugations for which

the multiplication by the independent variable Mz is C–symmetric. Let J denote the complex conjugation
in L2, that is J : L2

→ L2, J f = f̄ for f ∈ L2. For ϕ ∈ L∞, denote by Mϕ : L2
→ L2 a multiplication operator

Mϕ f = ϕ f , f ∈ L2. A conjugation C on L2 will be called an M–conjugation if MϕC = CMϕ̄ (i.e., Mϕ is
C–symmetric) for all ϕ ∈ L∞, and C will be called an Mz–conjugation if MzC = CMz̄.

The following theorem fully characterizes M–conjugations in L2. It also says that in fact the definitions
of M–conjugation and Mz–conjugation are equivalent.

Theorem 4.1. Let C be a conjugation in L2. Then the following are equivalent:

1. MϕC = CMϕ̄ for all ϕ ∈ L∞ (C is an M–conjugation),
2. MzC = CMz̄ (C is an Mz–conjugation),
3. there is ψ ∈ L∞, with |ψ| = 1, such that C = Mψ J.

Proof. It is enough to show that (2)⇒ (3). Assume that CMz = Mz̄C. Then JCMz = JMz̄C = Mz JC. It means
that the linear operator JC commutes with Mz. By [14, Theorem 3.2] JC = Mψ̄ for some ψ ∈ L∞. Hence
C = JMψ̄ = Mψ J.

Since C is a conjugation, we have C2 = IL2 . Therefore for all f ∈ L2 we have

f = C2 f = Mψ JMψ J f = Mψ J(ψ f̄ ) = |ψ|2 f ,

which implies that |ψ| = 1 a.e.

Now we study the invariant subspaces of Mz–conjugations and their relations with orthogonal decom-
positions of model spaces.

Theorem 4.2. Let α, γ, θ be inner functions (α, θ nonconstant) such that γα 6 θ. Let C be a conjugation in L2

such that MzC = CMz̄. Assume that C(γKα) ⊂ Kθ. Then there is an inner function β such that C = Cβ, with
γα 6 β 6 γθ.

Proof. Recall the standard notation for the reproducing kernel functions at 0 in Kα, namely, kα0 = 1 − α(0)α
and k̃α0 = Cαkα0 = z̄(α − α(0)). By Theorem 4.1 we know that C = Mψ J for some function ψ ∈ L∞, |ψ| = 1.
Hence

Kθ 3 C(γk̃α0 ) = Mψ J(γk̃α0 ) = ψγz̄(α − α(0)) = γ̄ᾱzψ(1 − α(0)α).

Thus there is h ∈ Kθ such that h = γ̄ᾱzψ(1 − α(0)α). Since (1 − α(0)α)−1 is a bounded analytic function, we
have

γ̄ᾱzψ = h(1 − α(0)α)−1
∈ H2.

Since β1 = γ̄ᾱzψ ∈ H2 and |γ̄ᾱzψ| = 1 a.e. on T, it has to be an inner function.
On the other hand, we have similarly

Kθ 3 CθC(γkα0 ) = Cθ(ψγ(1 − α(0)α) = θγz̄ψ̄(1 − α(0)α),

and θγz̄ψ̄ ∈ H2. Hence

H2
3 θγz̄ψ̄ = θ

α γ̄ ᾱzψ = θ
α β1.

But this is only possible when β1 divides θ
α . Hence ψ = γαβ1z̄ = βz̄ with γα 6 β 6 γθ. Finally, we have

C = Cβ.

Taking γ = 1 and α = θ we conclude that the conjugation Cθ is the only Mz–conjugation in L2 which
preserves the model space Kθ.
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Theorem 4.3. Let C be an Mz–conjugation in L2 (i.e., MzC = CMz̄). Assume that C(Kθ) ⊂ Kθ for some nonconstant
inner function θ. Then C = Cθ.

Remark 4.4. Let us consider nonconstant inner functions α, β, θ such that α 6 β 6 θ. Then we have the
decompositions:

Kθ = Kβ ⊕ βK θ
β

= Kα ⊕ αK β
α
⊕ βK θ

β
.

Observe that Cβ(Kα) ⊂ Kβ. Let C̃ be any conjugation on βK θ
β
. Then Cβ|Kβ ⊕ C̃ is a conjugation on Kθ.

The following is a consequence of Theorem 4.2 and Remark 4.4.

Proposition 4.5. Let α 6 θ be some nonconstant inner functions. Let C be an Mz–conjugation in L2 (i.e.,
MzC = CMz̄). Assume that C(Kα) ⊂ Kθ. Let C̃ be a conjugation on Kθ such that C|Kα = C̃|Kα . Then there is an inner
function β with α 6 β 6 θ and a certain conjugation ˜̃C on βK θ

β
such that C̃θ = Cβ ⊕ ˜̃C.

