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Asymmetric Wiener-Poisson Control
by Howard Weiner

University of California, Davis and Stanford University

1. Imtroduction

Let W(t), t > 0, W(0) = 0 be a standard Wiener process, independent
of N(t), t > 0, N(0) = Q a Poisson process with constant unit jumps, and
EN(t) = \t, A > 0. Let their sigma fields be F(t) = ¢(W(s), 0 < s < t) and
G(t) = g(N(s), 0 < s g t). Let a stochastic process X(t) be defined in -

terms of u(t) = u(t, X(t)), a non-anticipating cor_zt:rol, and W(t), N(t), for

0<t<T, T>O0 a constant, by the equation

dX(e) = u(t)de + dW(r) + dN(t) (1)

x(0) = x, constant,
where ' u(t) is measurable with respect to gF(t) U G(t)),
(i.e. u is non-anticipative), and

satisfies for constants &, B> 0,

Ju-Al < 8 all 0 <t < T, (2)

The cost function for a given u satisfying (2), is, for ¢ > O.

T
I(u) = Io e ex?(y))ay. : (3)

The object of this paper is toexhibit sufficient conditions so that a
solution of 3 resultant Bellman equation yields an optimal admissible control
up(t), 0 < t < T which minimizes (3). The sufficient conditions are that
the solutions to two homogeneous, constant coefficient partial differential-
difference equations have solutions of certain growth, and that the Bellman

function satisfy certain matching and boundary conditions.




The metbod follows Ref. 1. See also Ref. 3.

2. Finite Interval Control

lemma 1 Let D, A\ > 0, ¢ > 0 be constants.

The partial differential-difference equation in V(t,x) given by

2

2
x  +D 2 V(x,t) + 1 -a-- V(x,t) - oV(x,t)
2x 2 2
ax
« R VG,E) FAEEHLE) - V) = 0 )
has a particular solution expressible as
¢ 2
J(D,x,t) = f e PYE(Dy + N(y) + W(y) + x)“dy =
*0
2 -at -t
X (1-e%% & (1°°":°2' & ) A+ 1+ 20x + AAx)
o a
2 .-
(D _+ ) ~at ~at 2.2 ot
+—'T)- (2 - te™ - 22 -g'te™), (5)
a .
where N(y), W(y) are as in section 1.
The differential-difference equation in V(x) given by
2 ' ) Q-
x° + DV'(x) + 2 VI (x) - gV(x) + 2 (V(x+l) - V(x)) =0 (6)
has a particular solution expressible as
-ay 2
J(D,x) = r e ZJE(Dy + N(y) + W(y) +x) dy =
0
x? , \tleDeiax 20 + )2
+ 3 . 7)

¢ az o
Proof The proofs are direct computation upon expansion and

evaluation of (5), (7) respectively.

Remark: The solutionsrepresent the respective costs, if the constant control

u(t) = D is employed.
Theorem 1. Let X(t) be given, for 0<t<T,by

dX(c) = udt + dN(t) + dW(t)

x(0) = x with assumptions of section 1,




with c:osr. function, for 0 <T<eo constant,
T 2
s = [ ey
0

The optimal control ug(t) which satisfies

fug(e) - A < B 0<e<T
is given by
A-B 1f Xy(t) 2 b(T-r)
u () = (8)
A+B if xo(c) < b(T-t)
where
dxo(c) = uodt + dN(t) + dW(t)
and it is assumed that b(t) satisfies transcendeantal equations (13), (20)-(21),

given below.

Proof. The Bellman equation for
¢ 2
V(t,x) m int [ eec?iney )
ju-Al < B “0

with X(0) = x
is seen by heuristics or from Ref. 2 pp. 179-180 to be, where now

2
-aa;Van,-a-iVal vxx’ etc., .

ax
x2 + inf (uVv (x,t))+-§ V. (x,t) - aV(x,t)
Jue-al < B ¥ o
- Vc(x,t) + A (V(x+l, t) -~ V(x,t)) = 0. (10)

Intuitive considerations suggest that a function b(t) be sought such

that




Vl(x,c) satisfies

x% + (A-B) v, (x,t) +<% v (6,8) - aV(x,t) - V (x,€)
+ A (V(x+1l,t) - V(x,t)) =0 (11)

if Vx(x,c) > 0 and x > b(t),

and V2(x,t) satisfies
x2 + (A+B) (x,t) + i V (x,t) - gV(x,t) - V_(x,t)
Vx ’ 2 "xx X, @vix,t) - t X,

+ A (V(x+l,t) - V(x,£)) =0 (12)

if Vx(x,t) < 0, and x < b(t).
The boundary conditions are, for 0 < t < T,
V,(x,0) = V,(x,0) = 0 all x,

2 2 -
2V 0(),0) = 2 v (0,0 = 0

Vl(b(t),t) = Vz(b(t).t) (13)
By Lemma 1, J(A-B,x,t), J(A+B,x,t) are particular solutions of (l1),
(12) respectively.

