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We characterize absorption-time distributions for birth-death Markov chains with an absorbing
boundary. For “extinction-prone” chains (which drift on average toward the absorbing state) the
asymptotic distribution is Gaussian, Gumbel, or belongs to a family of skewed distributions. The
latter two cases arise when the dynamics slow down dramatically near the boundary. Several models
of evolution, epidemics, and chemical reactions fall into these classes; in each case we establish new
results for the absorption-time distribution. Applications to African sleeping sickness are discussed.

Modeling extinction-prone dynamics is essential to our
understanding of epidemics, disease incubation, and evo-
lution. For example, a key goal in epidemiology is to
implement control measures (such as social distancing
or vaccination) that push the dynamics toward a state
where the disease is eradicated on a reasonable timescale
[1–3]. Similarly, disease incubation [4, 5] and evolution
[6, 7] involve highly fit infectious cells or mutant species
outcompeting their less fit counterparts.

In these fields the distribution of extinction times,
rather than just the mean, is crucial. For example, how
long must a patient wait after exposure to a disease to
be sure they are not infected? In the best and worst case
scenarios, how long must epidemiological control mea-
sures be imposed to stop an outbreak? Knowledge of
the extinction-time distribution provides an answer to
these questions. Incubation period distributions have
long been measured empirically to inform treatment reg-
imens or public health initiatives [4]. Similarly, a recent
study used a data-driven model of African sleeping sick-
ness in the Democratic Republic of Congo to predict the
distribution of times until the disease is eradicated [3].

In this Letter, we show that two particular
extinction-time distributions—Gaussian and Gumbel
distributions—arise generically from basic features of the
stochastic dynamics driving the system. These distri-
butions were found previously in several models of evo-
lutionary dynamics [5, 8, 9]. We show now that these
same distributions appear in much more general classes of
birth-death Markov chains, along with a family of skewed
distributions that include the Gumbel. Extending the ap-
proach introduced in Ref. [9], we provide analytical crite-
ria that predict when the asymptotic absorption-time dis-
tribution is normal, Gumbel, or a member of the family of
skewed distributions. We apply our results to models of
epidemiology [10–12], ecology [13–15], stochastic chem-
ical reactions [16, 17], and evolutionary games [18], for
which the predicted distributions agree with those mea-
sured via simulation. To our knowledge, this is the first
calculation of the asymptotic absorption-time distribu-
tions for these models. As an application, we show that
the Gumbel distribution closely resembles eradication-

time distributions for African sleeping sickness.
We analyze birth-death Markov processes with a lin-

ear chain of states m = 0, 1, . . . , N . For example, m
might represent the number of infected individuals in
an epidemic. The system has an absorbing state at
m = 0 (where nobody is infected) and a reflecting state
at m = N (the maximum allowed infected population).
Transitions occur only between neighboring states, i.e.,
the population can only increment by 1 in either direc-
tion. The dynamics of pm(t), the probability of occupy-
ing state m at time t, obey the master equation,

ṗm(t) = bm−1pm−1(t) + dm+1pm+1(t)− (bm + dm)pm(t),
(1)

where bm and dm are respectively the birth and death
rates at which the state increases or decreases from
state m. The master equation can also be expressed as
ṗ(t) = Ω ·p(t), where Ω is the transition matrix contain-
ing the birth and death rates. Since the state at m = 0
is absorbing and the state m = N is reflecting, we have
b0 = bN = 0. For simplicity we assume the system starts
in an initial state m = N , i.e. pm(0) = δm,N , but our
results apply more broadly [19]. The quantity we are in-
terested in is the first-passage time T to the absorbing
state m = 0; here we focus on obtaining the probability
distribution about the mean.

Building on our recent results [9], we develop an ap-
proach to determine the absorption-time distributions for
general classes of birth-death Markov chains in the limit
of large system size. The key insight is to introduce a
change of variables, Dm = bm + dm and rm = bm/dm. If
the system is in state m, it waits on average a time D−1m
before increasing or decreasing. The probabilities of the
next step being forward or backward are rm/(1+rm) and
1/(1+rm) respectively; rm is the ratio of these probabili-
ties. Thus, our coordinate change separates the random-
walk portion of the Markov process, which describes the
relative probabilities of stepping forward or backward at
each state, from the times spent waiting in each state.
This change of variables leads to a transition matrix de-
composition, Ω = ΩRWD, where D is diagonal with ele-
ments Dm and ΩRW is the transition matrix for a biased
random walk. The number of times the system visits
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each state depends only on the random-walk portion of
the process. The elements Vij of V = −Ω−1RW encode
the average number of visits to state i before absorption,
starting from state j.

