
Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2008, Article ID 426080, 8 pages
doi:10.1155/2008/426080

Research Article

Asymmetric Variate Generation via a Parameterless
Dual Neural Learning Algorithm

Simone Fiori

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni (DEIT), Università Politecnica delle Marche Via
Brecce Bianche, Ancona I-60131, Italy

Correspondence should be addressed to Simone Fiori, fiori@deit.univpm.it

Received 16 June 2007; Accepted 19 September 2007

Recommended by S. Cruces-Alvarez

In a previous work (S. Fiori, 2006), we proposed a random number generator based on a tunable non-linear neural system, whose
learning rule is designed on the basis of a cardinal equation from statistics and whose implementation is based on look-up tables
(LUTs). The aim of the present manuscript is to improve the above-mentioned random number generation method by changing
the learning principle, while retaining the efficient LUT-based implementation. The new method proposed here proves easier to
implement and relaxes some previous limitations.

Copyright © 2008 Simone Fiori. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Random numbers are currently used for a variety of purposes
such as: cryptographic keys generation, games, some classes
of scientific experiments as well as “Monte Carlo” methods in
physics and computer science [1–6]. Standard programming
environments are endowed with basic pseudorandom signal
generators such as the uniform and the Gaussian ones, while
usually the needed distributions are more involved than uni-
form/Gaussian. A simple example of application is password
generation: a random password generator is a software that
inputs from a random or pseudorandom number generator
and automatically generates a password. An example of
application where involved probability distributions are
needed is in independent component analysis (ICA, [7])
testing: as the behavior of an ICA algorithm might depend
on the statistical distribution of the sources, ICA-algorithm
testing tools might require random sequences generators
capable of producing random numbers distributed according
to involved probability laws.

The principal methods known in the literature to obtain
a batch of samples endowed with an arbitrary distribution
from a samples batch having a simple distribution are
the “transformation method” and the “rejection method”
[8]. In the present paper, we focus on the transformation
method, which may be well implemented through a tunable

neural system, because the availability of a random number
source and of a tunable nonlinear system, along with a
proper learning procedure, allows obtaining a wide class of
pseudorandom signal generators.

A well-known effect of nonlinear neural systems is to
warp the statistical distribution of its input. In particular, we
assume that the system under consideration has a nonlinear
adaptive structure described by the transference y = f (x),
where x ∈ X ⊆ R denotes the system input random
signal, having probability density function px(x), and y ∈
Y ⊆ R denotes the output signal, having probability density
function py(y), as shown in Figure 1. In the hypothesis that
the neural system transference is strictly monotonic, namely
f ′(x) > 0, for all x ∈ X, the relationship between the input
distribution, the output distribution, and the system transfer
function is known to be [9]

py(y) = px(x)

f ′(x)

∣∣∣∣∣
x= f −1(y)

, x ∈X, (1)

where f −1(·) denotes the inverse of function f (·). Usually,
(1) is interpreted as an analysis formula, which allows com-
puting the output distribution when the input distribution
and the system transference function are known. However,
the cardinal equation (1) may also be interpreted as a
formula that allows for designing the nonlinear system when

mailto:fiori@deit.univpm.it

2 Computational Intelligence and Neuroscience

Neural system

Dual
neural system

X Y

Arbitrary distributionUniform or Gaussian

px(x) py(y)

f (·)

g(·) = f −1(·)

Figure 1: Neural system, neural dual system, input/output sample
spaces and their statistical distributions.

the distribution px(·) is known and it is desired that the
system responds according to a desired distribution py(·). In
fact, (1) may be rewritten as the differential equation:

f ′(x) = px(x)

py
(
f (x)

) , x ∈X. (2)

In general, such design operation is rather difficult, because
(2) in the unknown f (·) involves the solution of a nonlinear
differential equation, provided that a consistent boundary
condition is specified.