Assumption 1. There is a non-zero solution Hl(x,t) to {(omitting

(x,t) #rguments)

1 .
(A-B)Hx +'Enxx -oH 'H: + A (E(x+l,t)-H) = O (14)
such that
Hl(x,O) = 0 (15)

Hl(x,: y) = o(e_Bx)

Hy o (xit) = o(e 8% (16)




for some B> 0, 8 > 0, each £, as X d -

Also, there is 3 non-zero solution Bz(x,t,y) with

Hz(x,O) =0
to
1
(A+B)Ex + Zﬂxx -oH —Hf_ + 1(H(x+1,t)-ﬂ) = Q0
such that
By (x,6) = 0(e'™)
= 0(er*
Hy o (8) = (€D

for some ¥y > 0, A > 0, each t, as X = -».

Tpen one has
Vl(x,t) = J(A-B,x,t) + Hl(x,t)

Vz(x,c) = JA + B,x,t) + Hz(x,c)

and b(t) is determined by (13), (20)-(21).

Lemma 2

Vl xx(x,t:) > 0, x> b(t)
Vxx(x,t) -
Vz u(x,t) > 0, x<b{D)

an

(18)

(19)

(20)

(21)

(22)

(23)




“
i

Proof Let W(x,t) = Vxx('i,t).
Then from (11), (12),
(A-B) W_(x,t) + 3 W_(x,8) - @h) W(x,b)
- Wolx,t) = -2 - \W(x+l,t) (24)

x > b(t)

(A+B) W_(x,8) + 3 W_(x,t) = (@) W(x,t)
S W (x,8) = =2 - AW(x+L, ) (25)

x< b(t)
By construction of Vl(x,t), Vz(x,t) in (14)-(21), W(x,t) = Vxx(x,t) >0
for each t, for all x sufficiently large.
Suppose there is an X, finite, possibly depending on t, such that
W(xo,t) < 0, and W(x,t) > 0, x> Xq*

Then the left sides of (24), (25) are negative for x > X3 -1. By ref.
4, Lamne 1, p. 34, W(x,t) cannot have a negative minimum for x > Xy - 1. But
siuce L€ W(xo,t) < 0, and W(x,t) > 0, x> Xg» W(x,t) >0, x 9 -6, then W

would have a negative minimum for x > Xp - 1, a contradiction to the

existence of “q° hence Lemma 2 is proved.




To complete the proof it is requirad to show that uo(t), 0<t<Tis

optimal, given as a separate lemma.

Lemma 3. uo(t) of (8) is optimal.

Proof Define for an admissible u, where {u-&{ < B,

dX(t) = udt + dN(t) + dW(t)

X(0) = x
and let
e'“tvl(X(:),"r-r.) Lf X(t) > b(T-t)
H(X(t),t) =
e-atvz(X(t),T-c) if X(t) < b(T-t)
or H(X(t),t) = e @ V(x(t),T-t) ) (26)

Using Ito's formula, (Ref. 2, p. 126)

HX(T),T) = 0, H(X(0),0) = V(x,T), 27)

one aobtains that, upon integrating froam 0 teo T,
T oy 2 T oy
[ &y - veen - [ e cavaxe .y - v @,y
0 .
@),y YR,y + XA + 1 VK@) )y

T
+~|'oe'°"’ ex()y)dNG)

T
+f ey X(y).y)eu(y). (28)
‘0




Upon taking expectations in (28), one obtains'

I 2
[ e (dy - VT =
“0

T
£ & (-aV&(y).y) - Y, &),y) + daf (K () IV, K> 7))
v.0 |u-AlgB

+ X2 + 3 U KG9 ¥

+ AVEE) + 1, Y) - V&)Y

tnf  (u(X(y), MV, XD »y))1dy (29)

T
sz (@) DTED ) -
0 |u-Al<B

The first integral on the right side of (29) is zero by (10), and

the second integral on the right is non-negative, with equality for u = ug.

Hence
T - 2
I e ™eal )y 2 VD (0
. 0 .
faor any admissible u, and
(31)

T ., 2
I e yE(xo(y))dy = V(x,T),
0

for u = u,, so that u, is optimal.

There is no claim that Yy above is unique.