To characterize the asymptotic distributions, we com-
pute the cumulants κn(N) of the absorption time T ,
which describe the shape of the distribution. For in-

stance, κ1 is the mean, κ2 is the variance, and κ3/κ
3/2
2

is the skew. Following Ref. [9] we use the matrix decom-
position above to derive the cumulants (generalizing the
previous result to non-constant rj):

κn({rj}, N) =
∑

1≤i1≤i2≤···≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

.

(2)
Here wni1i2···in({rj}) are weighting factors that depend
only on the visit statistics of the random walk; for ex-
ample, w1

i ({rj}) = Vi,i. See the Supplemental Material
[19] for a derivation of this formula and explicit expres-
sions for the first few weighting factors, each of which
are polynomials of the visit numbers Vij . Equation (2)
is equivalent to well known recursive relations for ab-
sorption time moments [20], but this form enables the
asymptotic analysis leading to the results below.

The weighting factors have some convenient properties.
First, they appear to be non-negative: wni1i2···in({rj}) ≥
0 and increasing functions of each rj . We show the non-
negativity and monotonicity explicitly up to order n = 4
[19] and conjecture these properties hold for all orders.
Second, the weighting factors appear to fall off exponen-
tially away from the diagonal. For constant rj = r, this
exponential decay can be shown explicitly [9]. We con-
jecture that the same decay holds for arbitrary transition
probabilities {rj}. The intuition is that the visits to state
i are uncorrelated with those to state j (for N � 1 and
i− j = O(N)), due to the Markov property.

The first universality class of birth-death Markov
chains we consider have normally distributed absorption
times. As an instructive special case, consider the pro-
cess bm = 0, dm = d, which visits each state exactly
once before absorption, waiting a time d−1 on average at
each. The time to absorption is simply T =

∑
m Em(d)

where Em(d) is an exponential random variable. Since T
is a sum of identical random variables we expect it to be
normally distributed by the central limit theorem. Alter-
natively, the cumulants of T are κn = N/dn. In units of
the standard deviation the higher order cumulants van-

ish: κn/κ
n/2
2 = N1−n/2 → 0 as N → ∞. Hence the

distribution is asymptotically normal.
We might also expect this asymptotic normality to

hold for transition rates with mild state dependence: if
bm + dm does not vary too much (we will give a pre-
cise condition below), the absorption time is a sum of
nearly identical exponential random times. Similarly, for
rm = bm/dm > 0, the system randomly walks back and
forth, but as long as rm < 1 the average number of visits

to each state is finite. Under either of these generaliza-
tions the distribution is asymptotically normal.

To characterize more precisely which Markov chains
lead to normally distributed absorption times, we com-
pute the asymptotic form of the cumulants in Eq. (2) by
introducing two auxiliary Markov chains. These have
the same bi + di as the original system, but bi and
di are adjusted so that the ratios are rj = rmax or
rj = rmin, where rmax = limN→∞max1<j<N rj and
rmin = limN→∞min1<j<N rj . In other words, we con-
struct two Markov chains where the time spent waiting
in each state is identical to that for the original system,
but the odds of moving toward the absorbing state are
increased or decreased to be uniform.

Above we noted that the weighting factors wn in
Eq. (2) are increasing functions of rj . Thus, we can
bound the cumulants in our system by those for the
auxiliary Markov chains, κn(rmin, N) ≤ κn({rj}, N) ≤
κn(rmax, N). The asymptotic form of κn(r,N) (where r
is constant across states) was computed in Ref. [9]; we
summarize the calculation in the Supplemental Material
[19]. To nail down the asymptotics of κn(r,N) we require
the waiting times to be ‘flat’ in the following sense:

1

N

N∑

m=1

tm ∼ c max
1≤m≤N

tm, (3)

where tm = (bm + dm)−1 is the mean waiting time at
state m and c is a constant independent of N . In other
words, the mean waiting time 〈tm〉 across all states is the
same asymptotic order as the maximum waiting time:
the process fluctuates at an approximately uniform rate
across the entire Markov chain, without spending a dis-
proportionate amount of time in any one state. Gaussian
absorption times have also been found in the continuum
limit via the linear-noise approximation, which removes
state dependence from the noise [21]. This approximation
is similar to the condition (3), which requires the noise
amplitude bm + dm to vary only mildly across states.

