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Abstract The symmetry of convex bodies of constant width is discussed in this pa-
per. We proved that for any convex body K ⊂ R

n of constant width, 1 ≤ as∞(K) ≤
n+√

2n(n+1)
n+2 , where as∞(·) denotes the Minkowski measure of asymmetry for convex

bodies. Moreover, the equality holds on the left-hand side precisely iff K is an Eu-
clidean ball and the upper bounds are attainable, in particular, if n = 3, the equality
holds on the right-hand side if K is a Meissner body.
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1 Introduction

Measures of (central) symmetry or, as we prefer, asymmetry for convex bodies have
been extensively investigated (see [11, 13]). Among these researches, for a given
asymmetry measure, it is a popular topic to determine the extremal bodies, i.e.,
the bodies with maximal asymmetry measure, in some class of convex bodies. For
instance, for many known asymmetry measures, circles are most symmetric and
Reuleaux triangles are most asymmetric among convex bodies of constant width
in R

2 (see [4, 5, 7, 8, 10]). Recently, in [12] we showed that this is also valid for
the well known Minkowski measure (for the definition see below) (see [12]). Con-
cretely, for any 2-dimensional convex body K of constant width,

1 ≤ as∞(K) ≤
√

3 + 1

2
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where as∞(·) denotes the Minkowski measure of asymmetry for convex bodies.
Moreover, equality holds on the left-hand side precisely iff K is a circular disc, and
on the right-hand side precisely iff K is a Reuleaux triangle.

In this paper, we discuss the symmetry of convex bodies of constant width in R
n.

The main result is the following

Main Theorem If K ⊂ R
n is a convex body of constant width, then

1 ≤ as∞(K) ≤ n + √
2n(n + 1)

n + 2
.

Moreover, the equality holds on the left-hand side precisely iff K is an Euclidean ball
and the upper bounds are attainable, in particular, if n = 3, the equality holds on the
right-hand side if K is a Meissner body.

2 Preliminary

R
n denotes the usual n-dimensional Euclidean space with the canonical inner product

〈·, ·〉. A bounded closed convex set C ⊂ R
n is called a convex body (a convex do-

main for n = 2) if it has non-empty interior (int for brevity). The family of all convex
bodies in R

n is denoted by Kn. Other notation and terms are as in [15].
A convex body K is said to be of constant width ω if its projection on any

straight line is a segment of universal length ω > 0, which is equivalent to the geo-
metrical fact that any two parallel support hyperplanes of K are always separated by
a distance ω. Notice that the width ω of a constant with body is clearly its diameter.
The convex bodies of constant width in R

2 and R
3 are also called orbif orms and

spherof orms, respectively. Euclidean balls are obvious bodies of constant width,
however, there are many others (see [1, 6, 14]). We denote by W n the set of all
n-dimensional convex bodies of constant width.

Convex bodies of constant width have many interesting properties and applica-
tions which have gained much attention in the history, e.g., orbiforms were popularly
studied during the nineteenth century and later, particularly by F. Reuleaux, whose
name is now attached to the orbiforms obtained by intersecting a finite number of
disks of equal radii. In R

3, Meissner tetrahedrons may be the most famous sphero-
forms. Mathematicians guess Meissner tetrahedrons have the minimal volume among
all spheroforms with the same width.

Given a convex body C ∈ Kn and x ∈ int(C), for a hyperplane H through x and
the pair of support hyperplanes H1,H2 (of C) parallel to H , let γ (H,x) be the ratio,
not less than 1, in which H divides the distance between H1 and H2. Denote

γ (C,x) = max
{
γ (H,x) | H 	 x

}
,

and define the Minkowski measure as∞(C) of asymmetry of C by (see [11])

as∞(C) = min
x∈int(C)

γ (C,x).
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A point x ∈ int(C) satisfying γ (C,x) = as∞(C) is called a critical point (of C).
The set of all critical points of C is denoted by C∗. It is known that C∗ is a non-empty
convex set ([13]).