In the recent contribution [10], we presented a pseudo-
random samples generator based on a nonlinear monotonic
neural system, whose transference function is denoted by
f (·), tuned on the basis of the differential equation (2). The
cardinal design equation (2) was proposed to be solved via a
(relaxation-type) fixed-point algorithm. The key advantages
of the method proposed in [10] are as follows. (a) In order
to obtain a fully-tunable neural transference function, a
look-up-table representation was chosen. It guarantees high
flexibility in the shape of the neural transference as well
as easiness of representation and handling of the involved
quantities. (b) The fixed-point learning algorithm exhibits
fast convergence over other possible methods such as the
gradient-based one: unlike these methods, the fixed-point
learning algorithm does not require the computation of
derivatives of the involved functions.

The resulting random-number generation method
should be thus read as a two-stage procedure. The first stage
consists in solving the cardinal differential equation (2) in
the unknown function f (·), given the distributions px(·)
and py(·) as data. The second stage consists in generating
input random samples drawn from the distribution px(·),
then letting such random samples pass through the learnt
nonlinear neural system by computing output values
y = f (x). The random samples y are assured to be
distributed according to the probability density function
py(·).

However, we recognized that the method presented in
[10] also suffers from some drawbacks, namely the following.
(a) For numerical convergence purpose, each step of the
fixed-point-type tuning algorithm needed to be followed
by some normalization steps. Namely, from (2), it is easily
seen that when the function py(f (x)) approaches 0, the
computation of f ′(x) becomes ill-conditioned, therefore the
quantity py(f (x)) was replaced by py(f (x)) + γ, with γ > 0

being a small constant to be properly sized. Also, in order
to refine learning, after each iteration step, the solution f (x)
needed to be normalized either by affine scaling, in order
to control the range of variable y, or by linear scaling in
order to match the true value of output distribution moment
of preselected order. This, in turn, requires computing in
advance the (closed form) moments of interest of the output
distribution. (b) In spite of affine scaling, it was not easy to
control the range of the output value y, as affine scaling does
not guarantee convergence in every case of interest, therefore
it could not be employed in every case. (c) The developed
procedure was customized to generate output distributions
that are either symmetric (namely, py(−y) = py(y)) or
completely skewed to the right (namely, py(y) = 0, for all
y < 0) only. Asymmetric or general-shape distributions were
not considered.

In the present paper, we consider the problem of extend-
ing the previous method to the generation of asymmetric
distributions by removing the constraint of symmetry or
skewedness to the right. Also, we propose a way to avoid
normalization of probability density function. The solution
of choice implies a change in the viewpoint of cardinal
equation (1): instead of converting formula (1) into the
differential equation (2), we convert it into a new differential
equation, hereafter referred to as dual cardinal equation,
which will prove easier to solve and more flexible to
use in practice, while retaining the previous numerical
representation/advantages. Thus, we will retain the effective
numerical representation of the involved quantity already
introduced in the works [10, 11], based on the “look-up
table” (LUT) implementation of neural activation functions
as well as the efficient numerical algorithm to solve the dual
cardinal equation. LUTs were proven to provide an efficient
way of representing and handling the variables appearing
within the devised random number generation algorithm.
A prominent advantage of the procedure is the lack of hard
computational requirements except for LUT handling, which
consists of sorting/searching on lists of numbers and of few
simple algebraic operations on numbers.

The effectiveness of the proposed approach will be
evaluated through numerical experiments. In particular,
the designed experiments followed a logical succession,
beginning with a basic assessment of the proposed method
when applied to bi-Gaussian distribution, which is then
followed by comparably more difficult distributions, namely
a generalized Gaussian distribution and an asymmetric
Gamma distribution.