If Eq. (3) holds, then κn(r,N) ∼ cn(r)f(N)nN , where
f(N) ∼ max1≤i≤N (bi + di)

−1. Since these asymp-
totics hold for r = rmin and r = rmax, it follows that
κn({rj}, N) ∼ cn({rj})f(N)nN as well.

With the asymptotic form of the cumulants estab-
lished, we analyze the shape of the distribution using the

standardized cumulants κ̃n = κn/κ
n/2
2 for n ≥ 2 (which

are rescaled so that the variance κ̃2 = 1). Using the
asymptotic form obtained above, we find κ̃n ∼ c̃nN1−n/2.
In particular, κ̃n → 0 as N → ∞ for n > 2, so that the
distribution becomes Gaussian for large N (the cumu-
lants past second order vanish for normal distributions).

For finite N , the dominant correction to the normal
distribution comes from the non-zero skew κ̃3 ∼ c̃3/

√
N .

The coefficient in this scaling depends on the ratios rj ;
in the Supplemental Material [19] we compute a bound
on this coefficient, which is useful for estimating the
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FIG. 1. Absorption-time distributions for (a) the ran-
dom transition matrix model (large black circles) and the
evolutionary game on a ring (small red circles), (b) SIS
model (large black circles), logistic model (small red circles),
and autocatalytic chemical reaction model (cyan triangles),
(c) the well-mixed evolutionary game, and (d) the process
bm = rdm = rmp, for r = 0 and p = 0.3 (blue), p = 0.75
(orange), p = 1 (green), and p = 1.8 (red). The r = 0.8 dis-
tributions are indicated by dotted lines (when they differ from
the r = 0 counterparts). See [19] for models and parameters.
We used system sizes (a-b) N = 500 and (c-d) N = 1000 and
simulated (a) 5×104, (b-c) 105, and (d) 106 trials to measure
the distributions, which have been standardized to have zero
mean and unit variance. In (c) the distributions are a convolu-
tion of Gumbel distributions with relative weighting s ≈ 0.73.
Deviations from predicted normal and Gumbel distributions
in (a-c) are due to finite system size.

rate of convergence in applications. The ratio of the

standard deviation κ
1/2
2 to the mean κ1 also scales like

κ
1/2
2 /κ1 ∼ c̃1/

√
N , similar to the skew. As the distribu-

tion converges to the Gaussian, the relative width of the
distribution narrows at the same rate. To summarize,
any birth-death Markov chain that satisfies the ‘flatness’
condition, Eq. (3), and has an absorbing state toward
which the system flows on average (rj < 1) will have
asymptotically Gaussian distributed absorption times.

Our first example of a Markov chain with normally
distributed absorption times is a toy model with random
transition probabilities. Here we select bm+dm uniformly
at random between 0.1 and 2 and rm uniformly at ran-
dom between 0 and 0.9, which satisfies the conditions
described above. This example shows that the transition
rates need not be smooth in m; systems with disordered
transition rates still belong to this universality class.

Next we study evolutionary game dynamics on a one-
dimensional ring [22, 23]. Mutant and wild-type individ-
uals compete via the following dynamics: an individual
is chosen randomly, proportional to its (frequency de-
pendent) fitness. The selected individual gives birth to

an offspring of the same type, which in turn replaces a
random neighbor. The model runs until the mutation
spreads to the entire population.

Figure 1(a) shows simulation results for the random
transition system and the evolutionary game. Both dis-
play the expected normal distribution. Interestingly, for
the evolutionary game, the normal distribution appears
for a wide range of parameters, while the mean absorp-
tion time and absorption probability depend more intri-
cately on parameters [22, 23].

Gumbel distributions, known for their role in extreme
value theory [24], also arise generically in absorption pro-
cesses. This second universality class is closely related
to the ‘coupon collector’ problem in probability theory,
which asks the following: if there are N distinct coupons
and we are given a random one (with replacement) at
each time step, how long does it take to collect all N
coupons? The collection process displays a characteristic
slowdown: when nearly all coupons have been collected,
it takes a long time to acquire the final few because dupli-
cates keep getting selected. Erdős and Rényi showed that
for large N the time to complete the collection follows a
Gumbel distribution [25].