The following lemma will be used to prove the next theorem.

Lemma 4.6. Let α1, α2 be nonconstant inner functions and let γ1, γ2 be inner functions such that γ1 6 α1 and
γ2 6 α2. Assume that γ1 Kα2 ⊕ γ2 Kα1 = Kα1α2 . Then γ1 = 1, γ2 = α2 or γ1 = α1, γ2 = 1.

Proof. Recall that inner functions are identified up to multiplication by a constant and let us assume that
neither γ1 nor γ2 is constant. By [5, Theorem 5.11] we can decompose the space Kα1α2 in two ways

Kα1α2 = Kγ1 ⊕ γ1 Kα2 ⊕ γ1α2 K α1
γ1

= Kγ2 ⊕ γ2 Kα1 ⊕ γ2α1 K α2
γ2
.

Since γ1 Kα2 ⊕ γ2 Kα1 = Kα1α2 , we have

γ1 Kα2 = Kγ2 ⊕ γ2α1 K α2
γ2
.

Therefore

Kγ2 ⊂ γ1 Kα2 ⊂ γ1H2.

It follows, as in [3, Lemma 4.2] that γ1 has to be a constant or Kγ2 = {0}, i.e., γ2 is a constant, and so we
obtain a contradiction.

If γ1 = 1, then, by [5, Theorem 5.11], we have

Kα2 ⊕ γ2 Kα1 = Kα1α2 = Kα2 ⊕ α2 Kα1 ,

hence γ2 = α2. If γ1 is not a constant, then we obtain γ1 = α1, γ2 = 1, analogously.

The definition of the conjugation Cα, θα is natural in view of the orthogonal decomposition Kθ = Kα⊕αK θ
α
.

However, it is easy to see that Mz is not Cα, θα –symmetric. Moreover, Cα, θα is not a restriction to Kθ of any
Mz–conjugation C on L2. On the other hand, the restrictions of Cα, θα to the spaces Kα and Kθ 	 Kα are equal
respectively to the restrictions of some (different) Mz–conjugations. In the following result we show that
Cα, θα and Cθ are the only conjugations in Kθ with this property.

Theorem 4.7. Let α, θ be nonconstant inner functions such that α 6 θ, and let C̃ be a conjugation on Kθ. Assume
that there are conjugations Ci, i = 1, 2, on L2 with Mz Ci = CiMz̄ such that C̃|Kα = C1|Kα and C̃|Kθ	Kα = C2|Kθ	Kα .
Then C̃ = Cθ or C̃ = Cα, θα = Cα ⊕ αC θ

α
ᾱ.
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Proof. Note firstly that C1(Kα) = C̃(Kα) ⊂ Kθ. By Theorem 4.2 there is an inner function γ1, 1 6 γ1 6
θ
α , such

that

C̃|Kα = C1|Kα = Cγ1α|Kα : Kα → γ1Kα ⊂ Kθ.

Recall that Cγ1α|Kα fα = γ1αz̄ f̄α = γ1Cα fα for fα ∈ Kα, and note that Cγ1α|Kα is a bijection between Kα and γ1Kα.
Similarly, C2(αK θ

α
) = C2(Kθ 	 Kα) = C̃(Kθ 	 Kα) ⊂ Kθ. Hence there is an inner function γ2, 1 6 γ2 6 α, such

that

C̃|Kθ	Kα = C2|αK θ
α

= Cγ2θ|αK θ
α

: αK θ
α
→ γ2K θ

α
⊂ Kθ.

On the other hand,

Cγ2θ|αK θ
α
α f θ

α
= Cγ2θ(α f θ

α
) = γ2θz̄ᾱ f̄ θ

α
= γ2

θ
α z̄ f̄ θ

α
= γ2C θ

α
f θ
α

for f θ
α
∈ K θ

α
. Note that Cγ2θ|αK θ

α
is a bijection between αK θ

α
and γ2K θ

α
. Since involution preserves orthogo-

nality and Kα⊕αK θ
α

= Kθ, we get that γ1Kα⊕γ2K θ
α

= Kθ. By Lemma 4.6 there are now only two possibilities:
either γ1 = 1, γ2 = α or γ1 = θ

α , γ2 = 1. In the second case C̃|Kα = Cθ|Kα and C̃|Kθ	Kα = Cθ|αK θ
α

, hence C̃ = Cθ.

In the first case C̃|Kα = Cα|Kα and C̃|αK θ
α

= Cαθ|αK θ
α

, since for f θ
α
∈ K θ

α
we have

Cαθ|αK θ
α
α f θ

α
= αθz̄ᾱ f̄ θ

α
= αC θ

α
f θ
α

= αC θ
α
ᾱα f θ

α
= αC θ

α
ᾱ|αK θ

α
α f θ

α
.

