

•

,

ł

\$

ł

ھ

+

ļ

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - 4

ţ

h....

•

~

•u.,

.

ASYMMETRIC WIENER-POISSON CONTROL

BY

HOWARD WEINER

Prepared Under Contract N00014-76-C-0475 (NR-042-267) For the Office of Naval Research

A-1

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA

Asymmetric Wiener-Poisson Control

by Howard Weiner

University of California, Davis and Stanford University

1. Introduction

Let W(t), $t \ge 0$, W(0) = 0 be a standard Wiener process, independent of N(t), $t \ge 0$, N(0) = 0, a Poisson process with constant unit jumps, and $EN(t) = \lambda t$, $\lambda > 0$. Let their sigma fields be $F(t) = \sigma(W(s), 0 \le s \le t)$ and $G(t) = \sigma(N(s), 0 \le s \le t)$. Let a stochastic process X(t) be defined in terms of $u(t) \equiv u(t, X(t))$, a non-anticipating control, and W(t), N(t), for $0 \le t \le T$, T > 0 a constant, by the equation

$$dX(t) = u(t)dt + dW(t) + dN(t)$$
 (1)
x(0) = x, constant,

where u(t) is measurable with respect to $\sigma(F(t) \cup G(t))$,

(i.e. u is non-anticipative), and

satisfies for constants A, B > 0,

$$|u-A| \leq B \quad all \ 0 < t \leq T.$$
 (2)

The cost function for a given u satisfying (2), is, for $\alpha > 0$.

$$J(u) \approx \int_{0}^{T} e^{-\alpha y} E(X^{2}(y)) dy. \qquad (3)$$

The object of this paper is to exhibit sufficient conditions so that a solution of a resultant Bellman equation yields an optimal admissible control $u_0(t)$, $0 \le t \le T$ which minimizes (3). The sufficient conditions are that the solutions to two homogeneous, constant coefficient partial differential-difference equations have solutions of certain growth, and that the Bellman function satisfy certain matching and boundary conditions.

The method follows Ref. 1. See also Ref. 3.

2. Finite Interval Control

Lemma 1 Let D, $\lambda > 0$, $\alpha > 0$ be constants.

The partial differential-difference equation in V(t,x) given by

$$x^{2} + D \frac{\partial}{\partial x} V(x,t) + \frac{1}{2} \frac{\partial^{2}}{\partial x} V(x,t) - \alpha V(x,t)$$

$$- \frac{\partial}{\partial t} V(x,t) + \lambda (V(x+1,t) - V(x,t)) = 0$$
(4)

has a particular solution expressible as

$$J(D,x,t) \equiv \int_{0}^{t} e^{-\alpha y} E(Dy + N(y) + W(y) + x)^{2} dy =$$

$$\frac{x^{2}}{\alpha} (1 - e^{-\alpha t}) + (\frac{1 - \alpha t e^{-\alpha t} - e^{-\alpha t}}{\alpha^{2}}) (\lambda + 1 + 2Dx + 2\lambda x)$$

$$+ \frac{(D + \lambda)^{2}}{\alpha^{3}} (2 - 2\alpha t e^{-\alpha t} - 2e^{-\alpha t} - \alpha^{2} t^{2} e^{-\alpha t}), \quad (5)$$

where N(y), W(y) are as in section 1.

The differential-difference equation in V(x) given by

$$x^{2} + DV'(x) + \frac{1}{2}V''(x) - \alpha V(x) + \lambda (V(x+1) - V(x)) = 0$$
 (6)

has a particular solution expressible as

$$J(D,x) = \int_{0}^{\infty} e^{-\alpha y} E(Dy + N(y) + W(y) + x)^2 dy =$$

$$\frac{x^{2}}{\alpha} + \frac{\lambda + 1 + 2Dx + 2\lambda x}{2} + \frac{2(D + \lambda)^{2}}{\alpha^{3}}$$
(7)

Proof The proofs are direct computation upon expansion and

evaluation of (5), (7) respectively.

Remark: The solutions represent the respective costs, if the constant control u(t) = D is employed.

Theorem 1. Let X(t) be given, for $0 \le t \le T$, by

$$dX(t) \approx udt + dN(t) + dW(t)$$

x(0) = x with assumptions of section 1,

with cost function, for $0 < T < \omega$ constant,

$$J(u) = \int_0^T e^{-\alpha y} E(X^2(y)) dy.$$

The optimal control $u_0(t)$ which satisfies

$$|u_0(t) - A| \le B$$
 $0 \le t \le T$

is given by

1

$$u_{0}(t) = \begin{cases} A-B & \text{if } X_{0}(t) \geq b(T-t) \\ A+B & \text{if } X_{0}(t) < b(T-t) \end{cases}$$
(8)

where

$$dX_0(t) = u_0 dt + dN(t) + dW(t)$$

and it is assumed that b(t) satisfies transcendental equations (13), (20)-(21), given below.