The coupon collector problem can be modeled using
Markov chains. Let m be the number of coupons missing
from the collection of N total coupons. The probabil-
ity of obtaining a new coupon (thereby decreasing m) is
m/N and the number of missing coupons never increases.
Thus, the coupon collection process is described by birth-
death dynamics with bm = 0 and dm = m/N . The linear
decay of the transition probability dm near the absorb-
ing boundary is the key feature that gives rise to the
characteristic slowdown. For this case the cumulants can
be computed exactly, κ̃n = (n − 1)!ζ(n)/ζ(2n)n/2, and
match those for a Gumbel distribution. Similar to the
Gaussian class above, we find that the Gumbel distribu-
tion is preserved for non-zero rm < 1 and nonlinear tran-
sition rates as long as the linear decay is dominant near
0. Specifically, if bm + dm = f(N)m[1 +O(m/N)], with
bαN+dαN of order at least O(Nf(N)) for any 0 < α ≤ 1,
and if rm = r+O(m/N) for large N , then the absorption-
time distribution is asymptotically Gumbel [26].

By bounding the cumulants (2), we show [19] their
leading order behavior for N � 1 is dominated by the
states near 0, where the approximations bm + dm ≈
f(N)m and rm ≈ r become asymptotically exact, so that

κn({rj}, N) ∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤N

wni1i2···in(r)

i1i2 · · · in
. (4)

The factors f(N)n set the timescale of the process but
do not affect the shape of the distribution (they cancel in

κ̃n = κn/κ
n/2
2 ). Thus, we have shown that the cumulants

are asymptotic to those for a process with bm + dm =
m and bm/dm = r. The absorption-time distribution
for this process can be computed exactly (see Ref. [14,
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FIG. 2. Absorption-time skew for the process bm = rdm =
rmp with r = 0 (blue circles) and r = 0.8 (red squares), plot-
ted as a function of the power-law exponent p. Skews were
numerically computed for N = 105 using the recurrence re-
lation approach described in Ref. [9]. The black line shows

the asymptotic skew 2ζ(3p)/ζ(2p)3/2 for r = 0. The curves
cross at p = 1 where the distribution is Gumbel, independent
of r. For p ≤ 0.5 the skew approaches zero and the distribu-
tion is Gaussian. The numerical skew is slightly larger than
expected for p . 0.6 due to finite size effects.

Appendix B]) and approaches a Gumbel distribution as
N →∞ [19]. Therefore, any system with transition rates
vanishing linearly and ratios rj that approach a constant
near the absorbing boundary will fall into the Gumbel
universality class.

As in the Gaussian class, the relative width of the
Gumbel distributions becomes small for N � 1. In
this case, however, the standard deviation-to-mean ra-

tio scales like κ
1/2
2 /κ1 ∼ C1/ lnN . On the other hand,

the deviations from the Gumbel cumulants decay like
δκ̃n = κ̃n − κ̃Gumbel

n ∼ CnN
−1 lnN (see Supplemental

Material, Section S3.A [19] and [26]). Thus the distri-
bution narrows very slowly compared to the convergence
to the Gumbel shape. Therefore, in applications we ex-
pect to see the Gumbel distribution appear before the
fluctuations become negligible.

Finally, if the transition rates vanish near the initial
condition N , scaling like bm + dm = f̃(N)(N − m) +
O((N − m)2), there will be another coupon-collection
slowdown at the beginning of the process. An identical
analysis to that above shows that the contributions from
the two coupon collection regions simply add together to
give the cumulants. The resulting absorption-time distri-
bution is therefore a convolution of two Gumbels, with
one weighted by s = limN→∞ f(N)/f̃(N).

To illustrate the Gumbel universality class we use the
susceptible-infected-susceptible (SIS) model of epidemi-
ology [12], the logistic model from ecology [13], and an
autocatalytic chemical reaction model [16, 17] (details
in Supplemental Material [19]). In each case the tran-
sition rates decrease linearly near the absorbing state.
For example, in the SIS model, bm = Λm(1−m/N) and
dm = m, where Λ is the infection rate.

