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Abstract

Deep convolutional neural networks (CNN) have

achieved astonishing results in a large variety of applica-

tions. However, using these models on mobile or embedded

devices is difficult due to the limited memory and compu-

tation resources. Recently, the inverted residual block be-

comes the dominating solution for the architecture design

of compact CNNs. In this work, we comprehensively in-

vestigated the existing design concepts, rethink the func-

tional characteristics of two pointwise convolutions in the

inverted residuals. We propose a novel design, called asym-

metrical bottlenecks. Precisely, we adjust the first pointwise

convolution dimension, enrich the information flow by fea-

ture reuse, and migrate saved computations to the second

pointwise convolution. Doing so we can further improve

the accuracy without increasing the computation overhead.

The asymmetrical bottlenecks can be adopted as a drop-

in replacement for the existing CNN blocks. We can thus

create AsymmNet by easily stack those blocks according to

proper depth and width conditions. Extensive experiments

demonstrate that our proposed block design is more benefi-

cial than the original inverted residual bottlenecks for mo-

bile networks, especially useful for those ultralight CNNs

within the regime of <220M MAdds. Code is available at

https://github.com/Spark001/AsymmNet

1. Introduction

The recent success of deep Convolution Neural Networks

(CNN) is like the jewel in the crown of modern AI waves

[11, 17, 37]. However, the current CNN models are heavily

relying on high-performance computation hardware, such

as GPU and TPU, which are normally deployed in a cloud

computing environment. Thus, the client applications have

to transmit user data to the cloud to gain deep CNN mod-

els’ benefits. This constraint strongly limits such models’
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applicability on resource-constrained devices, e.g., mobile

phones, IoT devices, and embedded devices. Moreover,

sending user data to a remote server increases the risk of pri-

vacy leakage. Therefore, in recent years, various works aim

to solve this problem by reducing memory footprints and

accelerating inference. We roughly categorize those works

into following directions: network pruning [15, 16], knowl-

edge distillation [7, 33], low-bit quantization [6, 35], and

compact network designs [21, 20, 38, 46, 31, 41]. The lat-

ter has been recognized as the most popular approach that

has a massive impact on industrial applications. The com-

pact networks achieved promising accuracy with generally

fewer parameters and less computation. Although signifi-

cant progress has been made, there is still much room for

improvement, especially in the ultralight regime with mul-

tiply adds (MAdds) <220M.

In this paper, our efforts focus on improving ultralight

CNNs by the handcrafted design of basic building blocks.

We first made a thorough investigation on existing block

designs of mobile CNNs, and we argue that the two point-

wise (PW) convolutions contribute differently in the orig-

inal inverted residual bottleneck block. [5] first proposes

decoupling spatial correlation and channel correlation us-

ing the combination of a depthwise (DW) convolution and

a PW convolution. [38] further emphasises that the second

PW convolution has essential characteristics in the inverted

residual bottlenecks since it is responsible for learning new

features from different channels, which is especially cru-

cial for expressiveness. The first PW convolution is re-

sponsible for channel expansion, on the other hand. There-

fore, we propose to partially reduce or migrate the first PW

computations to the second one. By following this idea,

we introduce a novel Asymmetrical Bottleneck Block, as

shown in Figure 2(c). Furthermore, we can create Asymm-

Net by easily stack a sequence of asymmetrical blocks ac-

cording to proper depth and width conditions. We only con-

sider the handcrafted design of the network architecture in

this work. However, the proposed CNN block is orthogo-

nal to the recent approaches based on Neural Architecture

Search (NAS) [41, 20, 42, 34]. Experimental results show



that, AsymmNet is especially superior in the ultralight CNN

regime, and we have achieved promising results in image

classification and other four downstream vision tasks. Sum-

marized our core contributions in this paper are:

• We thoroughly investigated the existing mobile CNN

designs and further proposed a novel asymmetrical

bottleneck block.

• We propose AsymmNet based on asymmetrical bottle-

necks, which achieves promising performance under

the ultralight CNN regime (<220M MAdds) on Im-

ageNet classification and multiple downstream vision

tasks.