The existing method presented in [3] is worth discussing.
It concerns a neural-networks-type algorithm to generate
random vectors with arbitrary marginal distributions and
correlation matrix, based on NORTA method. The “normal-
to-anything” (NORTA) method (see, e.g., [12]) is one of the
most efficient methods for random vector generation. In [3],
a technique was presented to generate the correlation matrix
of normal random vectors based on an artificial neural
networks approach. The NORTA algorithm works in the
following way to generate random samples with prescribed
probability density function. First, generate zero-mean
unit-variance random samples xi, i ∈ {1, . . . ,Q}. Then,

Computational Intelligence and Neuroscience 3

generate the desired random samples as yi = P−1
y (Φ(xi)),

where Φ(·) denotes the cumulative distribution function

of a standard normal random variable and Py(·) denotes
the desired cumulative distribution function, with P−1

y (u) =
inf {z | Py(z) ≥ u}, u ∈ [0 1]. It appears, thus, as a trans-
formation method.

Most of the methods of random vector generation
known from the literature impose constraints on the size
of the random vectors and many of them are applicable
only for bivariate distributions whose components are
equidistributed. Conversely, within the NORTA framework,
marginal probability distributions for vector components as
well as their correlation matrix may be specified. Obtaining
the prescribed generated random vector correlation matrix
requires solving an involved nonlinear system of equations,
which is the most serious problem in this kind of approach.
Paper [3] makes use of a multilayer perceptron neural
network to estimate correlation matrices of normal random
vectors, allowing thus to overcome the analytically involved
equations of NORTA algorithm. While the method proposed
here is more general than NORTA in the sense that it works
for any kind of available generator (not only Gaussian),
it is less general in the sense that it does not allow to
generate multivariate random variables with prescribed joint
statistics.

2. Dual Cardinal Equation and
its Numerical Solution

The present section formalizes the learning problem at hand
and illustrates a fixed-point-based numerical algorithm to
solve the dual cardinal equation.

2.1. Dual Cardinal Equation and Neural System

The key point of the new method consists in learning the
inverse function f −1(·) instead of the function f (·). As it
will be clarified in the next sections, this choice simplifies the
learning problem while adding slight computational burden
to the usage of the learnt neural system as a generative model.

We denote by x = g(y)
def= f −1(y) the inverse function

of the actual neural transfer function and refer to the new
neural system, having g(·) as transfer function, as the “dual
neural system” (shown in Figure 1). The purpose here is to
learn a dual neural system that warps py(·) into px(·) under
the constraint g′(y) > 0, for all y ∈ Y. We denote the interval
of interest for the generated random variable as Y = [y y].
With this hypothesis on the nonlinear dual neural transfer
function, the cardinal equation (1) may be rewritten as

g′(y) =
py(y)

px
(
g(y)

) , g(y) = 0, y ∈ Y, (3)

which will be hereafter referred to as “dual cardinal equa-
tion.” It is worth noting that the boundary condition g(y) =
0 is completely arbitrary. While there are no theoretical
reasons to set the boundary condition in any specific way,
the above choice is motivated by the observation that it

simplifies the fixed-point adapting algorithm with respect to
the previous version proposed in [10].

In general, a closed-form solution to (3) may not be
realized, thus we should resort to an iterative learning algo-
rithm to search for a solution. Formally, this means designing
an algorithm that generates a succession of functions gn(y),
n ∈ N, whose limit coincides to the solution of (3). A way to
generate such a succession is to employ the algorithm:

gn+1(y) =
∫ y

y

py(t)dt

px
(
gn(t)

) , n ≥ 0, y ∈ Y. (4)

As a figure-of-convergence of learning process, we consider
the weighted difference of function g(·) between two succes-
sive iterations, namely,

∆gn
def=
∫

Y

∣∣gn(y)− gn−1(y)
∣∣py(y)dy, n ≥ 1. (5)

As initial guess, we assume g0(y) = 0, for all y ∈ Y.
After learning an inverse function g(·), the numerical

procedure should calculate the actual nonlinear function
f (·) by numerical inversion. As it will be clarified in the next
section, within the framework proposed here, such operation
involves a very little computational effort.