Hence C̃ = Cα ⊕ αC θ
α
ᾱ = Cα, θα .

Example 4.8. Let θ = z5 and α = z3. The only conjugation, besides Cz5 , defined by Cz5 (z0, z1, z2, z3, z4) =
(z̄4, z̄3, z̄2, z̄1, z̄0), fulfilling the conditions of Theorem 4.7 is the conjugation Cz3,z2 given by Cz3,z2 (z0, z1, z2, z3, z4) =
(z̄2, z̄1, z̄0, z̄4, z̄3).

Example 4.9. Let θ(z) = exp z+1
z−1 and α(z) = exp(a z+1

z−1 ) for 0 < a < 1. Then θ
α (z) = exp((1 − a) z+1

z−1 ). The only
conjugation, besides Cθ (defined by Cθ( f ) = θz̄ f̄ for f ∈ Kθ), fulfilling the conditions of Theorem 4.7 is the conjugation
Cα, θα given by Cα, θα ( fα ⊕ α f θ

α
) = αz̄ f̄α + θz̄ f̄ θ

α
for fα ⊕ α f θ

α
∈ Kθ = Kα ⊕ αK θ

α
.

5. C-symmetry of asymmetric truncated Toeplitz operators

Let C : H →H be a conjugation. Note that every conjugation is antilinearly selfadjoint, i.e., C] = C. The
next lemma gives simple but important equivalent conditions for an operator to be C–symmetric.

Lemma 5.1. Let A ∈ L(H). Then the following are equivalent:

1. A is C–symmetric;
2. AC is antilinearly selfadjoint, i.e., (AC)] = AC;
3. CA is antilinearly selfadjoint, i.e., (CA)] = CA.

It is well known that truncated Toeplitz operators are Cθ–symmetric, [7], i.e., for Aθ
ϕ ∈ T (θ) we have

Aθ
ϕCθ = CθAθ

ϕ̄. (5.1)

One may wonder whether Aθ
ϕ is Cα, θα –symmetric for all α 6 θ but that is not the case in general, as it is

shown by this simple example.

Example 5.2. Let θ = z2 and α = z. Then C = Cz,z = J is the conjugation given by C(z0, z1) = (z̄0, z̄1), (z0, z1) ∈ C2.

Take a Toeplitz matrix A =
[

0 −1
1 0

]
. Then AC , CA∗.
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Since an asymmetric truncated Toeplitz operator Aθ,α
ϕ ∈ T (θ, α) reduces to the truncated Toeplitz oper-

ator Aθ
ϕ, and Cα, θα = Cθ when α = θ, we may ask whether the following generalizations of (5.1) hold:

Aθ,α
ϕ Cθ = CθAα,θ

ϕ̄ Pα or (5.2)

Aθ,α
ϕ Cα, θα = Cα, θα Aα,θ

ϕ̄ Pα. (5.3)

It is easy to see that neither (5.2) nor (5.3) are true in general. To obtain properties which, in the context
of Lemma 5.1, can be regarded in some sense as describing C–symmetric properties of truncated Toeplitz
operators, we will consider the whole space Kθ and use the actions �, �.

Theorem 5.3. Let α, θ be nonconstant inner functions such that α 6 θ, and let ϕ ∈ L2 be such that all asymmetric
truncated Toeplitz operators below are bounded. Let us consider the conjugations Cθ and Cα, θα = Cα ⊕ αC θ

α
ᾱ in

Kθ = Kα ⊕ αK θ
α
. Then the following equalities hold:

(Aθ,α
ϕ � αAθ, θα

ϕᾱ )Cθ = Cθ(Aα,θ
ϕ̄ � A

θ
α ,θ
ϕ̄α ᾱ), (5.4)

(Aθ,α
ϕ � αAθ, θα

ϕ θ
α

)Cα, θα = Cα, θα (Aα,θ
ϕ̄ � A

θ
α ,θ

ϕ θ
α

ᾱ), (5.5)

(Aθ,α
ϕ ⊕ αAθ, θα

ϕ )(Cα, θα � Cθ) = (Cα, θα�Cθ)(Aα,θ
ϕ̄ ⊕ A

θ
α ,θ
ϕ̄ ᾱ). (5.6)

Equivalently, the above operators are antilinearly selfadjoint, i.e.,

((Aθ,α
ϕ � αAθ, θα

ϕᾱ )Cθ)] = (Aθ,α
ϕ � αAθ, θα

ϕᾱ )Cθ, (5.4a)

((Aθ,α
ϕ � αAθ, θα

ϕ θ
α

)Cα, θα )] = (Aθ,α
ϕ � αAθ, θα

ϕ θ
α

)Cα, θα , (5.5a)