The rest of the paper is organized as follows: Section 2

briefly review the related work. Subsequently, we present

the proposed asymmetrical bottleneck design and Asymm-

Net in Section 3, followed by experimental results and dis-

cussions (Section 4). Finally, Section 5 concludes the paper

and provides an outlook on future work.

2. Related Work

This section provides a thorough overview of the recent

efforts in the research domain of model compression and

compact network design.

In the model compression area, knowledge distillation

[7, 33] aims to generate small “student” networks trained by

using distilled supervision signals derived from a cumber-

some “teacher” network. The student network is expected

to be more compact and as accurate as of the teacher. Con-

nection pruning [15, 16] and channel pruning [27, 19] re-

spectively remove low-rank connections between neurons

or weakly weighted channels for model shrinking and ac-

celeration. Low-bit quantization [6, 35, 30, 29, 1] is an-

other crucial complementary approach to improve network

efficiency through reduced precision arithmetic or even bit-

wise (binary) operators. Among them, Bethge et al. [1]

introduced a novel block design that suggests applying

DenseNet [22] style concatenation for preserving a rich in-

formation flow and a subsequent improvement block to up-

date the newly added features, which can reduce the com-

putation overhead as well. Our approach is also partially

inspired by this concept.

The compact network methods use full precision float-

ing point numbers as weights but reduce the total number

of parameters and operations through compact architecture

design while minimizing accuracy loss. The commonly

used techniques include replacing a large portion of 3×3 fil-

ters with smaller 1×1 filters [24]; Using depthwise separa-

ble convolution to reduce operations [5]; Utilizing channel

shuffling and group convolutions in addition to depthwise

convolution [46]. Among those approaches, the MobileNet

series (V1-V3) [21, 38, 20] are so far the most success-

ful lightweight CNN models based on depthwise separa-

ble convolution and intelligent architecture design. Specifi-

cally, MobileNetV3 combines handcrafted block design and

architecture search techniques. GhostNet [14] adopts the

network architecture of MobileNetV3 but proposed to use

a computationally cheaper block design replacing the in-

verted bottleneck block. Zhou et al. [49] proposed a sand-

glass block to replace the commonly used inverted bottle-

neck block, whilst better accuracy can be achieved com-

pared to MobileNetV2 without increasing parameters and

computation.

NAS techniques aim to automatically search efficient

network architectures [41, 20, 42, 34]. However, the most

efficient basic building block design still requires human

expertise [20, 49, 14]. Furthermore, such methods need

to repeat the network design process and retrain the net-

work from scratch for each setting, which will result in

excessive energy consumption and CO2 emission. E.g.,

a Transformer language model [43] with NAS will cause

CO2 emission as much as 5 cars’ lifetime [39].

3. Methodology

In this section, we first revisit the existing building block

designs for lightweight CNN models. We then introduce

the proposed asymmetrical bottleneck block and AsymmNet,

discuss the design concept and main differences compared

to the existing approaches.

3.1. Preliminaries

Depthwise separable convolution is proposed by Chollet

in the Xception network [5], which is way more efficient

than other CNN networks at that time. Subsequently, this

design has been applied in many lightweight CNN architec-

tures such as MobileNet series [21, 38, 20] and ShuffleNet

series [31, 46]. It assumes that separately learning spatial

and channel correlations should be more efficient and

easier for a CNN learner. Specifically, it replaces a standard

convolutional operator by splitting convolution into two

separate operators (layers). The first one is called depthwise

convolution, which adopts single channel filters to learn

spatial correlations among locations within each channel

separately. The second operator is a 1 × 1 convolution,

also served as pointwise convolution, which is utilized for

learning new features through computing linear combina-

tions across all the input channels. According to [5, 21],

depthwise separable convolution can reduce computation

overhead by a factor of around kernel size2 compared

to a standard convolution operator with the same kernel

size. We also apply depthwise separable convolution in

the proposed approach due to its computational efficiency.