2.2. Numerical Implementation of
the Learning Procedure

From an implementation viewpoint, the algorithm (4) needs
to be discretized in order to obtain a version suitable to be
implemented on a computer.

We choose to represent function gn(y) by a numerical
vector: in practice, we suppose the interval Y = [y y]
of interest to be partitioned into N ≥ 1 discrete bins.
This gives rise to the vector-type representation y ∈ R

N+1

of the support of the output sequence probability density
function, where y contains N + 1 values regularly spaced in
Y with spacing-width denoted as ∆y . Then gn(y) may be
represented by a numerical vector gn ∈ RN+1 and the neural
input-output transference is now represented by the discrete
relationship (g, y) ∈ RN+1×RN+1, namely, a numerical look-
up table. The entries of a vector gn may be denoted by an
extra footer, that is, by gn,k, with k ∈ {0, 1, . . . ,N}. The
interval ∆y relates to the integer N and may be defined as

∆y
def= (y − y)/N .
In order to translate the learning rule (4) into a version

suitable to numerical representation, we should consider the
inherent limitations of numerical integration of differen-
tial equations. The following notes are worth taking into
account. (a) Output support selection: the ultimate purpose of
the random number generation method under construction
is to generate random samples with desired probability
distribution within a range of interest, namely, with values
within an interval that is deemed suitable for the purposes
that random samples generation is launched for. Therefore,
the output range Y = [y y] is to be freely selected according
to the needs the random samples are to be generated for.
Then, the above-mentioned vector y has entries yk computed

4 Computational Intelligence and Neuroscience

0 N

N

0

0

h′

h

Figure 2: Behavior of the “cumsum” operator for look-up tables.

as yk = y + k·∆y , with k ∈ {0, 1, . . . ,N}. (b) Input support
selection: in order to prevent the denominator of the quantity
g′n+1(y) in (4) to become too close to zero, a sensible choice
is to carefully select the support X. As in this paper we
consider the input probability density function to be either
(symmetric) Gaussian or uniform, we set X = [−Rx Rx],
with Rx > 0. The value of constant Rx is to be selected in such
a way that px(Rx) ≫ 0. It is worth recalling that the support
of the input distribution may be arbitrarily selected as it does
not affect the support of the output distribution. (c) Iterative
range scaling: after each learning step, an affine normalization
operation is performed, that linearly scales the entries of the
putative solution gn so that gn,0 = −Rx and gn,N = Rx.

In order to describe the numerical learning algorithm,
the following operators are defined for a generic look-up
table (h, y) ∈ RN+1 ×RN+1:

cumsum(h)0 = 0 , cumsum(h)k
def=

k−1∑

i=0

gi∆y ,

affscale{h; a, b}k
def= a +

(
hk −min{h}

)
(b− a)

max{h} −min{h} ,

(6)

where the subscript k denotes the kth entry of the vectors
cumsum(h) and affscale{h; a, b}. The behavior of the “cum-
sum” operator is illustrated in Figure 2, which also provides
a visual representation of look-up tables. In practice, the
considered numerical version of the learning rule (4) writes

(A0) g0 := 0,

(A1) g′n+1 :=
py

px(gn)
, n ≥ 0,

(A2) gn+1 := cumsum{g′n+1},

(A3) gn+1 := affscale
{

gn+1;−Rx,Rx

}
,

(7)

where symbol := denotes vector values assignment and py

denotes the vector of N + 1 entries containing the values of
py(·) corresponding to the values in y, and its entries may be
denoted as pyk, with k ∈ {0, 1, . . . ,N}.