((Aθ,α
ϕ ⊕ αAθ, θα

ϕ )(Cα, θα � Cθ))] = (Aθ,α
ϕ ⊕ αAθ, θα

ϕ )(Cα, θα � Cθ). (5.6a)

Proof. Let us take f1 ∈ K∞α , f2 ∈ K∞θ
α

and f = f1 ⊕ α f2 (recall that K∞α ⊕ αK∞θ
α

is dense in Kθ – see [5, (5.23)]). To

prove (5.4) note that

(Aθ,α
ϕ � αAθ, θα

ϕᾱ )Cθ f = Pα(ϕCθ f ) + αP θ
α
ᾱ(ϕCθ f ) = Pθ(ϕCθ f ) = PθCθ(ϕ̄ f ) = CθPθ(ϕ̄ f ), (5.7)

since Pα + αP θ
α
ᾱ = Pθ. On the other hand, we obtain

Cθ(Aα,θ
ϕ̄ � A

θ
α ,θ
ϕ̄α ᾱ)( f1 ⊕ α f2) = Cθ(Pθ(ϕ̄ f1) + Pθ(ϕ̄α f2)) = CθPθ(ϕ̄ f ).

Now we will show that
Cα, θα (Aθ,α

ϕ � αAθ, θα
ϕ θ
α

) = (Aα,θ
ϕ̄ � A

θ
α ,θ

ϕ θ
α

ᾱ)Cα, θα ,

which is equivalent to (5.5). Note that

Cα, θα (Aθ,α
ϕ �αAθ, θα

ϕ θ
α

) f = Cα, θα Pα(ϕ f ) + Cα, θα (αP θ
α
(θαϕ f ))

=CαPα(ϕ f ) + αC θ
α
P θ

α
(θαϕ f ) = Pα(ϕ̄Cα f ) + αP θ

α
ᾱ(ϕ̄Cα f )

=Pθ(ϕ̄Cα f ).

On the other hand, Cα f = z̄(α f̄1 + f̄2). Hence by Proposition 3.1 we get

(Aα,θ
ϕ̄ �A

θ
α ,θ

ϕ θ
α

ᾱ)Cα, θα ( f1 ⊕ α f2) = (Aα,θ
ϕ̄ � A

θ
α ,θ

ϕ θ
α

ᾱ)(Cα f1 ⊕ αC θ
α

f2)

= Pθ(ϕ̄Cα f1) + Pθ(ϕ̄ θ̄
ᾱC θ

α
f2) = Pθ(ϕ̄(αz̄ f̄1 + z̄ f̄2)) = Pθ(ϕ̄Cα f ).
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To prove (5.6), since Pθ = Pα + αP θ
α
ᾱ, note that

(Aθ,α
ϕ ⊕ αAθ, θα

ϕ )((Cα f1 + αC θ
α

f2) ⊕ Cθ f )

= Pα(ϕ(Cα f1 + αC θ
α

f2)) + αP θ
α
(ϕCθ f )

= Pα(ϕαz̄ f̄1 + θϕz̄ f̄2) + αP θ
α
(ϕθz̄ f̄1 + ϕθz̄ᾱ f̄2)

= Pα(Cα(ϕ̄ f1)) + Pα(C θ
α
(ϕ̄ᾱ f2)) + αP θ

α
(ᾱC θ

α
(ϕ̄ᾱ f2)) + αP θ

α
(C θ

α
(ϕ̄ᾱ f1))

= Pα(Cα(ϕ̄ f1)) + αP θ
α
(C θ

α
(ϕ̄ᾱ f1)) + Pθ(C θ

α
(ϕ̄ᾱ f2)).

On the other hand,

(Cα, θα � Cθ)(Aα,θ
ϕ̄ ⊕ A

θ
α ,θ
ϕ̄ ᾱ)( f1 ⊕ α f2)

= Cα(Pα(ϕ̄ f1)) + αC θ
α
(P θ

α
(ᾱϕ̄ f1)) + Cθ(Pθ(ϕ̄ f2)).

Using Pθ = P θ
α

+ θ
αPα θ̄ᾱ we obtain

Cθ(Pθ(ϕ̄ f2)) = Cθ(Pα(ϕ̄ f2)) + αP θ
α
(ᾱϕ̄ f2)

= C θ
α
(P θ

α
(ᾱϕ̄ f2)) + θ

αCα(Pα(ϕ̄ f2))

= P θ
α
(C θ

α
(ᾱϕ̄ f2)) + θ

αPα(Cα(ϕ̄ f2))

= P θ
α
(C θ

α
(ᾱϕ̄ f2)) + θ

αPα θ̄ᾱ (C θ
α
(ᾱϕ̄ f2)) = Pθ(C θ

α
(ᾱϕ̄ f2)).