Our simulations show that these models each have the
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FIG. 3. Generalizations to high-dimensional models and
Markov chains with internal sinks. (a) Extinction-time distri-
butions for sleeping sickness predicted using a 17-dimensional
compartmental model that was fit to case data from the
Mosango (large black circles) and Kwamouth (small red cir-
cles) regions of the Democratic Republic of Congo (data from
Ref. [3]). Mean extinction times (measured from 2016) are ap-
proximately 9.5 and 31 years for the Mosango and Kwamouth
regions respectively, with standard deviations of 4.8 and 7.9
years. Disease eradication times approximately follow a Gum-
bel distribution (fit using the mean and variance). (b) Sim-
ulations of the SIS, logistic, reaction, and well-mixed evolu-
tionary game models have exponential absorption-time dis-
tributions (standardized to zero mean and unit variance) if
parameters are chosen so that the dynamics have an internal
sink state. For each case, we used N = 50 and simulated 106

trials. See [19] for model details and parameters.

expected Gumbel distribution [Fig. 1(b)]. The distribu-
tion is also insensitive to parameter choices (e.g., a Gum-
bel appears in the SIS model for any Λ < 1).

If we study the aforementioned evolutionary game in
a well-mixed population, the transition rates vanish lin-
early as m → 0 and m → N [19, 27]. As discussed
above, we expect a convolution of Gumbel distributions
with relative weighting s given by the ratio of the linear
coefficients at these two boundaries. Figure 1(c) shows
that this prediction is borne out in simulations.

In addition to Gumbel and Gaussian classes, other
absorption-time distributions arise if the transition rates
have power-law decay: bm+dm = f(N)mp[1+O(m/N)].
For p < 1/2, the decay is sufficiently slow that the nor-
mal distribution is maintained: the system still fluctu-
ates at an approximately uniform rate across states. On
the other hand, if p > 1/2 we find a generalized coupon
collection phenomenon giving rise to a family of skewed
distributions. Slowdown near the boundary dominates
the absorption process and the distribution is asymp-
totic to that for the minimal model bm = rdm = rmp

[19]. When r = 0 the cumulants can be computed ana-
lytically: κ̃n = (n− 1)!ζ(np)/ζ(2p)n/2 [5, 8]. Figure 1(d)
shows the resulting distributions for a few values of p.
Interestingly for p 6= 1, the shape of the distribution de-
pends subtly on r. Figure 2 shows the skew of these dis-
tributions as a function of p, elucidating the transition
from normal distributions to the skewed family.

Beyond simple one-dimensional Markov processes, the
eradication-time distributions for African sleeping sick-
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ness predicted by a 17-dimensional data-driven model
[3] closely resemble the Gumbel [Fig. 3(a)]. This result
suggests that the Gumbel distribution is also generic in
higher dimensions if the dynamics collapse onto a one-
dimensional slow manifold near absorption. Crucially,
although the distributions have converged to the Gumbel
shape, the fluctuations still matter: the probable extinc-
tion times span years. The ratio between the standard
deviation and the mean is approximately 0.5 and 0.25 for
the Mosango and Kwamouth regions respectively. Sim-
ilar results hold for a variety of high-dimensional sys-
tems. Their dynamics are accurately approximated by
birth-death processes with transition rates that vanish
as a power-law mp near the boundary. Examples in-
clude evolutionary dynamics on D-dimensional lattices
(p = 1− 1/D) and complex networks [5, 8, 28] as well as
epidemics on networks [29].

In this Letter we have characterized universality classes
for absorption times in birth-death Markov chains. While
our results are formulated in terms of the transition
rates bi and di, we can also connect the shape of the
absorption-time distribution to the spectrum of the tran-
sition matrix. Discussion and derivation of these results
are provided in the Supplemental Material, sections S2.B
and S3.C [19]. Future work might focus on characteriz-
ing additional universality classes beyond those studied
here. For example, simulations [Fig. 3(b)] show that ex-
ponential absorption-time distributions arise frequently
in systems with an internal sink state, toward which tran-
sitions are more likely [30]. The emergence of the expo-
nential distribution makes sense intuitively: the system
quickly settles into a quasiequilibrium mode around the
sink, whose slow exponential decay dominates the ab-
sorption process [31]. To our knowledge, however, there
is no rigorous classification of this case. It would also
be fascinating to investigate whether there is a univer-
sal crossover between different members of our family of
absorption-time distributions. For example, how do the
distributions change if the transition rates have mixed
decay mp + εmq? Understanding the crossover scaling
between these cases will enable the classification for an
even broader class of extinction-prone Markov chains.

