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Abstract— The paper describes integrity analysis of the signal 

propagating on asymmetrical tree with coupling from 

neighboring lines. Theoretical principle illustrating the modelling 

methodology and the developed routine algorithm is 

mathematically established. The developed model was applied to 

2:1 asymmetrical microstrip tree with neighboring single lines at 

10-to-100µm distance. Frequency- and time-domain analyses 

were conducted to check the coupling influence onto the signal 

distribution tree due to the substrate dielectric dispersion using 

broadband model. Examples of applications from DC to 10GHz 

were investigated to evaluate the influence of the coupling on the 

asymmetrical tree responses. It was shown that ringing effects 

and distorted signals were occurring from the two tree branch 

outputs. Furthermore, time-domain analyses were performed 

with 8-bits high speed input signal data with 0.5 Gbps rate. It was 

found that the signal quality was degraded and the amplitude of 

the shared signals was slightly affected by the coupling. 

Index Terms— Behavioral model, asymmetrical tree, signal 

integrity, interconnect network, SIMO/SISO-transform. 

I.  INTRODUCTION 

Signal and power integrity (SPI) and electromagnetic 
compatibility (EMC) phenomena become crucial when 
operating frequency, processing speed and integration density 
of digital electronic systems (DRAM, MPU, DIMM packages, 
etc. …) are increased [1-3]. Design and fabrication engineers 
have to respect required compliances notably in the 
interconnection networks such as memory buses (DDR4, 
GDDR5, XDR, IO2, HBM), front side bus (quick path 
interconnect, hypertransport), cable (USB, HADMI, FireWire 
Cat X), Ethernet (XAUI, XFI, CEI-6GLR, SONNET), etc. [3]. 
Fig. 1 illustrates an example of complex signal distribution 
interconnect tree [4]. Such a structure in the modern high speed 
memory system is challenging on the SPI and EMC constraints 
effects on interconnect lines (ILs) due to channel attenuation, 
crosstalk, reflection, delay and distortion [5-6]. So, prediction 
methods were developed based on various IL based 
approaches, such as RC- and RLC- models [7-8].  

More generally, different models of interconnect tree 
topologies were developed [9-12]. But those models are not 
valid for structures presenting asymmetrical behavior, such as 
comb-tree depicted in Fig. 2. However, analytical model 
including the unbalanced interconnect tree was recently 
proposed in [13]. Firstly, the model assumed that the IL can be 

described by an RLCG equivalent circuit with frequency 
varying per unit length parameters (Ru(f), Lu(f), Cu(f) and Gu(f)) 
by denoting f the frequency variable. Secondly, the circuit 
equivalent approach was used with the single input multiple 
output (SIMO) structure transformed into single input single 
output system (SISO) [13]. 

 

 

Figure 1.  Electronic boards with complex interconnect tree network [4]. 

The analytical operations were handled with ABCD-to-Z 
matrix transform (to generate the IL impedance matrix), Z-to-Y 
matrix transform (to extract the equivalent parallel lines), and 
Y-to-ABCD matrix transform (to find the equivalent transfer 
parameters) [14-15]. The output responses across different 
paths from the single input Nin to any output Nm (m={1,…,8}) 
were mathematically formulated via the voltage transfer 
functions: 

  Hm=Vm /Vin.   (1) 

 

 

Figure 2.  Example of 8:1 comb or asymmetrical interconnect tree. 
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That modeling method was applied to perfectly isolated 
asymmetrical tree structure. However, for systems using high 
density PCBs, the interconnections can be significantly 
localized and can create unintentional EM coupling or crosstalk 
effects [16-17].  This paper addresses that case, with modelling 
methodology enabling to predict crosstalk on asymmetrical 
tree. The model developed herein is the synergy of the tree 
topology presented in [13] and the coupling model in [18]. 

II. METHODOLOGY WITH CIRCUIT TRANSFORM 

Throughout this paper, we will focus on asymmetrical 2:1 
tree topology, similar to that proposed in [13], with single input 
and two-outputs. Then, a neighboring line is placed in the 
proximity of the tree network branches in order to investigate 
the coupling effect.  

We shall assume that the transmission lines (TL) 
constituting the tree are characterized by their characteristic 
impedance Zc, physical length d, phase constant γ, and 
electrical length : 

d⋅= γθ .  (2)  

A. Topology of Asymmetrical 2:1 Tree Interconnect 

Understudy 

The building blocks of the theoretical presented SI process 
are fundamentally constituted by the implementation of the 
equivalent circuit theory. Fig. 3(a) represents the circuit 
configuration of the 2:1 asymmetrical tree. The single input 
with internal impedance Zs is excited by vin. The asymmetrical 
tree outputs are loaded by impedances ZL1 and ZL2, and the 
branches are essentially comprised of pieces of input lines TL0 
(connected between nodes Nin and N0) and output lines TL1 
(between N0 and output node N1) in parallel with output lines 
TL21 cascaded with TL22 (between N0 and N2).  