That completes the proof of (5.6). All calculations were made on a dense subset of Kθ, hence we get all the
equalities in the theorem.

One can also ask for which symbols ϕ ∈ L2 the equalities (5.2) and (5.3) hold. From Theorem 5.3 and [3,
Theorem 4.4] we obtain the following:

Corollary 5.4. Let α, θ be nonconstant inner functions such that α 6 θ, and let A ∈ T (θ, α). Then

1. ACθ = CθA∗Pα if and only if there is ϕ ∈ θ
αKα such that A = Aθ,α

ϕ ,

2. ACα, θα = Cα, θα A∗Pα if and only if there is ϕ ∈ Kα such that A = Aθ,α
ϕ .

Proof. Note that to obtain the desired equality (1) we have to assume that Aθ, θα
ϕᾱ = 0 in the formula (5.4) of

Theorem 5.3, which is equivalent by [3, Theorem 4.4] to ϕᾱ ∈ θ
αH2 + θH2, i.e., ϕ ∈ θH2 + θ

αH2. Since for

ϕ ∈ αH2 + θH2 the operator Aθ,α
ϕ = 0, we may assume that ϕ ∈ Kθ ∩ θ

αH2 = θ
αKα.

Similarly, the assumption Aθ, θα
ϕ θ
α

= 0 is equivalent to ϕθ
α ∈

θ
αH2 + θH2. Since for ϕ ∈ αH2 + θH2 the

operator Aθ,α
ϕ = 0, it is enough to consider ϕ ∈ Kα for the equality (2).

Note that if ϕ ∈ θ
αKα, then Aθ,α

ϕ f = PαϕPθ f = PθϕPθ f for all f ∈ Kθ, while if ϕ ∈ Kα, then Aθ,α
ϕ f =

PαϕPθ f = PαϕPα f for all f ∈ Kθ. Therefore the conditions in (1) and (2) of the previous corollary are
satisfied if and only if Aθ,α

ϕ can be identified with truncated Toeplitz operators Aθ
ϕ and Aα

ϕ, respectively.

6. Example with θ = zN .

To illustrate the equalities in Theorem 5.3 we consider the simplest inner function θ = zN. Then KzN is the
space of polynomials of degree smaller than N. Hence KzN can be identified with CN. Then the conjugation
CzN in CN is given by CzN (z0, . . . , zN) = (z̄N, . . . , z̄0). Let us firstly illustrate Lemma 5.1.
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Remark 6.1. Let A ∈ L(CN) be a truncated Toeplitz operator with matrix A = (ai j)N−1
i, j=0, ai j = ti− j for i, j = 0, . . . ,N.

Recall that A is CzN –symmetric, i.e., the matrix is symmetric according to the second diagonal (see [7]). On the other
hand, by (2.1), an antilinear operator X given by a matrix (si j)N−1

i, j=0 is antilinearly selfadjoint if its matrix is symmetric,
i.e., si j = s ji for i, j = 0, . . . ,N. Note that the antilinear operator ACzN has the Hankel matrix (bi j)i, j=0,...,N, with
bi, j = ti+ j−N+1, which is clearly symmetric (bi j = b ji for i, j = 0, . . . ,N).

Now we will illustrate the equations (5.4a), (5.5a), (5.6a).

Example 6.2. Let α = z3 and θ = z5. Then any operator in T (z5, z3) has a symbol ϕ =
2∑

n=−4
akzk
∈ Kz3 + Kz5 (see

[3, Corollary 4.5]). Thus it has a matrix representation Az5,z3

ϕ =

 a0 a−1 a−2 a−3 a−4
a1 a0 a−1 a−2 a−3
a2 a1 a0 a−1 a−2

. To illustrate the equality

(5.4a) in Theorem 5.3 note that Az5,z2

ᾱϕ =

[
0 a2 a1 a0 a−1

0 0 a2 a1 a0

]
, so Az5,z3

ϕ � z3Az5,z2

ϕz̄3 is simply the Toeplitz matrix in C5

with the symbol ϕ =
2∑

n=−4
akzk
∈ Kz3 + Kz5 $ Kz5 + Kz5 , and its Cz5 –symmetry or the symmetry of the Hankel matrix

(Az5,z3

ϕ � z3Az5,z2

ϕz̄3 ) Cz5 is easily satisfied. Now to obtain equality (1) in Corollary 5.4 in our case we have to assume that

ϕ = a−4z̄4 + a−3z̄3 + a−2z̄2, so a−1 = a0 = a1 = a2 = 0.
To illustrate (5.5a), besides the involution Cz5 , we consider another involution Cz3,z2 (z0, z1, z2, z3, z4) = (z̄2, z̄1, z̄0, z̄4, z̄3).