»

Remark:

3. Infinite Interval Control

Theorem 2. Let X(t) be given by

dX(t) = udt + dN(t) + dW(t)
£
or all t > 0, and X(0) = x, satisfying the assumptions of section 1

with cost function




s = [ e e yay. (32
h )

The optimal control uo(t) which satisfies

lug(t) - Al < B all £> 0 is
given by

A-B for xl(:) >b
ul(t) =
A+ B for XI(C).< b (33)

where
dxl(:) = uld: + 4dN(t) + dW(t),
and it is assumed that b 1is a constant vwhich satisfies trancendental relations

(38)-(42y. -

Proof The Bellman equation for

V(x) = inf re‘“ys(xz(y))dy (34)
tu-Al<B “0
with X(0) = x is (Ref. 2, pp. 179-180)

x2'+ inf  (uv'(x)) + % V(x) - aV(x) + A (V(x+1)-V(x)) = 0. (35)
lu-Al<B

A solution of the following form is sought. Vl(x) satisfies

x2 4 (AB)V' (1) + 3 V'(x) - aV(x) + A(V(=+1)-V(x)) = O. (36)

for V'(x) >0, x>D

and Vz(x) satisfies

x4 AV () + 3 V0 - aY(X) + A(V(x+D V(X)) = O 1)




where

V'(x) < 0, x < b,

The matching conditions are
' = ' =

_vl (b) V2 (b) 0

Vl(b) = Vz(b).

By Lemma 1, J(A-B,x) is a particular solution to (36) and J(A+B,x)

is a particular solution to (37). A solution to the homogeneous parts

of (36),(37) is obtained as follows: let

r2 + 2(A-B)r - 2(y + \) + De”

f(r)

and

e2 4 2(A+B)T - 2(q + ) + Zhe .

k(r)

Since £(0) = k(0) = -2¢ < 0, and f(-») = +=, k(®) = +=,

there exist T, < 0, r2 > 0 such that f(r1) = k(r,) = 0.

2
Hence a solution to (36) is
v, (x) = J(A-B,x) + ce’1*

for x> b

and Vz(x) = J(A+B,x) + Derzx
for x < b,

and it is assumed that constants C,D,b are determined by conditions (38).

required to show that (41), (42) solve the Bellman equation; that is,

that (36),(37) hold.

10

(38)

(39

(40)

(41)

(42)

It is



Vl(x), x>b
Lemma 4. The function V(x) = V.(x), x < b of (41), (42) satisfying
2 ]

(38) is a solution to the Bellman equation (36)-(37).

Proof Since Vl'(b) = Vz’(b) = 0, it suffices to show that
Vl'(x) > 0 for x> b and Vz'(x) < 0 for x < b. For this it suffices to
show that V"(x) > 0 all x # b. Let w(x) = V"(x) and from (36),(37), one

obtains that

(A~B)w'(x)'+-% whi(x) - (o + 2)w(x) = -2 - Aw(xFl). (43)

and for x> b
(A+B)w' (x) +-% w'(x) -(g + MWw(R) = -2 Aw(x+l) (44)

for x < b.

By construction of the solution in (39)-(42),
w(x) > 0 for all x sufficiently large.

Suppose there is an x, such that w(xo) < 0and wix) >0, x> x

0 0

Then the right sides of (43),(44) are negative for x > xO-l, and hence the
left sides of (43),(44) are negative for x > xo-l. By Ref. 4, p. 53, Theorem
19, w(x) cannot have a negative minimum for x > xo-l, a contradiction to
the existence of x 0 such that w(xo) < 0. This suffices to prove Lemma 4.
To complete the proof of Theorem 2 it remains to show that ul(t) of (33) is

optimal.

Lemma 5 ul(t) is optimal.

Proof For a fixed u, |u-A| < B, let

dX(t) = u(t)dt + dW(t) + dN(t)

X(0) = x

11




and define

VI(X(t))e'“‘, X(t) > b
H(X(E),t) = V(X(e))e ¥ =

VZ(X(t))e'at, X(t) < b. (45)
Noting.that H(X(0),0) = V(x), an application of Ito's formula (Ref. 2, p. 126)

yields, upon subsequent integration from O to t,
t

[ atimay + e Sy -vix =
0

f‘t -
[ e (VX)) + u@ENV () + Xo(y) +F Ry
0

t t
# [ e dNg) +[ PV e, 46)

Upon taking expectations in (46), one obtains

t
[Te®Ex?(y)dy - e EVE(E))-V(x) =
0

t
EI e-ay(-qV(X(y) + inf uX(Y))V' E(y)) + Xz(y)
0 Tu-Al<B

+% V(X (y)) + A (VX (p)+1) - V(X(y)))dy
t -
+El eV (V' (X)) -~ inf u@ M)V (X(y))dy (47) .
‘o Ju-al<B

The first term on the rdght of (47) is zero bv definition of V in
(33)-(37). The second term on the right is non-ragative.

By construction of V(x) in (39)-(42), for ¢ large,

EV(X(t)) < KE(x + N(t) + W ()| + ('M-&-B»)c)2 < Mtz, (48)

for suitable constants K, M.

12




in view of (48) one obtains that

Hence, letting t * = in (47),

j';e"”"s(xz(y))dy > V(x) (69)

with equality if u=u, and X(t) = Xl(t), hence ui(t) is optimal.

This completes Theorem 2.

13
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