Zs
TL0

TL1

Nin

N
0

N1 N
2

V in TL22

ZL1 ZL2

TL21

V 1 V 2

Zs
TL0

TL1

Nin

N0

N1 N2

V in TL22

ZL1 ZL2

ZL3 ZL4

TL21' TL21" TL21'"

TLc

V 1 V 2

(a)

(b)

dc

 

Figure 3.  (a) 2:1 comb tree topology and (b) comb tree topology including 

coupling line TLc. 

We will compare this isolated circuit tree with the tree shown 
in Fig. 3(b) containing neighboring line TLc placed in 
proximity of TL21.  We propose to replace TL21 by cascaded 
pieces of lines TL21’, TL21’’ and TL21’’’, with the length of 
TL21’’ the same as TLc here denoted as dc. As described in 
[18], the overall coupled line impedance and admittance 
matrices are denoted: 

[ ] [ ] [ ])()()( ωωωω LjRZ += ,  (3) 

and  

[ ] [ ] [ ])()()( ωωωω CjGY += ,   (4) 

respectively (j is the complex number 1−  and ω is the radian 

frequency). The even- and odd- mode impedances and 
electrical angles of coupled branches TL21”-TLc are denoted 

( )(ωeZ , )(ωoZ ) and ( cee d⋅= )()( ωγωθ , coo d⋅= )()( ωγωθ ). 

The ABCD matrix [TN2N0] of equivalent to N0N2 is determined 
by the relation: 

[ ] [ ] [ ] [ ] [ ])()'''()''()'( 2221212102
TLTTLTTLTTLTT NN ⋅⋅⋅= , (5) 

where the elementary line ABCD matrices are written as: 

[ ]
( ) ( )

( ) ( )
22,21
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)(

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
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Z

Z
TLT
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, (6) 

The ABCD matrix of the coupled lines (TL21”-TLc≡TL21c) is 
analytically defined as: 

[ ] [ ] [ ] [ ][ ] { }2,1,

1
21 )''( =

−
⋅⋅⋅⋅=

lkxc YZeigTYZeigTLT , (7) 

where the four elements of the matrix [ ]xT  are: 
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θ

θ

θ

θ

θ

θ

. (8) 

Next, we shall apply SIMO/SISO transform for the transfer 
function extraction along electrical paths NinNm (m={1,2}). 

B. Asymmetrical Input-Output Path Equivalent SISO Circuit 

Thanks to the TL and circuit theory, we establish the 
electrical circuit corresponding to path link from input Nin and 
each tree outputs N1,2. After classical electrical transforms, we 
generate the SISO equivalent circuits of 2:1 tree shown in Figs. 
4 and Figs. 5 for the electrical paths NinN1 and NinN2, 
respectively.  

We can see that the reduced circuits have parallel 
impedances Zin,m (m=1,2) expressed with the classical relation 
between impedance- and ABCD-matrices. After inclusion of 
the parallel impedances with the coupling effects, the 
asymmetrical tree transfer functions as defined in (1) are 
mathematically established for m={1,2}:  
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[ ] )1,1()(

1

inm
m

NTLNT
H = .  (9) 
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V 1
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TL1
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N
0
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V 1

(a)
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Figure 4.  Equivalent SISO circuits for extracting the output V1. 
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Figure 5.  Equivalent SISO circuits for extracting the output V2. 

By combining all the previous analytical elements of each 

piece of line defined before, we have the associated ABCD 

matrix for each output branch written as: 

[ ] [ ]

[ ] ⎥
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TLT
Z

TLT
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in

. (11)  

To check the validity of this behavioral model, examples of 
applications were considered and analyzed using numerical 
calculations with Matlab. 

III. APPLICATIONS 

A microstrip interconnect tree was considered as the 
numerical proof of concept of the model developed in the 
previous section. The frequency- and time-domain analyses 
were also performed for the circuit.  

A. Substrate Permittivitty Broadband Model 

The model presented in this paper can be advantageously 
extended to structure including broadband frequency 
influences. As the test application, the interconnect tree circuit 
substrate was defined with Svesson-Djordjevic model proposed 
in [19-20], as shown below: 

⎥
⎦

⎤
⎢
⎣

⎡
+

+
⋅+=

ωπ

ωπ
εωε

jf

jf
aj

H

L
rrf

2

2
ln)( ,  (12) 

with  

⎥
⎦

⎤
⎢
⎣

⎡
+

+
−=

0

0ln/)tan(
jff

jff
ja

H

L
r δε ,  (13) 

4=rε , 02.0)tan( =δ , frequency =0f 1.5GHz at which 

rε and )tan(δ  are specified, low roll-off frequency 

=Lf 0.1GHz and  high roll-off frequency  =Hf 10GHz. 