We thank David A. Kessler and Nadav Shnerb for help-
ful comments regarding the Gumbel classification and
connections to extreme value theory. This work was sup-
ported by an NSF Graduate Research Fellowship, grant
No. DGE-1650441 to D.H.
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This Supplemental Material provides rigorous mathematical derivations supporting the results discussed in the
main text and gives details of the various example models used to demonstrate the Gaussian and Gumbel classes.
Section S1 provides discussion of additional cases (with different initial or boundary conditions) where our results still
apply. Section S2 gives a detailed derivation of the absorption-time cumulants (Eq. (2) in the main text), including
the weighting factors wn and their properties. Sections S3 and S4 provide the details of the asymptotic analysis used
to characterize Markov processes with normal and Gumbel absorption-time distributions respectively and discuss the
leading corrections and transition matrix spectrum for each case. Section S5 shows the classification of processes
with transition rates that decay as a power-law with exponent p near the boundary. We show this power-law decay
leads to Gaussian distributions (p ≤ 1/2), or a skewed family of distributions (p > 1/2). Finally, in Section S6 we
describe the dynamics for the evolutionary game, the susceptible-infectious-susceptible model, the logistic model, and
the autocatalytic chemical reaction model. For each case we derive the Markov transition probabilities and explain
how the model falls into one of our universality classes.

S1. DISTRIBUTIONS ARE ROBUST TO CHANGES IN INITIAL AND BOUNDARY CONDITIONS

In the main text, we specialize to Markov chains with a finite state space of size N , a reflecting upper boundary, and
initial condition at the maximal state pm(0) = δm,N . Our asymptotic absorption-time distributions, however, should
be robust to changes in initial and boundary conditions. Because the dynamics are extinction-prone, the system
quickly progresses toward the absorbing state, spending negligible time near the reflecting boundary. Therefore, if the
initial condition m0 is sufficiently large (m0 ∼ N for large N), corrections due to variation in the initial condition will
be sub-dominant as N →∞. By the same argument, we expect the same asymptotic distributions to occur for infinite
systems with free boundary conditions and no maximal state N , but large initial condition. On the other hand, if the
upper boundary is absorbing, our result describes the absorption-time distribution, given that the absorbing state at
0 is reached (i.e. if we ignore all trajectories that are absorbed at the upper boundary) [1]. Finally, our results can
also be used to determine the first-passage-time distribution to an arbitrary state m, since the first-passage problem
can be solved by making the target state absorbing [2].

S2. ABSORPTION-TIME CUMULANTS AND WEIGHTING FACTOR PROPERTIES

A. Derivation of the absorption-time cumulants

In this section we derive a general formula for the absorption-time cumulants, shown as Eq. (2) in the main text.
This derivation follows Ref. [1], but we generalize to Markov chains where the ratio rm = bm/dm is non-constant. We
start from the master equation, Eq. (1) in the main text, and restrict our attention to the transient (non-absorbing)
states, m > 0, since these determine the time it takes to reach absorption. The master equation for these states can
be expressed as ṗ(t) = Ω · p(t), where Ω is the transient transition matrix with elements

Ωmn = bnδm,n+1 + dnδm,n−1 − (bn + dn)δm,n (S1)

for m,n = 1, . . . , N and p(t) is the vector of transient state occupancy probabilities.
The entire first-passage process can be characterized in terms of the transition matrix Ω. In fact, the first-passage

distribution p(t) can be written in terms of an element of the matrix exponential, p(t) = d1[exp(Ωt)]1,N and the
moments of T are

µn := E[Tn] = (−1)nn!1Ω−np(0), (S2)

where 1 is a row vector containing all 1’s and E denotes expected value.
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As discussed in the main text, to proceed it is useful to introduce the following decomposition of the transition
matrix: Ω = ΩRWD, where D is a diagonal matrix Dmm = bm + dm and

[ΩRW ]mn =
rn

1 + rn
δm,n+1 +

1

1 + rn
δm,n−1 − δm,n, (S3)

with rn = bn/dn. The rates Dmm determine how long the system waits in state m before taking a step and rm is the
relative probability of stepping forward versus backward along the chain. Defining V = −Ω−1

RW , the elements Vij are
the average number of visits to state i before absorption starting from an initial state j.