In terms of look-up-tables entries, the learning relaxation
index ∆gn of definition (5) may be approximated as

∆gn ≈
N∑

k=0

∣∣gn,k − gn−1,k

∣∣pyk∆y , n ≥ 1. (8)

2.3. Use of the Neural System as
Generative Model

When a suitable dual neural system described by the
transference g(·) has been learnt, it may be effectively used to
generate random samples drawn from the desired statistical
distribution. The number of available input samples (that
coincides with the number of output samples to be gener-
ated) is hereafter denoted by Q. The difficulty here is that the
input samples x are known while the output samples y are
supposed to be computed as y = f (x). However, unlike in
[10], the function f (·) is not known in the present setting
as its inverse g(·) only has been learnt. Nevertheless, the
inversion of function g(·) is not required in order to employ
the dual neural system as a generative model, provided an
appropriate usage of the look-up table representing g(·)
is made. First, it is necessary to produce a realization
{xi}, i ∈ {1, . . . ,Q}, drawn from the available-generator
distribution px(·) (having, e.g., zero-mean Gaussian or
uniform probability density function) ranging in X. About
generation of input samples, as they are generated by using
an available generator whose range is wider than X, some
generated input samples will be necessarily discarded. The
amount of discarded input samples may be quantified. Let
us denote by Px(·) the cumulative distribution function of
the input, namely,

Px(x)
def=
∫ x

−∞
px(t)dt . (9)

The ratio ρ of the number of discarded samples over the total
number of generated samples is given by

ρ
(
Rx

) def= discarded samples

generated samples
= 1− 2Px

(
Rx

)
. (10)

The parameter Rx may thus be selected in order to adjust the
value of ρ(Rx) to design needs. Then, it is necessary to address
the proper values in the learnt look-up table (g, y) ∈ RN+1 ×
R

N+1corresponding to the values of {xi}, i ∈ {1, . . . ,Q}, by
finding pointers ri ∈ {0, 1, . . . ,N} such that gri ≈ xi. This
means searching, in the whole look-up table, for the closest
value of g(·) to the sample xi. Such operation should be
performed in an efficient way. Finally, the desired set { ỹi}
of output samples, approximately distributed according to
the probability density function py(·), may be obtained by
setting ỹi := yri , i ∈ {1, . . . ,Q}, where yri denotes the rith
entry of the look-up table (g, y). (Commented MATLAB
code is available on request.)

3. Computer-Based Numerical Experiments

In the following experiments, we consider generating ran-
dom univariate samples with prescribed density function
within prescribed ranges of interest, supposing that a
prototype Gaussian random number generator is available.
The prototype Gaussian distribution has zero mean and
unitary variance. The parameter Rx was set to 1 in all the
experiments, which corresponds to a ratio ρ ≈ 0.3173 that
allows retaining about 70% of the generated input samples.

Computational Intelligence and Neuroscience 5

0

0.1

0.2

0.3

0.4

0.5

−1 −0.5 0 0.5 1

x

p
x
(x

)

Input distribution px(x)

−1

−0.5

0

0.5

1

−2 0 2 4

y

x
=
g

(y
)

Learnt dual model “g”

0

0.2

0.4

0.6

0.8

−4 −2 0 2 4

y

p
y
(y

)

Output distribution py(y)
100

10−5

1 2 3 4 5

Iteration (n)

‖∆
g n
‖

Relaxation index

Figure 3: Result of dual neural system adaptation with Gaussian input and bi-Gaussian output.

The experiments were run on a 1.86 GHz, 512 MB-RAM
platform.

3.1. Experiments on a ‘‘Bi-Gaussian’’
Distribution

The first case of generation of a random variable concerns a
“bi-Gaussian” distribution defined by

G2(y)

=1

2

[
1√

2πσ1
exp

(
−
(
y−µ1

)2

2σ2
1

)
+

1√
2πσ2

exp

(
−
(
y−µ2

)2

2σ2
2

)]

(11)

that may assume fairly asymmetric shapes.
The numerical results presented below pertain to values

σ1 = 0.3, µ1 = −0.5, σ2 = 1, and µ2 = 0.8. The interval
of interest for the output variable is set to Y = [−2.5 4].
The total number of generated output samples amounts to
Q = 68219. The number of points in which the function g(·)
is computed is N = 1000. The results obtained by running
the learning algorithm (7) are shown in Figure 3. The values
of the index ∆gn shows that the fixed-point algorithm may
be stopped after 5 iterations. In Figure 3, the histogram
estimates (with 50 bins) of the generated Gaussian data and

of the bi-Gaussian output—obtained with the learnt dual
system—may be observed as well.