(a) Bottleneck block [17] (b) Inverted residual block [38] (c) Sandglass block [49]

(d) ShuffleBlock v2 [31] (e) Ghost module [14] (f) Asymmetrical bottleneck

Figure 1. Different types of basic convolution blocks. “Pwise” denotes 1 × 1 pointwise convolution, “Dwise” denotes 3 × 3 depthwise

convolution. The dotted rectangles and arrows represent feature maps and feature reuse, respectively.

Inverted bottleneck is proposed by Sandler et al. for

MobileNetV2 [38]. Unlike the original bottleneck design

[40] (see Figure 1(a)), the inverted bottleneck block

adopts a low-dimensional (the number of input channels)

input tensor and expands it to a higher dimensional

tensor using a pointwise convolution. The expanded

high-dimensional tensor will then be fed into a depth-

wise separable convolution, by which the corresponding

pointwise convolution generates low-dimensional new

features by linearly combining channels after a depthwise

convolution. It can be seen that the first pointwise con-

volution expands the information flow, which increases

the capacity, and the subsequent convolution operators

are responsible for the expressiveness of the proper layer.

This speculation is derived based on the analysis of the

block’s capacity and expressiveness in [38]. Figure 1(b)

shows the design idea of an inverted bottleneck block.

Cheap operations for more features Table 1 shows the

complexity evaluation results of different types of convolu-

tions of MobileNet series. We observe that the computation

Network DW (%) PW (%) Vanilla (%)

MobileNetV1 3.1 95 1.9

MobileNetV2 6.2 84.4 9.4

MobileNetV3 8.9 88.5 2.6

Table 1. Computational complexity distribution of MobileNet V1-

V3. We calculate the proportion of MAdds of different types

of operators. DW and PW respectively represent the depthwise

and pointwise convolution in the corresponding MobileNet blocks.

Vanilla denotes the computation of the remaining standard convo-

lutions.

overhead is mainly concentrated on the pointwise convo-

lution part, as e.g., 95% of MobileNetV1, 84.4% of Mo-

bileNetV2 and 88.5% of MobileNetV3. If we want to re-

duce the computational complexity further, the optimiza-

tion of this part of the network is the first choice. Han et al.

proposed to use the Ghost module (see Section 3.2) to re-

place the pointwise convolution layers and partially remove

the depthwise convolution layers (only preserve those for

downsampling). The core idea of the Ghost module is to



generate more features using computationally cheaper op-

erators. Our proposed design is also partially inspired by

this concept, and we assume that the two pointwise convo-

lutions contribute differently in the structural point of view.

We thus shift the amount of calculation to the more impor-

tant one.

3.2. Revisit existing design

In this section, we review several commonly used design

principles: original bottleneck block [17], inverted residual

block [38], shuffleblock v2 [31], Ghost module [14], and

Sandglass block [49]. Figure 1 demonstrates the specific

properties of each design.

Bottleneck (Figure 1(a)) is the fundamental building

block of ResNet [17], where a pointwise convolution re-

duces the feature dimension with the factor t, apply a 3× 3
convolution to the narrowed features, and then utilize an-

other pointwise convolution to restore the feature dimension

to be equal to the input size. The key difference between

Inverted Residual block (also called MMBlock, see Figure

1(b)) and original Bottleneck is that the latter applies stan-

dard convolution on narrowed features, while MMBlock

uses the first pointwise convolution to expand the feature

dimension, and applies depthwise convolution on expanded

features. It is so because standard 3 × 3 convolutions are

highly computational intensive in Bottlenecks. However,

depthwise convolutions in MMBlock can significantly re-

duce the computational complexity. Thus, increasing the

feature dimension will be beneficial for improving the rep-

resentative capacity of the block.