Proof. The Bellman equation for

$$V(t,x) = \inf_{\substack{|u-A| \leq B}} \int_{0}^{t} e^{-\alpha y} E(X^{2}(y)) dy$$
(9)

with X(0) = x

is seen by heuristics or from Ref. 2 pp. 179-180 to be, where now $\frac{\partial}{\partial x} V \equiv V_x$, $\frac{\partial^2}{\partial x^2} V \equiv V_{xx}$, etc.,

$$x^{2} + \inf_{\substack{|u-A| \leq B}} (uV_{x}(x,t)) + \frac{1}{2}V_{xx}(x,t) - \alpha V(x,t)$$
$$|u-A| \leq B$$
$$- V_{r}(x,t) + \lambda (V(x+1, t) - V(x,t)) = 0.$$
(10)

Intuitive considerations suggest that a function b(t) be sought such that

$$V_{1}(x,t) \text{ satisfies}$$

$$x^{2} + (A-B) V_{x}(x,t) + \frac{1}{2} V_{xx}(x,t) - \alpha V(x,t) - V_{t}(x,t)$$

$$+ \lambda (V(x+1,t) - V(x,t)) = 0 \qquad (11)$$
if $V_{x}(x,t) > 0$ and $x > b(t)$,

and $V_2(x,t)$ satisfies

x²

+ (A+B)
$$V_{x}(x,t) + \frac{1}{2} V_{xx}(x,t) - \alpha V(x,t) - V_{t}(x,t)$$

+ $\lambda (V(x+1,t) - V(x,t)) = 0$ (12)
if $V_{x}(x,t) < 0$, and $x < b(t)$.

The boundary conditions are, for $0 \le t \le T$,

$$V_{1}(x,0) = V_{2}(x,0) = 0 \quad all \quad x,$$

$$\frac{\partial}{\partial x} V_{1}(b(t),t) = \frac{\partial}{\partial x} V_{2}(b(t),t) = 0$$

$$V_{1}(b(t),t) = V_{2}(b(t),t) \quad (13)$$

By Lemma 1, J(A-B,x,t), J(A+B,x,t) are particular solutions of (11), (12) respectively.

<u>Assumption 1</u>. There is a non-zero solution $H_{1}(x,t)$ to (omitting (x,t) arguments)

$$(A-B)H_{x} + \frac{1}{2}H_{xx} - \alpha H - H_{t} + \lambda (H(x+1,t)-H) = 0$$
(14)

such that

$$H_{1}(x,0) = 0$$
 (15)

$$H_{1}(x,t,y) = 0(e^{-\beta x})$$

$$H_{1,yx}(x,t) = 0(e^{-\delta x})$$
 (16)

for some $\beta > 0$, $\delta > 0$, each t, as $x \rightarrow \infty$.

Also, there is a non-zero solution $H_2(x,t,y)$ with

$$H_2(x,0) = 0$$

to

$$(A+B)H_{x} + \frac{1}{2}H_{xx} - \alpha H - H_{t} + \lambda (H(x+1,t)-H) = 0$$
(17)

such that

$$H_2(x,t) = O(e^{Yx})$$
 (18)

$$H_{2,xx}(x,t) = O(e^{\lambda x})$$
 (19)

for some $\gamma > 0$, $\lambda > 0$, each t, as $x \rightarrow -\infty$.

Then one has

$$V_1(x,t) \approx J(A-B,x,t) + H_1(x,t)$$
 (20)

$$V_2(x,t) = J(A + B,x,t) + H_2(x,t)$$
 (21)

and b(t) is determined by (13), (20)-(21).

Lemma 2

$$V_{1,xx}(x,t) > 0, x > b(t)$$
 (22)

$$V_{xx}^{(x,t)} \equiv \begin{cases} V_{2,xx}^{(x,t)} > 0, & x < b(t) \end{cases}$$
 (23)

Proof Let
$$W(x,t) = V_{xx}(\dot{x},t)$$
.