B. Description of Asymmetrical Circuit for Numerical Test 

We designed an arbitrary chosen physical lengths (width 

and lengths) 2:1 distribution tree network as an IL under test. 

The structure was intentionally folded in order to show the 

EM coupling between the interconnect branch lines. Then, 

lumped loads inspired from realistic PCBs were considered to 

find out the feasibility of the method with different load 

parameters. 

Fig. 6 shows schematic layout illustrating the configuration 

of the 2:1 asymmetrical interconnect tree considered here as 

the application example. This structure is comprised of the 

microstrip interconnect tree driven by the numerical source vin 

with internal impedance Zs=25Ω and loaded by capacitors 

10pF which form impedances ZL1 and ZL2. The electrical paths 

NinN1 and NinN2 are set with physical lengths of 2.5mm and 

9mm, respectively. The coupled perturbation line has physical 

length of 7.5mm and is loaded by ZL3=25Ω and ZL4 

corresponding to 10pF capacitor.  
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Investigation on the comparison between the responses of 

the 2:1 interconnect tree without and with the perturbation 

coupling line was performed by plotting the outputs (v1,v2) and 

(vc1,vc2) respectively. 

Zs

Vin(t)

ZL1 V1(t)
ZL2V2(t)

ZL4ZL3

d1 d2

d
3

w
2

d4 d5

d
6

d
7

w
1

sNin

N1 N2

N3
N4

 

Figure 6.  Layout schematic of 2:1 asymmetrical interconnect tree including 

the neighboring perturbation line considered for the numerical analyses: 
d1=2mm, d2=4.5mm, d3=1.5mm, d4=1mm, d5=6mm, d6=1.5mm, d7=2mm, 

w1=0.3mm, w2=0.1mm and s=0.1mm. 

C. Frequency Analysis Results 

As aforementioned, the start point of the modelling was the 
extraction of the frequency dependent broadband RLCG(f) per 
unit lengths parameters of each branch of the tree. Then, by 
following the methodology suggested in Section II, the 
frequency dependent ABCD- and Z-matrices were calculated 
with Matlab. By using expressions (9), (10) and (11), we 
establish the transfer function corresponding to the electrical 
path NinN1,2 without the coupling line, represented by: 

H1,2(jω)=V1,2(jω)/Vin(jω).  (14) 

Then, it is compared with that one with the coupling line 
defined as: 

 Hc1,2(jω)=Vc1,2(jω)/Vin(jω).  (15) 

Figs. 7 display the frequency responses (magnitudes labelled 

in left side and phases labelled in right side) corresponding to 

these expression applied to the structure understudy which is 

presented in Fig. 6. The response from the asymmetrical PCB 

tree without and with coupling effects are respectively plotted 

in solid and dashed lines. The classical behaviors of low pass 

structures are occurred for the both tree outputs. Moreover, a 

significant resonance effect occurs at about 0.61GHz along the 

path NinN1. This is due to the stub effect from the other branch 

of the tree. As we can see, due to the crosstalk between the 

coupled branches of the tree the coupled responses are 

influenced noticeably above 5GHz. 

The introduced calculation results are performed very fast 

on a typical modern computer running Matlab and are of the 

order of about hundred milliseconds. 

(a)

(b)

Frequency (G H z)
0 2 4 6 8 10

-700

-5 00

-3 00

-1 00

10 0

-5 0

-2 0

1 0

7 0

4 0

H dB H cdB φ φ c

H
1
(f

) 
(d

B
) φ

(H
1 ) (°

)

F req uen cy (G H z)
0 2 4 6 8 10

H
2
(f

) 
(d

B
) φ

(H
2 ) (°

)

H dB H cdB φ φ c

-2 00

0

-4 00

-200

-2 00

70

35

-35

-7 0

0

 

Figure 7.  Frequency responses of the 2:1 asymmetrical tree presented in Fig. 

6 without (solid lines) and with (dashed lines) coupling influences. 

D. Matrix Impedance Analyses 

The frequency analysis of the previous transfer functions 
can be additionally completed with further investigation the 

behavior of the asymmetrical tree network impedances [ ]Z . To 

do this, we realized the comparison between the transfer 
impedances ZN3Nin and ZN4Nin respectively corresponding to the 
electrical paths NinN3 and NinN4. Fig. 8 displays the obtained 
coupling impedances up to 10GHz.  