Shuffleblock v2 is the following work of Shuffleblock v1

[46], in which the group convolution is removed for practi-

cal efficiency. Furthermore, the input feature map in Shuf-

fleblock v2 is split into two equal channels of narrowed fea-

ture maps (Figure 1(d)). One is transformed with a special

Bottleneck block without internal dimension changes (the

solid arrow path on the right); The other (the dashed arrow

path on the left) keeps unchanged until concatenated and

shuffled with the transformed feature map. This design re-

veals that partially reusing the input features doesn’t impair

the expressiveness of the convolution blocks, but can effec-

tively reduce computational complexity.

Ghost module (Figure 1(e)) is proposed to reduce redun-

dancy of feature maps generated by pointwise convolutions

in an MMBlock. Specifically, the amount of output chan-

nels of pointwise convolutions is reduced to make more

room for integrating cheaper intrinsic features. To keep the

output dimension consistent, a series of linear transforma-

tion such as depthwise convolutions is used for generating

intrinsic features, which will be concatenated with the out-

put of the pointwise convolution to form the final feature

vector.

[49] propposed Sandglass block (see Figure 1(c)), which

suggests keeping the standard bottleneck structure. It

prefers to perform identity mapping and spatial transforma-

tion at a higher dimension to alleviate information loss and

gradient confusion. Therefore, the sandglass block flips the

position of depthwise and pointwise convolutions, which

aims to preserve dense information flow and suppress the

computation cost.

Based on the previous findings, we argue that improving

the capacity by using cheaper intrinsic features or even di-

rectly feature reuse is beneficial. We thus rethink the func-

tional characteristics of two pointwise convolutions in the

inverted residuals and propose a novel asymmetrical bottle-

neck described in the next section.

3.3. Asymmetrical bottlenecks

(a) Inverted residual block (b) Pruned block

(c) Asymmetrical block

Figure 2. Detailed illustration of the inverted residual block,

pruned block, and asymmetrical bottleneck block. Brown fillings

represent the feature maps generated by convolutions, while white

fillings denote feature map reuse.

As demonstrated in Table 1, pointwise (PW) convolu-

tion is the most computationally intensive part in inverted

residual bottlenecks (see Figure 2(a)). The first PW convo-



Input Operator Output

h× w × c 1× 1,conv2d,non-linear h× w × (t− r)c
h× w × (t− r)c Concat h× w × (t+ r)c

h× w × (t+ r)c DW(k) s=s,non-linear h

s
×

w

s
× (t+ r)c

h

s
×

w

s
× (t+ r)c 1× 1,conv2d,linear h

s
×

w

s
× c

Table 2. Asymmetrical bottleneck block with stride s, asymmetry

rate r, and expansion factor t.

lution is adopted to expand the feature tensor’s dimension

and the second one is significant for learning feature corre-

lations from different channels after the depthwise convolu-

tion (DW). We can figure out that the first PW expands the

information flow, which increases the capacity, and the sec-

ond PW convolution is mainly responsible for the expres-

siveness. We argue that cheaper transformations or even

feature reuse can enhance the information flow, but learn-

ing channel correlations should not be simplified in relative

terms. Therefore, we infer that the second PW has more

essential characteristics in the structure. To verify our spec-

ulation, we first designed a pruned version (referred to as

pruned block subsequently) based on inverted residual bot-

tlenecks, as shown by Figure 2(b). The output of the first

PW is expressed by Eq. 1:

Ypw1 = Concat(X,Yt−1(X)) (1)

where X ∈ R
h×w×c denotes the input tensor, while h, w,

and c denote the height, width, and channel dimension, re-

spectively. Yt−1 ∈ R
h×w×(t−1)·c is the output of the first

PW, where t is an expansion factor introduced in [38]. In

the pruned block, we reduce the output channels of the first

PW by c. Thus, the pruned block can be formulated as:

Yp = X + PW (DW (Concat(X,Yt−1(X)))) (2)

where we omit ReLU and BatchNorm for simplicity in the

formulation.