Then from (11), (12),

(A-B)
$$W_{x}(x,t) + \frac{1}{2} W_{xx}(x,t) - (\alpha+\lambda) W(x,t)$$

- $W_{t}(x,t) = -2 - \lambda W(x+1,t)$ (24)
 $x > b(t)$

(A+B)
$$W_{x}(x,t) + \frac{1}{2} W_{xx}(x,t) - (\alpha+\lambda) W(x,t)$$

- $W_{t}(x,t) = -2 - \lambda W(x+1,t)$ (25)

x< b(t)

By construction of $V_1(x,t)$, $V_2(x,t)$ in (14)-(21), $W(x,t) = V_{xx}(x,t) > 0$ for each t, for all x sufficiently large.

Suppose there is an x_0 finite, possibly depending on t, such that $W(x_0,t) < 0$, and $W(x,t) \ge 0$, $x > x_0$.

Then the left sides of (24), (25) are negative for $x > x_0 - 1$. By ref. 4, Lemma 1, p. 34, W(x,t) cannot have a negative minimum for $x > x_0 - 1$. But since if W(x₀,t) < 0, and W(x,t) $\ge 0, x > x_0$, W(x,t) $\ge 0, x \rightarrow -\infty$, then W would have a negative minimum for $x > x_0 - 1$, a contradiction to the existence of x_0 , hence Lemma 2 is proved. To complete the proof it is required to show that $u_0(t)$, $0 \le t \le T$ is optimal, given as a separate lemma.

<u>Lemma 3</u>. $u_0(t)$ of (8) is optimal. <u>Proof</u> Define for an admissible u, where $|u-A| \leq B$,

$$dX(t) = udt + dN(t) + dW(t)$$
$$X(0) = x$$

and let

$$H(X(t),t) \equiv \begin{cases} e^{-\alpha t} V_{1}(X(t),T-t) & \text{if } X(t) > b(T-t) \\ e^{-\alpha t} V_{2}(X(t),T-t) & \text{if } X(t) < b(T-t) \end{cases}$$

$$H(X(t),t) = e^{-\alpha t} V(X(t),T-t) \qquad (26)$$

or

Using Ito's formula, (Ref. 2, p. 126)

Ξ.

$$H(X(T),T) = 0, H(X(0),0) = V(x,T),$$
 (27)

one obtains that, upon integrating from 0 to T,

$$\int_{0}^{T} e^{-\alpha y} (X^{2}(y)) dy - V(x,T) = \int_{0}^{T} e^{-\alpha y} (-\alpha V(X(y),y) - V_{t}(X(y),y) + u(X(y),y) V_{x}(X(y),y) + X^{2}(y) + \frac{1}{2} V_{xx}(X(y),y)) dy + \int_{0}^{T} e^{-\alpha y} (V(X(y),y) dN(y) + \int_{0}^{T} e^{-\alpha y} V_{x}(X(y),y) dN(y).$$
(28)

Upon taking expectations in (28), one obtains

$$\int_{0}^{T} e^{-\alpha y} E(X^{2}(y)) dy - V(x,T) =$$

$$E\int_{0}^{T} e^{-\alpha y} (-\alpha V(X(y),y) - V_{t}(X(y),y) + \inf_{\substack{|u-A| \leq B}} (u(X(y),y)V_{x}(X(y),y)) + X^{2}(y) + \frac{1}{2} V_{xx}(X(y),y) + \chi(V(X(y) + 1, y) - V(X(y),y)) dy$$

$$+ E \int_{0}^{T} [u(X(y),y)V_{x}(X(y),y) - \inf_{|u-A| \leq B} (u(X(y),y)V_{x}(X(y),y))] dy$$
(29)

The first integral on the right side of (29) is zero by (10), and the second integral on the right is non-negative, with equality for $u = u_0$.

Hence

$$\int_{0}^{T} e^{-\alpha y} E(X^{2}(y)) dy \ge V(x,T)$$
(30)

for any admissible u, and

$$\int_{0}^{T} e^{-\alpha y} E(X_{0}^{2}(y)) dy = V(x,T), \qquad (31)$$

for $u = u_0$, so that u_0 is optimal.

Remark: There is no claim that u above is unique.

3. Infinite Interval Control

Theorem 2. Let X(t) be given by

$$dX(t) = udt + dN(t) + dW(t)$$

for all t > 0, and X(0) = x, satisfying the assumptions of section 1 with cost function

$$J(u) = \int_{0}^{\infty} e^{-\alpha y} E(X^{2}(y)) dy.$$
 (32)

The optimal control $u_0(t)$ which satisfies

$$|u_0(t) - A| \le B \text{ all } t > 0 \text{ is}$$

given by

$$u_{1}(t) = \begin{cases} A - B & \text{for } X_{1}(t) > b \\ A + B & \text{for } X_{1}(t) < b \end{cases}$$
 (33)

where

$$dX_{1}(t) = u_{1}dt + dN(t) + dW(t),$$

and it is assumed that b is a constant which satisfies trancendental relations (38)-(42).