There is an equivalent definition of Minkowski measure (see [11, 13]): Let C ∈ Kn

and x ∈ int(C). For a chord l of C through x, let γ1(l, x) be the ratio, not less than
1, in which x divides the length of l, and denote γ1(C,x) = max{γ1(l, x) | l 	 x},
then the Minkowski measure as∞(C) = minx∈int(C) γ1(C,x). A chord l satisfying
γ1(l, x) = as∞(C) is called a critical chord (of C).

Denote for any x ∈ int(C),

SC(x) =
{
p ∈ bd(C) | the chord pq 	 x and

xp

xq
= γ1(C,x)

}
,

where bd denotes the boundary, and pq denotes the segment with endpoints p,q or
its length alternatively if no confusing is caused. It is proved that SC(x) �= φ ([13]).

The following is a list of some properties of the Minkowski measure of asymmetry
(see [13] for proofs).

Property 1 If C ∈ Kn, then 1 ≤ as∞(C) ≤ n. Equality holds on the left-hand side
precisely iff C is central, and on the right-hand side precisely iff C is a simplex.

Property 2 For C ∈ Kn, as∞(C) + dimC∗ ≤ n, where dim means dimension.

Property 3 Given x ∈ ri(C∗), the relative interior of C∗, then for any y ∈ SC(x),

y + as∞(C) + 1

as∞(C)
(C∗ − y) ⊂ bd(C) and y ∈ SC(x′) for ∀x′ ∈ C∗.

This property shows that the set SC(x) does not vary as x ranges over ri(C∗). We
denote this set by C†.

Property 4 C† contains at least as∞(C) + 1 points.

3 The Critical Sets of Convex Bodies of Constant Width

We have known that the critical points of a convex bodies may not be unique, but for
a convex body of constant width we have the following

Proposition 1 For any K ∈ W n, K∗ is a singleton.

In order to prove the proposition, we need the following lemmas
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Lemma 1 ([9]) If C∗ is not a singleton for some C ∈ Kn, then bd(C) contains three
different segments parallel to a segment contained in C∗.

Proof Suppose C∗ is not a singleton, then by the convexity of C∗, there exists seg-
ment L1 ⊂ C∗. Thus, if for any y ∈ C†, denote a segment L1(y) := y + a(L1 − y),
where a = as∞(C)+1

as∞(C)
, then by Property 3, L1(y) ⊂ bd(C). L1(y) is obviously par-

allel to L1. Since by Property 4, there are at least three points in C† (notice
that if as∞(C) = 1, then C† contains infinitely many points, if as∞(C) > 1, then
as∞(C) + 1 > 2), the proof is finished. �

Lemma 2 ([14]) If K ∈ W n, then K is strictly convex, i.e., bd(K) contains no seg-
ments.

The proof of this lemma in [14] appears a little cumbersome, so we include a proof
here.

Proof If K is not strictly convex, then there exists a segment pq ⊂ bd(K). Let H

be a hyperplane such that H supports K and pq ⊂ H and let H ′ be the support
hyperplane of K which is opposite and parallel to H , then for each y ∈ bd(K) ∩ H ′,
at least one of py and qy is bigger than the width (i.e., the distance between H and
H ′) of K , a contradiction! �

Proof of Proposition 1 It is a simple consequence of Lemma 1 and Lemma 2. �

In general the insphere and the circumsphere of a convex body are not concentric.
If, however, K is a convex body of constant width ω, then the insphere and circum-
sphere are concentric and their radii, denoted by r(K) and R(K), respectively, satisfy
r(K) + R(K) = ω (see [2, 6]).

Here, we shall show further that the common center is also the unique critical point
of a convex body of constant width.

Theorem 1 Let K ∈ W n with constant width ω. Then x0 is the critical point of K

iff x0 is the center of circumscribed sphere of K and iff x0 is the center of inscribed
sphere of K . Moreover, r(K) = 1

1+as∞(K)
ω and R(K) = as∞(K)

1+as∞(K)
ω.

