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Asymmetric Wiener-Poisson Control

by Howard Weiner

University of California, Davis and Stanford University

I. Introduction

Let W(t), t > 0, W(O) - 0 be a standard Wiener process, independent

of N(t), t > 0, N(O) - Oa Poisson process with constant unit Jumps, and

EN(t) - Xt, ) > 0. Let their sigma fields be F(t) - a(W(s), 0 < s < t) and

G(t) a(N(s), 0 < s < t). Let a stochastic process X(t) be defined in

terms of u(t) s u(t, X(t)), a non-anticipating control, and W(t), N(t), for

0 < t < T, T > 0 a constant, by the equation

dX(t) = u(t)dt + dW(t) + dN(t) (1)

x(O) - x, constant,

where u(t) is measurable with respect to c(F(t) U G(t)),

(i.e. u is non-anticipative), and

satisfies for constants A, B > 0,

1u-A B all 0 < t <T. (2)

The cost function for a given u satisfying (2), is, for e > 0.

J(u) BT e" y E ( 2 (y))dy. (3)
0

The object of this paper is toexhibit sufficient conditions so that a

solution of a resultant Bellman equation yields an optimal admissible control

U0(t), 0 < t < T which minimizes (3). The sufficient conditions are that

the solutions to two homogeneous, constant coefficient partial differential-

difference equations have solutions of certain growth, and that the Bellman

function satisfy certain matching and boundary conditions.



The metbod follows Ref. 1. See also Ref. 3.

2. Finite Interval Control

Lemma 1 Let D, X > 0, a > 0 be constants.

The partial differential-difference equation in V(t,x) given by

X + D V(x,t) + V(Xt) - V(xat)
ax 2 " x 2

V(x,t) + X(V(x+l,t) - V(x,t)) = 0 (4)"a t

has a particular solution expressible as

J(D,xt) n e-"rYE(Dy + N(y) + W(y) + x) dy =
CO

-at -at
- (1e at) + -ate -e _ + 1 + Dx + 2x)

a 2

3 (2 - 2ate "at - 2 e "at a e2 t )2 (5)

a

where N(y), W(y) are as in section I.

The differential-difference equation in V(x) given by

DV'x) 1

DV'(x) + - V"(x) - aV(X) + X(V(x+l) - V(x)) -0 (6)

has a particular solution expressible as

J(D0x) a eaYE(Dy + N(y) + W(y) + x) 2dy
0

X2 +l+2D1+2Lx 2(D + %)2
+ -_3 . (7)

Proof The proofs are direct computation upon expansion and

evaluation of (5), (7) respectively.

Remark: The solutions represent the respective costs, if the constant control

u(t) i D is employed.

Theorem 1. Let X(t) be given, for 0 < t < T, by

dX(t) - udt + as(t) + dW(t)

x(O) a x with assumptions of section 1,

.4., '



with cost function, for 0 <1<. constant,
T2

J(u) -j e'OYE(X 2(y))dy.
0

The optimal control uo(t) which satisfies

luo(t) - Al < B 0< t < T

is given by

A-B if X 0(t) > b(T-t)
uo0(t) fi(8)

A+B if X (t) < b(T-t)

where

dX0 (t) uodt + dN(t) + dW(t)

and it is assumed that b(t) satisfies transcendental equations (13, (20)-(21),

jiven below.

Proof. The Bellman equation for

V(t,x) U inf j e'CYE(X2(y))dy (9)
Iu-Al 0 B 0

with X(0) x

is seen by heuristics or from Ref. 2 pp. 179-180 to be, where now
2-vaLv~ V, = etc.,.

c 2

2 1

x + inf (uV (x,t))+ V (x,t) - (xt)
lu-Al <B 

x

- V t(x,t) + x(v(x+l, t) - V(xt)) - 0. (10)

Intuitive considerations suggest that a function b(t) be sought such

that
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V (X,t) satisfies

x + (A- B) V (Xt) + V (xt) - aV(x,t) - v(Xt)
x2xx t

+ %(V(x+l,t) - V(x,t)) - 0 (11)

if Vx(x,t) > 0 and x > b(t),

and V2(xt) satisfies

2 1

x 2+ (A+B) v (x,t) + j V(x,t) - aV(x,t)- vt(,t)

+ ),(V(x+1,t) - V(x,t)) -o (12)

if V x (x,t) < 0, and x < b(t).

The boundary conditions are, for 0 < t < T,

V (x,O) - V2(x,O) = 0 all x,

aV (b(t),t) -, a V2(b(t).t) - 0
ax 1 x2

V1(b(t),t ) - V2(b(t),t) (13)

By Lema 1, J(A-B,x,t), J(A+B,x,t) are particular solutions of (11),

(12) respectively.