Proof The Bellman equation for

$$V(x) = \inf_{\substack{u=A \leq B}} \int_{0}^{\infty} e^{-\alpha y} E(X^{2}(y)) dy \qquad (34)$$

with X(0) = x is (Ref. 2, pp. 179-180)

$$x^{2} + \inf_{\substack{u \in A^{1} \leq B}} (uV'(x)) + \frac{1}{2}V''(x) - \alpha V(x) + \lambda (V(x+1) - V(x)) = 0.$$
(35)

A solution of the following form is sought. $V_1(x)$ satisfies

$$x^{2} + (A-B)V'(x) + \frac{1}{2}V''(x) - \alpha V(x) + \lambda (V(x+1)-V(x)) = 0.$$
 (36)
for V'(x) > 0, x > b

and $V_2(x)$ satisfies

$$x^{2} + (A+B)V'(x) + \frac{1}{2}V''(x) - \alpha^{V}(x) + \lambda(V(x+1)-V(x)) = 0$$
(37)

where

The matching conditions are

$$V_1'(b) = V_2'(b) = 0$$

 $V_1(b) = V_2(b).$ (38)

By Lemma 1, J(A-B,x) is a particular solution to (36) and J(A+B,x) is a particular solution to (37). A solution to the homogeneous parts of (36),(37) is obtained as follows: let

$$f(r) = r^{2} + 2(A-B)r - 2(\alpha + \lambda) + 2\lambda e^{r}$$
 (39)

and

$$k(r) = r^{2} + 2(A+B)r - 2(\alpha + \lambda) + 2\lambda e^{r}$$
 (40)

Since $f(0) = k(0) = -2\alpha < 0$, and $f(-\infty) = +\infty$, $k(\infty) = +\infty$, there exist $r_1 < 0$, $r_2 > 0$ such that $f(r_1) = k(r_2) = 0$.

Hence a solution to (36) is

$$V_1(x) = J(A-B,x) + Ce^{r_1 x}$$
 (41)

for
$$x > b$$

and $V_2(x) = J(A+B,x) + De^{r_2x}$ (42)
for $x < b$,

and it is assumed that constants C,D,b are determined by conditions (38). It is required to show that (41), (42) solve the Bellman equation; that is, that (36),(37) hold.

Lemma 4. The function $V(x) = \begin{cases} V_1(x), x > b \\ V_2(x), x < b \end{cases}$ of (41), (42) satisfying (38) is a solution to the Bellman equation (36)-(37).

<u>Proof</u> Since $V_1'(b) = V_2'(b) = 0$, it suffices to show that $V_1'(x) > 0$ for x > b and $V_2'(x) < 0$ for x < b. For this it suffices to show that V''(x) > 0 all $x \neq b$. Let $w(x) \equiv V''(x)$ and from (36),(37), one obtains that

$$(A-B)w'(x) + \frac{1}{2}w''(x) - (\alpha + \lambda)w(x) = -2 - \lambda w(x+1).$$
(43)
for x > h

and

$$(A+B)w'(x) + \frac{1}{2}w''(x) - (\alpha + \lambda)w(x) = -2 -\lambda w(x+1)$$
for $x < b$.
$$(44)$$

By construction of the solution in (39)-(42),

w(x) > 0 for all x sufficiently large.

Suppose there is an x_0 such that $w(x_0) < 0$ and w(x) > 0, $x > x_0$.

Then the right sides of (43),(44) are negative for $x > x_0$ -1, and hence the left sides of (43),(44) are negative for $x > x_0$ -1. By Ref. 4, p. 53, Theorem 19, w(x) cannot have a negative minimum for $x > x_0$ -1, a contradiction to the existence of x₀ such that w(x₀) < 0. This suffices to prove Lemma 4. To complete the proof of Theorem 2 it remains to show that u₁(t) of (33) is optimal.

<u>Lemma 5</u> $u_1(t)$ is optimal. <u>Proof</u> For a fixed u, $|u-A| \leq B$, let

dX(t) = u(t)dt + dW(t) + dN(t)

$$X(0) = x$$

and define

$$H(X(t),t) \equiv V(X(t))e^{-\alpha t} = \begin{cases} V_1(X(t))e^{-\alpha t}, X(t) > b \\ V_2(X(t))e^{-\alpha t}, X(t) < b. \end{cases}$$
(45)