Cumulative results on repeated independent trials are
illustrated. The number of iterations of the algorithm (7) was
set to 10, while the other data stayed the same of the previous
single-run experiment. The number N of points in which
the function g(·) was computed ranged from 200 to 2000
with step 200, in order to obtain some information about the
sensitivity of the algorithm to the selection of the number
of points in the domain Y and about the influence of the
numberN in the computational complexity of the algorithm.
In particular, the sensitivity of the algorithm with respect to
the number N was measured via a discrepancy index DSC
computed as follows. (a) The histogram-based estimate of
the probability density function of the generated samples is
computed on a number of bins equal to 50. The discrete
values of such estimate are denoted by p̂yb, b ∈ {1, 2, . . . , 50}.
(b) The true values of the probability density function
py(·) are computed in correspondence of the histogram’s
bin-centers. The discrete values of such probability density
function are denoted by pyb , b ∈ {1, 2, . . . , 50}. (c)
The weighted-square-difference-type discrepancy index is

computed by the expression DSC
def=
∑ 50

b=1(p̂yb − pyb)2pyb .

The average number of generated samples varies between
about 68250 and 68290. The obtained results are summa-
rized in Tables 1 and 2. The tables show the average run-time

6 Computational Intelligence and Neuroscience

0

0.1

0.2

0.3

0.4

0.5

−1 −0.5 0 0.5 1

x

p
x
(x

)

Input distribution px(x)

−1

−0.5

0

0.5

1

−2 0 2 4

y

x
=
g

(y
)

Learnt dual model “g”

0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

y

p
y
(y

)

Output distribution py(y)
100

10−5

1 2 3 4 5

Iteration (n)

‖∆
g n
‖

Relaxation index

Figure 4: Result of dual neural system adaptation with Gaussian input and generalized Gaussian output.

Table 1: Average results about the experiment on bi-Gaussian ran-
dom number generation; averages computed over 100 independent
trials when the algorithm (7) was iterated 10 times (first batch of
results).

POINTS N 200 400 600 800 1000

AVG. LEARN. TIME 0.0092 0.0090 0.0109 0.0117 0.0133

AVG. GEN. TIME 0.0517 0.0514 0.0509 0.0508 0.0509

AVG. DSC 0.0026 0.0018 0.0011 0.0009 0.0008

Table 2: Average results about the experiment on bi-Gaussian ran-
dom number generation; averages computed over 100 independent
trials when the algorithm (7) was iterated 10 times (second batch of
results).

POINTS N 1200 1400 1600 1800 2000

AVG. LEARN. TIME 0.0145 0.0155 0.0176 0.0197 0.0209

AVG. GEN. TIME 0.0527 0.0528 0.0527 0.0511 0.0523

AVG. DSC 0.0007 0.0006 0.0005 0.0006 0.0005

required for learning (expressed in seconds), the average
run-time required to generate the samples (use of the learnt
systems as a generative model) and average DSC index value.
As it is readily appreciated, the computational complexity
owing to the learning phase depends on the number of
points used to approximate the nonlinear transference g(·) as

expected, while the computational complexity owing to the
generation phase depends only slightly on N . The sensitivity
of the method measured by the discrepancy index DSC is
high for low values of the parameter N , while it becomes
quite low for values of N larger than 1000.