Pruned block can save computation, but at the same time,

it also brings a small amount of accuracy loss. Therefore,

we consider migrating the saved computation of the first

PW to the second PW to construct an asymmetrical struc-

ture, as shown in Figure 2(c). Experimental results show

that the performance can be improved with this asymmet-

rical structure while the computation amount is basically

unchanged. Mathematically, the asymmetrical bottleneck

block can be expressed by Eq. 3:

Y ′ = X + PW (DW (Concat(2r ·X,Yt−r(X)))) (3)

where Yt−r ∈ R
h×w×(t−r)·c is the output of the first PW,

t denotes the expansion factor and r ∈ [0, t) is a new pa-

rameter which controls the asymmetry rate. To achieve a

good trade-off between accuracy and efficiency, we set r to

1 in all experiments. If r = 0 it degenerates into an inverted

residual bottleneck.

No. Input Operator k p c s

1 2242 × 3 conv2d 3 - 16 2

2
1122 × 16 asymm-bneck

3 16 16 1

3 3 64 24 2

4
562 × 24 asymm-bneck

3 72 24 1

5 5 72 40 2

6

282 × 40 asymm-bneck

5 120 40 1

7 5 120 40 1

8 3 240 80 2

9

142 × 80 asymm-bneck

3 200 80 1

10 3 184 80 1

11 3 184 80 1

12 3 480 112 1

13
142 × 112 asymm-bneck

3 672 112 1

14 5 672 160 2

15
72 × 160 asymm-bneck

5 960 160 1

16 5 960 160 1

17 72 × 160 conv2d 1 - 960 1

18 72 × 960 avgpool 7 - - 1

19 1× 960 conv2d 1 - 1280 1

20 1× 1280 conv2d 1 - 1000 1

Table 3. Specification for AsymmNet-L using MobileNetV3-large

base. Each row shows a conv2d layer or an asymmetrical bot-

tleneck block. c denotes the output channel size, k denotes the

kernel size, and s is the stride number of the convolution layer.

“Input” and “Operator” indicate the shape of the input tensor and

the operator type. p denotes the expanded channel size of the cor-

responding asymmetrical bottleneck blocks.

3.3.1 Computational complexity

Similar to MMBlock, the theoretical computation complex-

ity of AsymmBlock is C = Cpw1 +Cdw +Cpw2. For sim-

plicity, we only calculate the blocks whose stride = 1. So

the theoretical complexity ratio of AsymmBlock and MM-

Block can be calculated as

Rc =
hwc(tc− rc) + k2hw(tc+ rc) + hw(tc+ rc)c

hwc(tc) + k2hw(tc) + hw(tc)c

=
2hwtc2 + k2hwtc+ hwrck2

2hwtc2 + k2hwtc

= 1 +
rk2

2tc+ k2t
≈ 1.

(4)

where t denotes the expansion factor, r represents the asym-

metry rate, and k indicates the kernel size of DW convolu-

tion. We set r = 1 in our experiments and k2 ≪ c. Rc ≈ 1
means that the AsymmBlock can transfer the computation

cost from the first PW to the second and keep total com-

plexity roughly unchanged.

3.4. AsymmNet

We further develop several efficient CNN architectures

based on the proposed asymmetrical bottleneck design. To

gain the best practical benefits, we follow the basic network

architecture of MobileNetV3-large and MobileNetV3-small

[20], as shown in Table 3 and Table 4. The main reason for



No. Input Operator k p c s

1 2242 × 3 conv2d 3 - 16 2

2 1122 × 16 asymm-bneck 3 16 16 2

3 562 × 16 asymm-bneck 3 72 24 2

4
282 × 24 asymm-bneck

3 88 24 1

5 5 96 40 2

6

142 × 40 asymm-bneck

5 240 40 1

7 5 240 40 1

8 5 120 48 1

9
142 × 48 asymm-bneck

5 144 48 1

10 5 288 96 2

11
72 × 96 asymm-bneck 5 576 96 1

12

13 72 × 96 conv2d 1 - 576 1

14 72 × 576 avgpool 7 - - 1

15 1× 576 conv2d 1 - 1024 1

16 1× 1024 conv2d 1 - 1000 1

Table 4. Specification for AsymmNet-S using MobileNetV3-small

base.

our choice is that the core hyper-parameters such as kernel

size, expand size, and network depth of MobileNetV3 are

determined through a NAS algorithm and exhaustive search

process. Our efforts thus mainly focus on the manual im-

provement of the basic block design. For a fair comparison,

we keep those automatically selected hyper-parameters un-

changed.