Noting that H(X(0), 0) = V(x), an application of Ito's formula (Ref. 2, p. 126) yields, upon subsequent integration from 0 to t,

$$\int_{0}^{t} e^{-\alpha y} (X^{2}(y)) dy + e^{-\alpha t} V(X(t)) - V(x) =$$

$$\int_{0}^{t} e^{-\alpha y} (-\alpha V(X(y)) + u(X(y))V'(X(y)) + X^{2}(y) + \frac{1}{2}V''(X(y)) dy$$

$$+ \int_{0}^{t} e^{-\alpha y} (V(X(y)) dN(y) + V'(X(y)) dW(y). \quad (46)$$

Upon taking expectations in (46), one obtains

$$\int_{0}^{t} e^{-\alpha y} E(X^{2}(y)) dy - e^{-\alpha t} EV(X(t)) - V(x) =$$

$$E\int_{0}^{t} e^{-\alpha y} (-\alpha V(X(y) + \inf_{\substack{u \in A^{1} \leq B}} u(X(y)) V'(X(y)) + X^{2}(y) + \frac{1}{2} V''(X(y)) + \lambda (V(X(y)+1) - V(X(y))) dy$$

$$+ \frac{1}{2} V''(X(y)) + \lambda (V(X(y)+1) - V(X(y))) dy$$

$$+ E\int_{0}^{t} e^{-\alpha y} (u(X(y)) V'(X(y)) - \inf_{\substack{u \in A^{1} \leq B}} u(X(y)) V'(X(y)) dy \qquad (47).$$

The first term on the right of (47) is zero by definition of V in (35)-(37). The second term on the right is non-negative.

By construction of V(x) in (39)-(42), for t large,

$$EV(X(t)) \le KE(x + N(t) + |W(t)| + (|A|+B)t)^{2} \le Mt^{2}$$
, (48)

for suitable constants K, M.

Hence, letting $t \rightarrow \infty$ in (47), in view of (48) one obtains that

$$\int_{0}^{\infty} e^{-\alpha y} E(X^{2}(y)) dy \ge V(x)$$
(49)

with equality if $u = u_1$ and $X(t) = X_1(t)$, hence $u_1(t)$ is optimal. This completes Theorem 2.

.

REFERENCES

1.	KARATZAS, I., Optimal Discounted Linear Control of the Wiener				
	Process,	this	Journal, Vol.	. 31, No. 3, pp. 431-440, 1980.	
				A W Controlled Stochastic Processes	

1.+

- GIHMAN, I.I. and SKOROHOD, A.V., <u>Controlled Stochastic Processes</u> (English Translation), Springer-Verlag, New York, New York, 1979.
- 3. BENES, V.E., SHEPP, L.A. and WITSENHAUSEN, H.S., Some Solvable Stochastic Control Problems, Stochastics, No. 4, pp. 39-83, 1980.
- 4. FRIEDMAN, A., <u>Partial Differential Equations of Parabolic Type</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964.

UNCLASSIFIED		
SECURITY CLASSIFICATION OF THIS PAGE (When Data	Entered)	
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
344	AN 4142 4	5°C
TITLE (and Sublitie)		5. TYPE OF REPORT & PERIOD COVERED
Asymmetric Wiener-Poisson Control	L ·	TECHNICAL REPORT
		5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+)		S. CONTRACT OR GRANT NUMBER(-)
Howard Weiner		N00014-76-C-0475
PERFORMING ORGANIZATION NAME AND ADDRESS Department of Statistics Stanford University Stanford, CA 94305		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-042-267
11. CONTROLLING OFFICE NAME AND ADDRESS	······································	12. REPORT DATE
Office of Naval Research		May 24, 1984
Statistics & Probability Program	Code 411SP	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(I dilloren	it from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
18. DISTRIBUTION STATEMENT (of this Report)		I
17. DISTRIBUTION STATEMENT (of the obstract entered	in Block 20, if different fro	an Report)
18. SUPPLEMENTARY NOTES	、	
13. KEY WORDS (Continue on reverse side if necessary an	nd identify by block number)	· · · · · · · · · · · · · · · · · · ·
Stochastic Wiener-Poisson bang-b Bellman equation, Ito rule	ang control, Par	tial difference-differential,
20. ABSTRACT (Continue on reverse side il necessary an	d identify by black mapber)	
A one-dimensional Wiener plus asymmetric constant bounds on the constant bounds on the constant function is considered. The result homogeneous partial differential-dif Bellman function satisfies certain sufficient conditions would allow the bang-bang form.	independent Poiss ontrol and integr ant Bellman equat fference equation matching and boun he optimal contro	son control problem with ral discounted quadratic cost tion is solved when two ns are solvable and when the ndary conditions. These of to be expressed in
DD , JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOI	LETE UNCLA	ASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