Even if it was already proved that the insphere and the circumsphere of a convex
body of constant width are concentric [2, 6, 14], but for completeness, we include
also a simple proof here. In order to prove Theorem 1, we need some more lemmas.

Lemma 3 ([13]) If C ∈ Kn, x ∈ int(C) and pq is a chord (of C) through x with
p ∈ SC(x), (i.e., px

xq
= γ1(C,x)), then there exist two parallel hyperplanes H1,H2

supporting C at p,q, respectively.

Corollary 1 If K ∈ W n with constant width ω, x ∈ int(K) and pq is a chord (of K)

through x with p ∈ SC(x), then pq = ω.
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Proof By Lemma 3, there exist two parallel hyperplanes H1,H2 supporting K at
p,q, respectively, so ω ≤ pq . But since ω is the diameter of K , ω ≥ pq . Therefore
pq = ω. �

For C ∈ Kn, x ∈ C, denote rx(C) := max{λ ≥ 0 | x + λB ⊂ C} and Rx(C) :=
min{λ ≥ 0 | C ⊂ x + λB}, where B ⊂ Rn is the Euclidean unit ball. Then clearly
r(C) = maxx∈int(C) rx(C) and R(C) = minx∈int(C) Rx(C).

Lemma 4 If K ∈ W n with constant width ω and x ∈ int(K), denote by Bx the ball
with center at x and radius γ1(K,x)

1+γ1(K,x)
ω, then K ⊂ Bx , more precisely, Rx(K) =

γ1(K,x)
1+γ1(K,x)

ω.

Proof Let pq be a chord (of K) through x with p ∈ SC(x). By Lemma 3, there exist
two parallel hyperplanes H1,H2 supporting K at p,q , respectively. By Corollary 1,
px + xq = pq = ω and in turn px = γ1(K,x)

1+γ1(K,x)
ω. Letting p′q ′ be any other chord

through x, then by p′x
p′q ′−p′x = p′x

q ′x ≤ γ1(K,x), we get

p′x ≤ γ1(K,x)

1 + γ1(K,x)
p′q ′ ≤ γ1(K,x)

1 + γ1(K,x)
ω

which implies p′ ∈ Bx and further K ⊂ Bx by the arbitrariness of p′ ∈ bd(K).
Finally, p ∈ bd(K) and px = γ1(K,x)

1+γ1(K,x)
ω imply Rx(K) = γ1(K,x)

1+γ1(K,x)
ω. �

Lemma 5 If K ∈ W n with constant width ω and x ∈ int(K), denote by B∗
x the

ball with center at x and radius ω
1+γ1(K,x)

, then B∗
x ⊂ K , more precisely, rx(K) =

ω
1+γ1(K,x)

.

Proof Let q ∈ bd(K) satisfy rx(K) = qx and let Hq be a hyperplane supporting K

at q . Then xq is orthogonal to Hq since Hq supports the ball with center at x and
radius rx(K) at q as well.

Let Hp be the hyperplane, parallel to Hq , supporting K at p, then pq passes
through x since pq must be orthogonal to Hq as well (for otherwise, we would have
pq > ω, a contradiction to the fact that ω is the diameter of K).

Next, we prove that γ1(K,x) = px
qx

. Let p′q ′ 	 x be a chord of K . Since q ′x ≥ qx

by the definition of rx(K), we get p′x ≤ px (observing that p′x + q ′x ≤ px + qx =
ω), which leads to px

qx
≥ p′x

q ′x and further γ1(K,x) = px
qx

. Thus, γ1(K,x) = ω−rx(K)
rx(K)

and in turn rx(K) = ω
1+γ1(K,x)

. �

Proof of Theorem 1 Let x0 be the (unique) critical point of K , then γ1(K,x0) <

γ1(K,x) for any x ∈ int(K) \ {x0}. Thus by Lemma 4 and Lemma 5, Rx0(K) <

Rx(K) and rx0(K) > rx(K) for any x ∈ int(K) \ {x0}, which means that R(K) =
Rx0(K), r(K) = rx0(K) and x0 is the common center of circumscribed and inscribed
sphere of K .
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Let x0 be the center of circumscribed sphere, then