Note that Az5,z2

ϕz2 =

[
a−2 a−3 a−4 0 0
a−1 a−2 a−3 a−4 0

]
. Hence

(Az5,z3

ϕ � αAz5,z2

ϕz2 )Cz3,z2 (z0, z1, z2, z3, z4) =


a−2 a−1 a0 a−4 a−3
a−1 a0 a1 a−3 a−2
a0 a1 a2 a−2 a−1

a−4 a−3 a−2 0 0
a−3 a−2 a−1 0 a−4




z̄0
z̄1
z̄2
z̄3
z̄4

 . (6.1)

Note that to obtain the equality (2) in Corollary 5.4 we have to take ϕ = a0 + a1z + a2z2.

In the equality (5.6a) Az5,z2

ϕ =

[
a0 a−1 a−2 a−3 a−4
a1 a0 a−1 a−2 a−3

]
. Hence

(Az5,z3

ϕ ⊕ Az5,z2

ϕ )(Cz3,z2 � Cz5 )(z0, z1, z2, z3, z4) =


a−2 a−1 a0 a−4 a−3
a−1 a0 a1 a−3 a−2
a0 a1 a2 a−2 a−1

a−4 a−3 a−2 a−1 a0
a−3 a−2 a−1 a0 a1




z̄0
z̄1
z̄2
z̄3
z̄4

 . (6.2)

The equations (5.5a) and (5.6a) say that the antilinear operators (Az5,z3

ϕ �αAz5,z2

ϕz2 )Cz3,z2 and (Az5,z3

ϕ ⊕Az5,z2

ϕ )(Cz3,z2 �Cz5 )

are antilinearly selfadjoint. If we write, in both cases, the above matrices by blocks
[

H11 H12

H21 H22

]
, then each block is

a Hankel matrix and the whole matrix is symmetric, moreover, H12 is symmetric to H21. In the first case some part of
H22 annihilates. The above should be also seen in the context of Remark 6.1.
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7. Connections with Hankel operators

In light of Theorem 5.3 it is natural to ask about the differences Aθ,α
ϕ Cθ − CθAα,θ

ϕ̄ Pα and Aθ,α
ϕ Cα, θα −

Cα, θα Aα,θ
ϕ̄ Pα, which have to become zero when α = θ. It turns out that these differences can be expressed in

terms of certain Hankel operators.
Let P denote the orthogonal projection from L2 onto H2, and P− denote the orthogonal projection from

L2 onto H2
0 = L2

	H2. For ϕ ∈ L2 we define:

Hϕ : H2
→ H2

0, Hϕ f = P−(ϕ f );

for f ∈ H2 such that ϕ f ∈ L2. Similarly, for θ ∈ L∞,

H̃θ : H2
0 → H2, H̃θ f = P(θ f ) for f ∈ H2

0.

Let θ be a nonconstant inner function. Recall firstly the following:

Proposition 7.1. Let θ be a nonconstant inner function and let Kθ = H2
	 θH2 be the associated model space. Then

1. Pθ = θP− θ̄P = θP− θ̄ − P−,
2. Pθ f = θP− θ̄ f = f − θPθ̄ f for all f ∈ H2,
3. Pθ f̄ = PθP f̄ = f (0)Pθ1 = f (0)(1 − θ(0)θ) for all f ∈ H2.

Using Proposition 7.1 it it easy to see that, for Aθ
ϕ ∈ T (θ), both Aθ

ϕCθ and CθAθ
ϕ can be expressed in terms

of Hankel operators. In fact we have

Aθ
ϕCθ = H̃θHθ̄ϕCθ and CθAθ

ϕ = H̃θHθ̄ϕ̄Cθ ,

which is another way to see that Aθ
ϕCθ = CθAθ

ϕ̄, i.e., Aθ
ϕ is Cθ-symmetric.

In the asymmetric case (α < θ) we no longer have, in general, either

Aθ,α
ϕ Cθ = CθAα,θ

ϕ̄ or (7.1)

Aθ,α
ϕ Cα, θα = Cα, θα Aα,θ

ϕ̄ , (7.2)

where, for simplicity, we identify Aθ,α
ϕ and Aα,θ

ϕ̄ with the operators PαϕPθ and Pθϕ̄Pα, respectively. Thus
it is natural to ask about the differences between the operators on the left and on the right hand sides of
the equalities (7.1) and (7.2). In the following theorem we characterize those differences in terms of Hankel
operators. This will later provide, in particular, another way to prove (5.6).