 

-60

F requency (G H z)
0 2 4 6 8 10

ZN3Nin ZN4Nin

T
ra

n
s

fe
r

im
p

e
d

a
n

c
e

 (
d

B
Ω

)

-40

-20

0

20

40

 

Figure 8.  Magnitude of coupling impedances between the main input access 

Nin and the perturbation line N3N4. 

It can be stated that ZN3Nin presents in one hand transmission 

zero frequencies at about 0.17GHz, 3.27GHz and 9.37GHz. In 

the other hand, ZN4Nin transmission zero frequency is occurred 

at about 2GHz. However, the coupling level is lowered at 
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about 0.90GHz, 5.43GHz and 8.06GHz for ZN3Nin. These 

coupling impedances explain the degradation which can 

change the behavior of the signal propagating along the 

perturbed interconnect line. This finding can be pointed out 

with the reflection input access impedance ZNkNk and transfer 

impedance ZNkNin with the output index k={1,2}. The 

differences between the own impedances ZNkNk (plotted in 

solid lines) and disturbed by coupling impedances ZcNkNk 

(plotted in dashed lines) are highlighted by Figs. 9 and 10. 

More illustrative insight on the EMC effect on the 

distributed SI through the tree understudy can be achieved 

with the time-domain analysis. This approach constitutes the 

main object of the next paragraph. 
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Figure 9.  Magnitude of the transfer impedance of the structure under study 

without (solid lines) and with (dashed lines) coupling influences. 
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Figure 10.  Magnitude of the input access impedances of the structure under 

study without (solid lines) and with (dashed lines) coupling influences. 

E. Time-Domain Analysis Results 

During the numerical test for this time-domain 
investigation, a high speed digital signal represented by eight 
bits input data “01001000” was assumed as input. The data bits 
signal was assumed to be trapezoidal with 0.5Gbps rate and 
150ps rise and fall times.  

The signal plots displayed in Figs. 11 presented the time-
domain computed results with the asymmetrical tree 
understudy. The input signal is traced in solid bold blue line. 
Moreover, the asymmetrical tree outputs without and with the 
coupled perturbations are shown as solid red and dashed green 
lines, respectively.  

The results highlight the influence of the parasitic coupling 
on the asymmetrical interconnect distribution tree. We can see 
that due to the asymmetrical behavior of the two input 
branches, the outputs are completely different from each other. 
It can be stressed that the data SI was significantly degraded 
with considerable distortion. Moreover, the propagation delays 
are of about 0.22ns for the electrical path NinN1 and 0.5ns for 
the path NinN2. A reflection effect is also observed on the path 
NinN1 which is related to the resonance effect, as seen in Fig. 
7(a) introduced in the previous paragraph. 
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Figure 11.  Eight bits data responses of the 2:1 asymmetrical tree presented in 

Fig. 6 without (solid lines) and with (dashed lines) coupling. 

F. Discussion 

The developed modelling method confirms the influence of 
EM coupling caused by the perturbation line on the 
asymmetrical tree network. The model offers the possibility to 
predict fastly the tree frequency responses by taking into 
account the dispersive effects on the substrate materials. 
Various techniques on analyses based on the transfer functions, 
matrix impedances and time-domain responses show the 
electrical behaviors of the 2:1 tree. For the effectiveness 
analysis, the model was implemented into Matlab. In 
conclusion, for the considered here example: 
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□ The output signal shapes are quite well preserved 
because the bandwidth of the input data is lower than 
6GHz. 

□ The time-delay between the two responses is lower 
than 200ps. 

□ The slight variation of the output transient voltage 
amplitudes of about 10% were found when placing the 
coupling perturbation at 100µm of the tree. 

IV. CONCLUDING REMARKS 

The investigation was performed of the high speed SI of an 
asymmetrical 2:1 tree distribution network perturbed by a 
coupled length of a transmission line. Analytical behavioral 
model of the network was developed using ABCD, Z and Y 
matrices. The model can include the broadband dispersion 
effect of relative permittivity as proposed by Svesson-
Djordjevic in [19-20]. The model was implemented in Matlab 
programming language and is computationally very efficient. 

The proposed model was verified on the example of a 
microstrip asymmetrical tree with parasitic coupled line 
operating at a high data rate of 0.5 Gbps. Both frequency- and 
time-domain analyses were performed. It was found that the 
signal integrity of the asymmetrical microstrip tree with 
parasitic coupling degraded significantly under the test 
conditions.   

The proposed model is beneficial in terms of flexibility, 
simplicity and computational speed. It can be useful for the 
design and manufacture engineers for assessing the degradation 
of sharing high-speed signals in asymmetric tree. Application 
areas include miniaturized microelectronic interconnect 
systems and packaging structures. The prediction of the high 
density interconnect effects will allow to optimize the 
packaging structures and also probably to establish a post 
processing technique for the signal degradation compensation.  
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