γ1(K,x0)

1 + γ1(K,x0)
ω = Rx0(K) = min

x∈int(K)
Rx(K)

= min
x∈int(K)

γ1(K,x)

1 + γ1(K,x)
ω = minx∈int(K) γ1(K,x)

1 + minx∈int(K) γ1(K,x)
ω,

which leads to γ1(K,x0) = minx∈int(K) γ1(K,x), i.e., x0 is the critical point of K .
The same argument works as well for the case when x0 is the center of inscribed

sphere.
Finally, let x0 be the critical point of K , then what just proved above, together with

Lemma 4 and Lemma 5, gives R(K) = Rx0(K) = as∞(K)
1+as∞(K)

ω and r(K) = rx0(K) =
1

1+as∞(K)
ω. �

Remark 1 For K ∈ W n with constant width ω, from Lemma 4, Lemma 5, we see
that for any x ∈ int(K), Rx(K) + rx(K) = ω and γ1(K,x) = Rx(K)

rx(K)
, in particular, by

Theorem 1, R(K) + r(K) = ω and as∞(K) = R(K)
r(K)

.

4 The Minkowski Measure of Meissner Tetrahedrons

Meissner’s tetrahedron is geometrically defined in the following way: consider a body
K obtained as the intersection of four balls of radius ω whose centers are the vertices
of an (underlying) regular tetrahedron e1e2e3e4 (of edge length eiej = ω, 1 ≤ i �= j ≤
4). Thus, the boundary of K is composed of four pieces of balls connected by six arcs
of circles. Surprisingly this set K is not of constant width: geometrical considerations
show that opposite circular edges are too far away. Hence, Meissner proposed to
polish off three edges of K in order to get a constant width body. Let E be the union
of three circular edges of K which share a common vertex e1. Then,

M =
⋂

x∈E

B(x,ω) ∩ K

is a convex body of constant width, called Meissner’s Tetrahedron formed by K

([14]). We mention also that there are some other ways of “polishing off” the above K

for constructing constant width bodies, and all the resulted bodies are called Meiss-
ner’s bodies.

Proposition 2 Let M be a Meissner tetrahedron formed by K with constant width

ω = e1e2, then as∞(M) = 3+2
√

6
5 .

Proof We first mention an obvious fact that if a convex body is symmetric with re-
spect to a hyperplane, then its critical set is symmetric with respect to the same hy-
perplane as well. Now, since M is symmetric with respect to three planes containing
o, e1, ei , (i = 2,3,4), respectively, where o is the critical point of the underlying reg-
ular tetrahedron, the unique critical point x0 of M must be on the line containing o, e1
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which is the intersection of these three planes. We assert that x0 = o. To see this, let
e∗

1 be the intersection of the ray −→
e1o and bd(M). Then clearly,

γ1(M,o) ≥ e1o

oe∗
1

= e1o

ω − e1o
.

On the other hand, if denoting by B(o, oe1) the ball with center at o and radius oe1,
then we see easily that K ⊂ B(o, oe1) which implies clearly M ⊂ B(o, oe1).

Now, for any chord pq (of M) through o and with po
oq

= γ1(M,o), by Corollary 1,
we have

pq = ω and
po

oq
= po

ω − po
.

Thus, since op ≤ oe1 (for M ⊂ B(o, oe1)), we get

r1(M,o) = po

ω − po
≤ e1o

ω − e1o
= e1o

oe∗
1
,

which implies clearly that γ1(M,o) = e1o
oe∗

1
= e1o

ω−e1o
.