3.2. Experiments on a Generalized Gaussian
Distribution

The second example of random samples generation is about
a generalized Gaussian distribution [13]:

T(y) = sechλ−1(y − µ)− λ sechλ+1(y − µ)sinh 2(y − µ)√
2πσ

× exp

[
−
(

sinh (y) sechλ(y)− sinh (µ) sechλ(µ)
)2

2σ2

]
,

(12)

where sinh (·) denotes the hyperbolic sine function and
sech(·) denotes the reciprocal of the hyperbolic cosine
function (namely, the hyperbolic secant function) The
present generalized Gaussian distribution (GGD) differs by
the standard GGD model encountered in literature (see,
e.g., [14]). It belongs to the general exponential family
of distributions of the type py(y) ∝ exp (−κ2(y)), with

Computational Intelligence and Neuroscience 7

0

0.1

0.2

0.3

0.4

0.5

−1 −0.5 0 0.5 1

x

p
x
(x

)

Input distribution px(x)

−1

−0.5

0

0.5

1

−2 −1 0 1 2

y

x
=
g

(y
)

Learnt dual model “g”

0

0.5

1

1.5

2

2.5

−2 −1 0 1 2

y

p
y
(y

)

Output distribution py(y)
100

10−5

1 2 3 4 5

Iteration (n)

‖∆
g n
‖

Relaxation index

Figure 5: Result of dual neural system adaptation with Gaussian input and Gamma output.

Table 3: Average results about the experiment on generalized
Gaussian random number generation; averages computed over 100
independent trials when the algorithm (7) was iterated 10 times.

POINTS N 200 400 600 800 1000

AVG. LEARN. TIME 0.0129 0.0159 0.0229 0.0281 0.0320

AVG. GEN. TIME 0.0511 0.0517 0.0500 0.0502 0.0513

AVG. DSC 0.0038 0.0018 0.0011 0.0007 0.0005

κ(·) satisfying appropriate compatibility conditions. The
distribution (12) as well as the GGD in [14] belong to the
above exponential family.

The numerical results presented below pertain to values
σ = 1, µ = 0.8, and λ = 0.5. The interval of interest for
the output variable is set to Y = [−3 4]. The total number
of generated output samples amounts to Q = 68335. The
number of points in which the function g(·) is computed
is N = 1000. The results obtained by running the learning
algorithm (7) are shown in Figure 4. The values of the
index ∆gn show that the fixed-point algorithm may be safely
stopped after 5 iterations again. In Figure 4, the histogram
estimates (with 50 bins) of the generated Gaussian data and
of the generalized Gaussian output may be observed as well.

Cumulative results are illustrated as well. The number of
iterations of the algorithm (7) was set to 10, while the other

Table 4: Average results about the experiment on Gamma random
number generation; averages computed over 100 independent trials
when the algorithm (7) was iterated 20 times.

POINTS N 1000 1200 1400 1600 1800

AVG. LEARN. TIME 0.0165 0.0176 0.0220 0.0242 0.0261

AVG. GEN. TIME 0.0516 0.0516 0.0504 0.0514 0.0513

AVG. DSC 0.0137 0.0118 0.0118 0.0109 0.0101

data stayed the same of the previous single-run experiment.
The number N of points ranged from 200 to 1000 with
step 200. The average number of generated samples varies
between about 68250 and 68290. The obtained results are
summarized in Table 3.

3.3. Experiments on a Gamma Distribution

The third example is repeated from [10]: we considered the
generation of a (symmetric) Gamma distribution:

B(y)
def= αβ1/α

2Γ(1/α)
exp

(
− β|y|α

)
. (13)

This choice is motivated by the observation that the random
number generation algorithm in [10] gives rise to the most
inaccurate result when tested on the Gamma distribution.

8 Computational Intelligence and Neuroscience

The numerical results presented below pertain to values
α = 0.8 and β = 4. The interval of interest for the output
variable is set to Y = [−2 2]. The total number of generated
output samples amounts to Q = 68355. The number of
points in which the function g(·) is computed is N = 1500.
The results obtained by running the learning algorithm (7)
are shown in Figure 5. The values of the index ∆gn show
that the fixed-point algorithm may be safely stopped after
5 iterations again. Figure 5 shows the histogram estimates
(with 50 bins) of the generated Gaussian data and of the
Gamma-distributed output.