Theorem 7.2. Let α, θ be nonconstant inner functions and α 6 θ. If Aθ,α
ϕ ∈ T (θ, α) for ϕ ∈ L2, then the following

equalities hold:

(Aθ,α
ϕ Cθ − CθAα,θ

ϕ̄ Pα) f = (H̃αHᾱϕC θ
α
P θ

α
ᾱ − αH̃ θ

α
Hθ̄ϕCθPα) f ; (7.3)

(Aθ,α
ϕ Cα, θα − Cα, θα Aα,θ

ϕ
Pα) f = (H̃αHϕCθ − H̃θHϕCαPα) f ; (7.4)

(θαAθ,α
ϕ Cθ − CθAα,θ

ϕ̄ Pα θ̄ᾱ ) f = (H̃θHϕC θ
α
P θ

α
− H̃ θ

α
HϕCθ) f (7.5)

for f ∈ Kθ.

Proof. As in the proof of Theorem 5.3, it is enough to consider f = fα +α f θ
α
, fα ∈ K∞α , f θ

α
∈ K∞θ

α

. To prove (7.3)

note that by Proposition 3.1 and by Proposition 7.1, we have

Aθ,α
ϕ Cθ f = Aθ,α

ϕ (C θ
α

f θ
α

+ θ
αCα fα) = Pα(ϕC θ

α
f θ
α
) + Pα(ϕθ

ααz̄ f̄α)

= P(αP−(ᾱϕC θ
α

f θ
α
)) + Pα(θϕz̄ f̄α) = H̃αHᾱϕC θ

α
f θ
α

+ Pα(θϕz̄ f̄α)
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and

CθAα,θ
ϕ̄ Pα f = CθPθ(ϕ̄ fα) = Pθ(θϕz̄ f̄α)

= Pα(θϕz̄ f̄α) + αP θ
α
(ᾱϕCθ fα)

= Pα(θϕz̄ f̄α) + αP(θαP−(θ̄ϕCθ fα))

= Pα(θϕz̄ f̄α) + αH̃ θ
α
Hθ̄ϕCθ fα.

To prove (7.4) note firstly that Aθ,α
ϕ = Aα

ϕPα + Pα(ϕαP θ
α
(ᾱIKθ )). So we have

Aα
ϕCα, θα |Kα

= Aα
ϕCα = CαAα

ϕ̄ = Cα, θα Aα
ϕ̄

on Kα. On the other hand,

Pα(ϕαP θ
α
(ᾱCα, θα f )) = Pα(ϕαP θ

α
(ᾱ(αz̄ f̄α + αC θ

α
( f θ

α
)))) = Pα(ϕαC θ

α
( f θ

α
)) = PαP−ϕC θ

α
f θ
α
.

Thus, Aθ,α
ϕ Cα, θα = Cα, θα Aα

ϕ̄ + H̃αHϕC θ
α
ᾱ. Analogously, Aα,θ

ϕ̄ = Aα
ϕ̄ + αP θ

α
ᾱ ϕ̄Pα and

PαP−(ϕC θ
α

f θ
α
) − Cα, θα (αP θ

α
(ᾱ ϕ̄Pα f ))

= PαP−(ϕC θ
α

f θ
α
) + PαP−(ϕθ

αCα fα) − PαP−(ϕθ
αCα fα) − αC θ

α
(P θ

α
(ᾱ ϕ̄ fα))

= PαP−(ϕCθ f ) − (PαP−ᾱ + αP θ
α
ᾱ)(θϕCα fα)

= H̃αHϕCθ f − PθP−(ϕCα fα),

since PαP−ᾱ + αP θ
α
ᾱ = Pθ = PθP−θ̄. Hence (Aθ,α

ϕ Cα, θα − Cα, θα Aα,θ
ϕ̄ ) f = (H̃αHϕCθ − H̃θHϕCαPα) f for f ∈ Kθ.

To show (7.5) consider 1 = 1 θ
α

+ θ
α1α, 1α ∈ K∞α , 1 θ

α
∈ K∞θ

α

. Then by Proposition 3.1 we have

θ
αAθ,α

ϕ Cθ1 = θ
αAθ,α

ϕ (Cα1α + αC θ
α
1 θ
α
) = θ

αPα(ϕCα1α) + θ
αPα(ϕαC θ

α
1 θ
α
) = θ

αPα(ϕαz̄1̄α) + θ
αPα(ϕαC θ

α
1 θ
α
),

and

CθAα,θ
ϕ̄ Pα( θ̄ᾱ1 θα + 1α) = CθPθϕ̄1α = PθCθϕ̄1α = (P θ

α
+ θ

αPα θ̄ᾱ )(θϕz̄1̄α) = P θ
α
(θϕz̄1̄α) + θ

αPα(αϕz̄1̄α).