Therefore, the main building blocks of AsymmNet con-

sists of a sequence of stacked asymmetrical bottleneck

blocks, which gradually downsample the feature map res-

olution and increase the channel number to maintain the

whole network’s information capacity. We consider the pre-

sented architecture in this work as a basic design, while we

believe that the automatic architecture and hyper-parameter

search methods can further boost the performance.

4. Experiments

This section presents detailed experimental results. We

first evaluate the model performance on the ImageNet clas-

sification task under various complexity (MAdds) settings.

We further validate the generalization ability and effective-

ness of the proposed approach on four downstream tasks,

including face recognition, action recognition, pose estima-

tion, and object detection.

4.1. Experiment setup

We utilize the deep learning framework MXNet [4] and

the off-the-shelf toolbox Gluon-CV [18] to implement our

models. We use the standard SGD optimizer for model

training with both decay and momentum of 0.9 and the

weight decay is 3e-5. We use the cosine learning rate sched-

uler with the initial learning rate of 2.6 for eight GPUs. The

corresponding batch size was set to 256. Without special

declaration, we train all the models for 360 epochs, in which

five epochs are conducted for a warm-up phase. Detailed

configurations can be found in our open-source codes 1.

4.2. Image classification

4.2.1 Compare to MobileNetV3

This section extensively studies the advantages of the pro-

posed AsymmNet and pruned model over MobileNetV3

(MBV3) on the ImageNet ILSVRC 2012 dataset [8]. As

shown in Table 5, we compare their performance under

multiple complexity settings by tuning the weight multi-

plier. We consider both V3-large and V3-small architec-

ture as references and comprehensively evaluated the clas-

sification accuracy, computation complexity (MAdds), and

inference latency. Doing so can help reveal the performance

advantage of the full spectrum of model architecture con-

figurations. We applied the DNN inference toolkit MNN

[25] for the latency evaluation since MNN is specifically

optimized for mobile devices. All the inference tests have

been done on an Android phone equipped with a Qualcomm

snapdragon-855 CPU with 8G RAM in the single thread

modus. We average the latency results of 1000 runs for

each model. To conduct a fair comparison, we replace the

corresponding convolution blocks and keep all the hyper-

parameters unchanged.

We can figure out that, AsymmNet outperforms Mo-

bileNetV3 on classification accuracy in almost all the com-

plexity settings, while the pruned model demonstrates bet-

ter efficiency with slight accuracy drops. However, the ac-

curacy loss becomes negligible when the MAdds getting

smaller or even reversed, e.g., pruned model outperforms

MobileNetV3 by 3.4% at the level of 0.35-Small. Specif-

ically, when the model gets smaller and less complex, the

accuracy advantage of AsymmNet becomes more apparent.

This phenomenon effectively reveals the proposed asym-

metrical bottleneck block’s superiority in the spectrum of

extremely lightweight models (a regime <220M MAdds).

4.2.2 Ablation study on asymmetry rate

We evaluate the asymmetry rate r on the ImageNet dataset

to obtain the best choice in terms of accuracy and complex-

ity. Table 6 shows the result, where r = 1 demonstrates the

best trade-off.