Cumulative results were obtained by setting the number
of iterations of the algorithm (7) to 20, while the other
data stayed the same of the previous single-run experiment.
The number Nof points ranged from 1000 to 1800 with
step 200. The average number of generated samples varies
between about 68230 and 68280. The obtained results are
summarized in Table 4.

4. Conclusion

The aim of the present manuscript was to present a novel
random number generation technique based on dual neural
system learning. We elaborated over our recent work [10] in
order to obtain a new learning algorithm free of the need of
choosing parameters and normalization-criteria. The main
idea is to shift the learning paradigm from the viewpoint of
cardinal equation solving to dual cardinal equation solving,
which appears to be more easily profitable.

The proposed numerical results confirmed the agree-
ment between the desired and obtained distributions of the
generated variate. The analysis of computational burden, in
terms of running times, shows that the proposed algorithm
is not computationally demanding.

References

[1] P. L’Ecuyer, “Random number generation,” in The Handbook
of Simulation, J. Banks, Ed., chapter 4, pp. 93–137, John Wiley
& Sons, New York, NY, USA, 1998.

[2] J. C. Lagarias, “Pseudorandom number generators in cryptog-
raphy and number theory,” in Cryptology and Computational
Number Theory, Proceedings of Symposia in Applied Mathe-
matics, C. Pomerance, Ed., vol. 42, pp. 115–143, American
Mathematical Society, Providence, RI, USA, 1990.

[3] S. T. A. Niaki and B. Abbasi, “NORTA and neural networks
based method to generate RANDOM vectors with arbitrary
marginal distributions and correlation matrix,” in Proceedings
of the 17th IASTED International Conference on Modelling and
Simulation, pp. 234–239, Montreal, Canada, May 2006.

[4] G. Marsaglia, “A current view of random number generators,”
in Computer Science and Statistics: The Interface, L. Billard, Ed.,
pp. 3–10, Elsevier, Amsterdam, The Netherlands, 1985.

[5] H. Niederreiter, Random Number Generation and Quasi-
Monte Carlo Methods, SIAM, Philadelphia, Pa, USA, 1992.

[6] B. D. Ripley, “Thoughts on pseudorandom number gener-
ators,” Journal of Computational and Applied Mathematics,
vol. 31, no. 1, pp. 153–163, 1990.

[7] A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image
Processing: Learning Algorithms and Applications, John Wiley
& Sons, New York, NY, USA, 2002.

[8] D. E. Knuth, The Art of Computer Programming: Seminumer-
ical Algorithms, vol. 2, Addison-Wesley, Reading, Mass, USA,
3rd edition, 1997.

[9] A. Papoulis, Probability and Statistics, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1996.

[10] S. Fiori, “Neural systems with numerically-matched input-
output statistic: variate generation,” Neural Processing Letters,
vol. 23, no. 2, pp. 143–170, 2006.

[11] S. Fiori, “Neural systems with numerically matched input-
output statistic: isotonic bivariate statistical modeling,” Com-
putational Intelligence and Neuroscience, vol. 2007, Article
ID 71859, 23 pages, 2007.

[12] S. Ghosh and S. G. Henderson, “Properties of the NORTA
method in higher dimensions,” in Proceedings of the Winter
Simulation Conference (WSC ’02), E. Yücesan, C.-H. Chen, J.
L. Snowdon, and J. M. Charnes, Eds., vol. 1, pp. 263–269, San
Diego, Calif, USA, December 2002.

[13] A. C. Tsai, Personal communication, January 2006.
[14] K. Kokkinakis and A. K. Nandi, “Exponent parameter esti-

mation for generalized Gaussian probability density functions
with application to speech modeling,” Signal Processing,
vol. 85, no. 9, pp. 1852–1858, 2005.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