Hence

θ
αAθ,α

ϕ Cθ1 − CθAα,θ
ϕ̄ Pα( θ̄ᾱ1) = θ

αPα(αϕC θ
α
1 θ
α
) − P θ

α
(θϕz̄1̄α)

= Pθ
αPα(αϕC θ

α
1 θ
α
) + Pθ

αP−(αϕC θ
α
1 θ
α
) − (Pθ

αP−(αϕz̄1̄α) + Pθ
αP−(αϕC θ

α
1 θ
α
))

= Pθ
α (Pα + P−)(αϕC θ

α
1 θ
α
) − Pθ

αP−(ϕ(Cα1α + αC θ
α
1 θ
α
))

= PθP−(ϕC θ
α
1 θ
α
) − Pθ

αP−(ϕCθ1) = H̃θHϕC θ
α
1 θ
α
− H̃ θ

α
HϕCθ1,

since by Proposition 7.1 Pα + P− = αP−ᾱ.

From (7.5) we can obtain in particular the following:

Corollary 7.3. Let α, θ be nonconstant inner functions such that α 6 θ. If Aθ, θα
ϕ ∈ T (θ, θα ) for ϕ ∈ L2, then

αAθ, θα
ϕ Cθ − CθA

θ
α ,θ
ϕ̄ P θ

α
ᾱ = H̃θHϕCαPα − H̃αHϕCθ. (7.6)

Note that comparing (7.4) with (7.6) we get:

Aθ,α
ϕ Cα, θα + αAθ, θα

ϕ Cθ = Cα, θα Aα,θ
ϕ̄ Pα + CθA

θ
α ,θ
ϕ̄ P θ

α
ᾱ, (7.7)

which is equivalent to (5.6). Hence we obtained another proof of (5.6).
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8. Examples with Hankel matrices

To illustrate the equalities in Theorem 7.2 let us consider the following examples.

Example 8.1. Let α = z3, θ = z5 and ϕ =
∑2

n=−4 anzn
∈ Kz5 + Kz3 . Then for f = (z0, z1, z2, z3, z4) ∈ Kz5 we have,

regarding the left hand side of (7.3),

Az5,z3

ϕ Cz5 f =

 a−4 a−3 a−2 a−1 a0
a−3 a−2 a−1 a0 a1
a−2 a−1 a0 a1 a2




z̄0
z̄1
z̄2
z̄3
z̄4


and

Cz5 Az3,z5

z5
Pz3 f =


a−4 a−3 a−2
a−3 a−2 a−1
a−2 a−1 a0
a−1 a0 a1
a0 a1 a2


 z̄0

z̄1
z̄2

 .
The right hand side is given by Hankel matrices

H̃z3 Hz̄3z5 Cz2 Pz2 (z̄3 f ) =

 a−1 a0
a0 a1
a1 a2

 [ z̄3
z̄4

]
and

z3H̃z2 Hz̄5ϕCz5 Pz3 f =
[ a−1 a0 a1

a0 a1 a2

]  z̄0
z̄1
z̄2

 .
Example 8.2. The equation (7.4) will be illustrated with the same data as before. Hence

Az5,z3

ϕ Cz3,z2 f =

 a−2 a−1 a0 a−4 a−3
a−1 a0 a1 a−3 a−2
a0 a1 a2 a−2 a−1




z̄0
z̄1
z̄2
z̄3
z̄4


and

Cz3,z2 Az3,z5

ϕ
Pz3 f =


a−2 a−1 a0
a−1 a0 a1
a0 a1 a2
a−4 a−3 a−2
a−3 a−2 a−1


 z̄0

z̄1
z̄2

 .
On the other hand,

H̃z3 HϕCz5 f =


0 0 0 a−4 a−3

0 0 a−4 a−3 a−2

0 a−4 a−3 a−2 a−1




z̄0
z̄1
z̄2
z̄3
z̄4


and

H̃z5 HϕCz3 Pz3 f =


0 0 0
0 0 a−4

0 a−4 a−3
a−4 a−3 a−2
a−3 a−2 a−1


 z̄0

z̄1
z̄2

 .
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Example 8.3. Using the same data again we obtain for the equation (7.5)

z2Az5,z3

ϕ Cz5 f = z2

 a−4 a−3 a−2 a−1 a0
a−3 a−2 a−1 a0 a1
a−2 a−1 a0 a1 a2




z̄0
z̄1
z̄2
z̄3
z̄4


and

Cz5 Az3,z5

ϕ
Pz3αz̄2 f =


a−4 a−3 a−2
a−3 a−2 a−1
a−2 a−1 a0
a−1 a0 a1
a0 a1 a2


 z̄2

z̄3
z̄4

 .
On the other hand,

H̃z5 HϕCz2 Pz2 f =


0 0
0 a−4

a−4 a−3
a−3 a−2
a−2 a−1


[

z̄0
z̄1

]

and

H̃z2 HϕCz5 f =

[
0 0 a−4 a−3 a−2

0 a−4 a−3 a−2 a−1

] 
z̄0
z̄1
z̄2
z̄3
z̄4

 .
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