4.3. Face recognition

Face recognition is a crucial identity authentication tech-

nology used in many mobile or embedded applications such

as mobile payment and device unlock. In this subsection,

we employ AsymmNet-L and the proposed AsymmNet-s as

network backbone for face recognition. Following Mobile-

FaceNet [3], we use a global depthwise convolution layer

1https://github.com/Spark001/AsymmNet



Multiplier Model Scale Networks Top-1 Acc (%) MAdds (M) Params (M) Latency (ms)

0.35

Large

AsymmNet 65.4 43 2.2 7.2

Pruned 63.3 36.9 2.1 5.2

MBV3 64.2 40 2.2 6.3

Small

AsymmNet 55 15 1.7 3.3

Pruned 53.2 13.6 1.7 2.9

MBV3 49.8 12 1.4 3

0.5

Large

AsymmNet 69.2 67.2 2.8 10.2

Pruned 68.3 59 2.6 7.1

MBV3 68.8 69 2.6 8.8

Small

AsymmNet 58.9 20.6 1.9 4.2

Pruned 57.3 18.6 1.9 3.6

MBV3 58 21 1.6 3.7

0.75

Large

AsymmNet 73.5 142.1 4.2 19.4

Pruned 72.6 125.3 3.8 13.6

MBV3 73.3 155 4 16.2

Small

AsymmNet 65.6 40.8 2.5 6.9

Pruned 64 36.9 2.3 6.1

MBV3 65.4 44 2 6.3

1.0

Large

AsymmNet 75.4 216.9 5.99 27.1

Pruned 74.9 193.6 5.3 19.5

MBV3 75.2 216.5 5.4 23.3

Small

AsymmNet 68.4 57.7 3.1 8.9

Pruned 67 52.5 2.6 7.9

MBV3 67.5 57 2.5 8.17

1.25

Large

AsymmNet 76.4 349.8 8.3 38.8

Pruned 76.1 311 7.2 29.2

MBV3 76.6 356 7.5 34.9

Small

AsymmNet 70.6 91.7 3.9 12.7

Pruned 69.8 83.1 3.5 11.2

MBV3 70.4 91 3.6 11.7

Table 5. Performance comparison between AsymmNet, Pruned model, and MobileNetV3 across a large variety of scale levels. We consider

both V3-Large and V3-small architecture as references and comprehensively evaluated the accuracy, computation complexity (MAdds),

and inference efficiency. Top-1 accuracy is on the ImageNet dataset, and all latency are obtained by averaging the inference time of 1000

executions on a Qualcomm snapdragon-855 CPU with 8G RAM in the single thread modus. To conduct a fair comparison, we replace the

corresponding convolution blocks and keep all the hyper-parameters unchanged.

Scale r Top-1 Acc (%) MAdds (M) Params (M)

Large

0 75.2 216.6 5.4

1 75.4 216.9 5.9

2 74.8 217.3 6.6

Small

0 67.4 56.9 2.9

1 68.4 57.7 3.1

2 68.0 58.5 3.3

Table 6. Ablation study on asymmetry rate r using ImageNet

dataset. We apply both large and small AsymmNet for this evalu-

ation. r = 1 shows the best performance.

rather than a global average pooling layer to output discrim-

inative feature vectors. Both models are trained on MS-

Celeb-1M [13] dataset from scratch by ArcFace [9] loss,

for a fair comparison between them. The input image size

is 112×112. We report result on different dataset including

LFW [23], CALFW [48], CPLFW [47], AgeDB-30 [32],

and VGGFace2 [2] as in Table 7. As shown in the table,

our face recognition models with AsymmNet-s/L as back-

bone outperform MBV3-s/L consistently, especially in the

CPLFW dataset, our models outperform by a margin of

1.5% and 1.9%, respectively. The computational complex-

ity of our face recognition model uses AsymmNet-s as the

backbone is about 21 times less than MobileFaceNet [3].

4.4. Action recognition

Action recognition has drawn a significant amount of at-

tention from the academic community, owing to its appli-

cations in many areas like security and behavior analysis.

We evaluate and compare AsymmNet and MobileNetV3



Backbone LFW (%) CALFW (%) CPLFW (%) AgeDB-30 (%) VGGFace2 (%) MAdds(M) Params(M)

AsymmNet-s 97.9 90.1 80.2 86.6 83.6 10.3 0.3

MBV3-s 97.2 90.1 78.7 85.7 83.5 10.2 0.3

AsymmNet-L 99.1 93.8 86.6 93.2 89.6 41.6 1.1

MBV3-L 99.1 94.0 84.7 93.0 88.4 41.2 1.0

MobileFaceNet[3] 99.6 - - - - 221 1.0

Table 7. Performance comparison among different face recognition datasets.