If x0 locates on the segment (e1, o), let e∗
2 be the intersection of the ray −−→

e2x0 and
bd(M). Then e2e

∗
2 = ω and e2o < e2x0, and so

γ1(M,xo) ≥ e2x0

x0e
∗
2

= e2x0

ω − e2x0
>

e2o

ω − e2o
= e1o

ω − e1o
= γ1(M,o),

which contradicts to the fact that x0 is the critical point of M .
Similarly, if x0 locates on the segment (o, e∗

1), then

γ1(M,xo) ≥ e1x0

ω − e1x0
>

e1o

ω − e1o
= γ1(M,o),

a contradiction too. Therefore, x0 = o.
Now some elementary geometrical arguments and computations show that oe1 =√

6
4 ω which in turn leads to as∞(M) = γ1(M,o) = oe1

ω−oe1
=

√
6ω/4

ω−√
6ω/4

= 3+2
√

6
5 . �

Remark 2 We shall show in the next section that Proposition 2 holds for general
Meissner’s bodies as well.

5 Proof of Main Theorem

The following lemma from [3] will be needed

Lemma 6 If C ⊂ R
n is compact, then

R(C) ≤ diam(C)

√
n

2(n + 1)
,

where diam(C) denotes the diameter of C.
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Proof of Main Theorem For general n, the first inequality is trivial, so we prove the
second only. Let K be of constant width ω. Then By Remark 1, Lemma 6,

as∞(K) = R(K)

r(K)
= R(K)

ω − R(K)
≤

√
n

2(n+1)
ω

ω −
√

n
2(n+1)

ω
= n + √

2n(n + 1)

n + 2
.

Since a convex body of constant width is centrally symmetric iff it is a ball and a
convex body C is centrally symmetric and iff as∞(C) = 1, we see that as∞(K) = 1
iff K is a ball.

In order to see that for general n the upper bounds are attainable, recall from [6]
that for C ∈ Kn, there is at least one convex body C� of constant width satisfying
that C ⊂ C� and diam(C) = diam(C�) (each of such bodies is called a completion

of C). Letting S be a regular simplex, we claim that as∞(S�) = n+√
2n(n+1)
n+2 for each

completion S�, in particular, for all Meissner’s bodies when n = 3.

In fact, writing diam(S) = ω = diam(S�), we have R(S�) ≤ ω
√

n
2(n+1)

which,

together with the obvious fact that R(S�) ≥ R(S) = ω
√

n
2(n+1)

, shows R(S�) =
ω

√
n

2(n+1)
, so it follows that as∞(S�) = R(S�)

ω−R(S�)
= n+√

2n(n+1)
n+2 . �

Remark 3 (i) By Main Theorem, as∞(K) < 1 + √
2 for all n and all K ∈ W n.

(ii) For n = 2, it was shown in [12] that the Reuleaux triangles are the only ex-

tremal bodies with the Minkowski measures 1+√
3

2 . However, for n ≥ 3, since the
completions of S are not unique, the extremal bodies for the upper bounds are not
unique. Since so, we propose a question: whether or not are these completions of
regular simplices the only extremal bodies?

Finally, as an application, we give an estimate of supK∈W n δ(K,B), where B is
an n-dimensional Euclidean unit ball and

δ(C,D) := inf
{|α/β| : βC ⊂ T(D) + x,αC ⊃ T(D) + y

}

(T : R
n → R

n regular affine maps, x, y ∈ R
n).

Theorem 2 For any K ∈ W n, δ(K,B) = as∞(K).

Proof B. Grünbaum showed that as∞(C) = infM∈Mn δ(C,M) for any convex body
C, where Mn denotes the family of all n-dimensional centrally symmetric convex
bodies (cf. Sects. 5 and 6 in [11]), which implies as∞(K) ≤ δ(K,B).

However, letting x0 be the critical point of K , then by Theorem 1, we have also

x0 + r(K)B ⊂ K ⊂ x0 + R(K)B,

which, together with Remark 1, implies that δ(K,B) ≤ R(K)
r(K)

= as∞(K). Hence,
δ(K,B) = as∞(K). �

Corollary 2 For any K ∈ W n, 1 ≤ δ(K,B) ≤ n+√
2n(n+1)
n+2 .
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