Assumption 1. There is a non-zero solution R1 (x,t) to (omitting

(x,t) arguments)

(A-B)H + 1 -H -H + )(H(X+l,t)-H) 0 (14)

such that

H1 (x,O) - 0 (15)

H1 (x,t,y) - O(e- x)

H ,xx(x,t) - O(e 6 x ) (16)



for some > O, > 0, each t, as x-be.

Also, there is a non-zero solution 
H2 (X,t,y) with

H2 (x,O) 0

to
(+) + 1 1  (H(2x+,t)-) 0 (17)

such that
112(X'C) - O(eyx) 

(18)

H (c,t) 
(19)

H2,xx ( x t ) = o(e) 
(19)

for some y > O, X > 0, each t, 
as x-, -.

Then one has

v1(X't) - J(A-Bx,t) + I11(x,t) 
(20)

V2 (x,t) - J(A + B,x,t) + H 2 (x,t) 
(21)

and b(t) is determined by 
(13), (20)-(21).

Lemma2

\ Vlxx (%,t) > 0, x> b(t) 
(22)

Vxx(xt) a

v2,xx (x,t) > 0, x < b(t) (23)



Proof Let W(x,t) = V xx( i,t).

Then from (11), (12),

(A-B) W (x,t) + -1 W (x,t) - (or+>. W(xt)

- Wt (x,t) = -2 - %W(x+l,t) (24)

x > b(t)

(A+B) W (Xt) + 1 (xt) - (o+X) W(x,t)

- wt(x,t) - -2 - XW(x+l,t) (25)

x< b(t)

By construction of V (x,t), V2 (x,t) in (14)-(21), W(x't) = V (X,t) > 0
1 2 xx

for each t, for all x sufficiently large.

Suppose there is an x0 finite, possibly depending on t, such that

W(X0 ,t) < 0, and W(x,t) > 0, x > x O.

Then the left sides of (24), (25) are negative for x > x0 -1. By ref.

4, Lw.. I., p. 34, W(x,t) cannot have a negative minimum for x > x 0 - I. But

si ,ze if W(xot) < 0, and W(x,t) > 0, x > x0, W(x,t) a 0, x -. - , then W

would have a negative minimum for x > x0 - 1, a contradiction to the

existence of .s, hence Lemma 2 is proved.
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To complete the proof it is required to show that u0 (t), 0 < t < T is

optimal, given as a separate lemma.

Lemma 3. u (t) of (8) is optimal.

Proof Define for an admissible u, where lu-Ai < B,

dX(t) udt + dN(t) + dW(t)

X(O) = x

and let

I e-rt VIX(t),T-t) if X(t) > b(T-t)

1I(X(t).t) aI

e-t V2 (X(t),T-t) if X(t) < b(T-t)

or H(X(t),t) = eatV(X(t),T-t) (26)

Using Ito's formula, (Ref. 2, p. 126)

H(X(T),T) = 0, H(X(0),O) V(x,T), (27)

one obtains that, upon integrating from 0 to T,

Te-y(X2(y))dy - V(x,T) T e -01Y(-c'V(X(y),y) - Vt(X(y),y)

0 0
u(X(y),y) V (X(y),y) + X 2 (y) + -1 V (X(y ) , y ) ) d y

x 2x

+e'_01Y (V (X (Y), )d N (y)
IMY

+.r e-YV x (X (y),y)dW(y). (28)
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Upon taking expectations 
in (28), one obtains

fe-YE(x 
2 (y))dy - V(X,T)

-0

Ef e'atY(-.V(Y(Y
) , y ) " Vt(X(Y) 

' y ) +  inf (u(X(y),Y)v X(X(y).Y))

*. I u-AI<B

2 10

+ K(V(X(y) + 1. y) - V(X(y),y))dy

4 TEuxy)Y)v((y),y) 
inf (u(X(y),y)V x (X(Y),y))dy 

(29)

0 lu-A!<B

The first integral on the 
right side of (29) is zero by (10), and

the second integral on 
the right is non-negative, 

with equality for u - uO -

Hence

r e E(X 2(y))dy >V(xt) 
(30)

*0

for any admissible 
u, and

e-Y(Xo2(Y))dy =V(x,T), 
(1

0 
0

for u - u0 , so that u0 is optimal.

Remark: There is no claim that u. 
above is unique.

3. Infinite Interval Control

Theorem 2. Let X(t) be given by

dX(t) w udt + dN(t) + dW(t)

for all t > 0, and X(O) = x, satisfying 
the assumptions of section I

with cost function

8



J (u) = e ' a yE (X 2 (y))dy. (32)

*0

The optimal control uo(t) which satisfies

!uo(t) - A! <B ali t> 0 is

given by

A - B for X (t) > b

A + B for X (t).< b (33)

where

dX I(t) = I dt + dN(t) + dW(t),

and it is assumed that b is a constant which satisfies trancendental relations

(38)- (42).