Backbone Top1-Acc (%) MAdds(M) Params(M)

AsymmNet-s 47.2 56.5 1.9

MBV3-s 46.7 55.7 1.7

AsymmNet-L 52.8 215.7 4.8

MBV3-L 51.3 215.4 4.2

ResNet50v1b[12] 55.2 4087.2 16.1

Table 8. Action recognition result on HMDB51 dataset.

Backbone AP AP50 AP75 MAdds(M) Params(M)

AsymmNet-s 54.4 84.4 59.7 310.7 1.7

MBV3-s[12] 54.3 83.7 59.4 309.7 1.6

AsymmNet-L 63.5 88.9 70.9 523.9 4.3

MBV3-L[12] 63.7 88.9 70.8 523.6 3.7

Table 9. Pose estimation results on COCO human pose dataset us-

ing SimplePose method. All the AP results are in percentage.

as feature extractors for action recognition following [44]

on the HMDB51 dataset [26]. The input image size is

224×224. As summarized in Table 8, AsymmNet achieves

superior results compared to MobileNetV3 at both large and

small scales. Furthermore, it reaches an accuracy close

to ResNet50v1b [12], while its MAdds is about 19 times

smaller.

4.5. Pose estimation

There has been significant progress in pose estimation

and increasing interest in pose tracking in recent years.

Thus, we evaluated AsymmNet as the backbone on this task

by using the challenging COCO human pose benchmark

[28]. Our approach is based on the SimplePose model [45],

which estimates heat maps from deep and low-resolution

feature maps. We replace the backbone with mobile CNN

models and evaluate the accuracy for a fair comparison. The

input image size is 256× 192. The test set results are given

in Table 9. Our pose estimation results with AsymmNet-s

backbone surpass MBV3-s in all three metrics.

4.6. Object detection

We apply AsymmNet as a drop-in replacement for the

original backbone in YOLO-v3 detector [36]. We compare

our results to MobileNetV3 on the PASCAL VOC dataset

[10] on object detection. We change the base model of the

adopted YOLO-v3 architecture and train our models on the

Backbone mAP (%) MAdds(G) Params(M)

AsymmNet-s 69.80 7.99 9.33

MBV3-s 68.98 7.99 9.16

AsymmNet-L 76.18 8.58 11.97

MBV3-L 76.64 8.58 11.39

MobileNetV1[12] 75.8 9.92 11.83

Table 10. Object detection results on the PASCAL VOC dataset

using YOLO-v3 detector.

combination of VOC2007 trainval and VOC2012 trainval,

test on VOC2007 test set. The input image size is 416×416.

Table 10 illustrates the results compared to other models

based on MobileNet backbones. AsymmNet-s outperforms

MBV3-s on this task.

5. Conclusion and Discussion

In this paper, we introduced a novel design for ultralight

CNN models. We investigated important design choices, re-

designed two pointwise convolutions of the inverted resid-

ual block, and developed a novel asymmetrical bottleneck.

We can see that AsymmNet has a consistent accuracy ad-

vantage over MobileNetV3 in the ultralight model regime

through our experiments on a series of downstream tasks.

It thus can be used as a practical complementary approach

to existing state-of-the-art CNN models in the regime of

<220M MAdds.

However, we observed that AsymmBlock also has its

limitations. For instance, with the increase of MAdds, it

can not continue to show the advantage of accuracy, as

the comparison result with MobileNetV3-1.25. Also, the

AsymmNet-L model does not demonstrate benefits in the

object detection task. One possible explanation is that the

current AsymmNet architecture is based on MBV3, which

is searched using MMBlock that not necessarily the most

suitable architecture for AsymmNet. Thus, we will con-

tinue to optimize it in future work. As the next step, we

will combine automatic search techniques with asymmetri-

cal bottlenecks.
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