Proof The Bellman equation for

V(x) m inf fe'CYE (X2 (y))dy (34)
lu-A<B 0o

with X(O) - x is (Ref. 2, pp. 179-180)

2.1

x 2 inf (uV'(x)) +j V"(x) - aV(x) + I(V(x+l)-V(x)) -0. (35)

u-AI<B

A solution of the following form is sought. V1 (x) satisfies

2 1
x + (A-B)V'(x) +- V"(x) - cV(x) + X(V(x+l)-V(x)) - 0. (36)

for V'(x) > 0, x> b

and V2 (x) satisfies

x + (A+B)V'(x) + - V"(x) - OV(x) + ).(V(x+1)-V(x)) = 0 (37)

9



where

V'(x) < o, x < b.

The matching conditions are

V 1 '(b) V 2 '(b) = 0

V (b) = V2 (b). (38)

By Lemma 1, J(A-B,x) is a particular solution to (36) and J(A+B,x)

is a particular solution to (37). A solution to the homogeneous parts

of (36),(37) is obtained as follows: let

f(r) = r2 + 2(A-B)r - 2(t + -k) + 2Xer (39)

and
r 2  r

k(r) = r + 2(A+B)r - 2(x + X) + 2Xe (40)

Since f(0) k(0) = -2 < O, and f(-=) = += , k(-) +,

there exist r1 < 0, r2 > 0 such that f(r!) = k(r2) 0.

Hence a solution to C36) is

V1(x) = J(A-B,x) + Cer lx (41)

for x > b

and V 2(x) = J(A+B,x) + Der2x 
(42)

for x < b,

and it is assumed that constants C,D,b are determined by conditions (38). It is

required to show that (41), (42) solve the Bellman equation, that is,

that (36),(37) hold.
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=[vlx .> b

Lemma 4. The function V(x) i 2(x), x < b of (41), (42) satisfying

(38) is a solution to the Bellman equation (36)-(37).

Proof Since V1 '(b) - V2 '(b) = 0, it suffices to show that

Vl (x) > 0 for x > b and V2 '(x) < 0 for x < b. For this it suffices to

show that V"(x) > 0 all x f b. Let w(x) s V"(x) and from (36),(37), one

obtains that

(A-B)w'(x) + -w".(x) - (= + X)w(x) = -2 - Xw(x+l). (43)

and for x > b

I W

(A+B)w'(x) + - w"(x) -(c + X)w(x) = -2 -Xw(x+l) (44)

for x < b.

By construction of the solution in (39)-(42),

w(x) > 0 for all x sufficiently large.

Suppose there is an x0 such that w(x0) < 0 and w(x) > 0, x > xO.

Then the right sides of (43),(44) are negative for x > x -1, and hence the

left sides of (43),(44) are negative for x > x0-1. By Ref. 4, p. 53, Theorem

19, w(x) cannot have a negative minimum for x > x 0-1, a contradiction to

the existence of x 0 such that w(x0) < 0. This suffices to prove Lemma 4.

To complete the proof of Theorem 2 it remains to show that uI(t) of (33) is

optimal.

Lemma 5 u1(t) is optimal.

Proof For a fixed u, lu-A! < B, let

dX(t) = u(t)dt + dW(t) + dN(t)

X(o) = x

11



and define

t
H(I)t V(XXtt)e> b

tv 2(X()): ,r X(t) < b. (45)

Noting .that Hi(X(O),O) =V(x), an application of Ito's formula (Ref. 2, p. 126)

yields, upon subsequent integration from 0 to t,

e ,( (y))dy + e ~V(X(t))-V(x)

0

+ fte'CyVX(Y)dN(y1 + jf e-CfV' (X(y))dW(y). (46)
.0 0

Upon taking expectations in (46), onie obtai.ns

r e OYE (X 2 (y))dy -et EV(X~t))-V(x)
"0

Ef e-a(-,YV(X(y) + inf u(X(y))V'(X(y)) + X 2(y)
'0 Iu-Ak<B

+ -~V"(X(y)) + XC(V(X(y)+l) - V(X(y)))dy

+Erte-or(u(X(y))V(X(y)) - inf u(X(y))V'(X(y))dy (47).
0 !u-A!<

The first term on the t.ght of (47) is zero by definition of V in

(35)-(37). The second term on the right is non-negative.

By construction of V(x) in (39)-(42), for t large,

2 2
EV(X(t)) <S KE(x + N(t) + !(t)! + (IAI+B)t) < Mt , (48)

for suitable constants K, M.



Hence, letting t - a in (47), in view of 
(48) one obtains that

re-CYE(X
2 (y))dy 2 V(x) 

(49)

0
vith equality if u and X(t) X1(t), hence u1 (t) is optimal.

This completes Theorem 
2.
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