With the above decomposition we can easily invert the transition matrix,

[−Ω−1]ij =
Vij

bi + di
, (S4)

where visit numbers Vij are given by

Vij = (1 + ri)

min(i,j)∑

n=1

i−1∏

m=n

rm. (S5)

Then, using Eq. (S2) the moments can be expressed as

µn = n!
N∑

i1,i2,...in=1

Vi1i2Vi2i3 · · ·Vin−1inVinN

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (S6)

To compute the cumulants, we use the standard conversion formulas: κ1 = µ1, κ2 = µ2 − µ2
1, κ3 = µ3 − 3µ2µ1 + 2µ3

1,
and so on. Since the relation between cumulants and moments is polynomial, if we collect terms with common
denominators it follows that the cumulants have the form quoted in the main text,

κn({rj}, N) =
∑

1≤i1≤i2≤···≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

. (S7)

where the weights wn depend on the visit numbers Vij (and hence are functions of only the ratios {rj}). Note that
we sum over i1 ≤ i2 ≤ · · · ≤ in, so that each product in the denominator of Eq. (S7) appears exactly once. The
weights are determined using Eq. (S6) and the moment-cumulant conversion formulas. For example, the second and
third cumulants are

κ2 =
N∑

i,j=1

2VijVjN − ViNVjN
(bi + di)(bj + dj)

(S8)

κ3 =
N∑

i,j,k=1

6VijVjkVkN − 6VijVjNVkN + 2ViNVjNVkN
(bi + di)(bj + dj)(bk + dk)

. (S9)

From here we can read off the weights wn: they are simply the numerators in the above expressions, summed over
distinct permutations of the indices (since these terms have the same denominators). Carrying out the sum we obtain,

w2
ij =

∑

σ∈Π2

2Vσ1σ2
Vσ2N − Vσ1NVσ2N (S10)

w3
ijk =

∑

σ∈Π3

6Vσ1σ2Vσ2σ3Vσ3N − 6Vσ1σ2Vσ2NVσ3N + 2Vσ1NVσ2NVσ3N , (S11)

where Π2 is the set of distinct permutations of indices {i, j} and Π3 is the set of distinct permutations of {i, j, k}.

B. Properties of the weighting factors wn

In the main text, we noted that the weights wn have a few convenient properties. In particular, they are positive,
wni1i2···in({rj}) ≥ 0 and increasing functions of each of the rj . To show these properties, we use the fact that Vii = Vij
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for any i < j. This is easy to see from Eq. (S5), but also has an intuitive physical interpretation. Since the system
is eventually absorbed at the boundary state 0, if it starts from a state j > i it must visit i before absorption. After
the first visit, the statistics of the random walk are identical to a walk initialized in state i. Using this property the
sum over permutations above dramatically simplifies. For i < j we have

w2
ij = (2VijVjN − ViNVjN + 2VjiViN − VjNViN ) (S12)

= 2VjiViN .

Similarly, after simplification we find

w3
ijk = 3! (VkjVjiViN + VkiViNVjN ) (S13)

w4
ijkl = 4! (VlkVkjVjiViN + VlkVkiViNVjN + VljVjiViNVkN (S14)

+ VljVjNVkiViN + VliViNVkjVjN + VliViNVkNViN )

when i < j < k < l. When some indices are identical, these results still hold, but they must be divided by the
number of permutations of the identical indices, e.g. w2

ii = ViiViN (notice this differs from Eq. (S12) by a factor
of 2). The important feature of these expressions is that they are positive sums of products of the visit numbers
Vij . We conjecture that the weights at every order can also be written as a positive sums of products of the visit
numbers (though we omit the expressions here, we have checked this is true up to order n = 6). If this is the case, it
immediately follows that the weights wn are positive and increasing functions of each rj because the visit numbers,
Eq. (S5), themselves also have these properties.

S3. ASYMPTOTIC ANALYSIS FOR THE GAUSSIAN UNIVERSALITY CLASS

A. Cumulant bounds

To estimate the asymptotics of the cumulants we start from Eq. (S7) derived above. Since the weights wn are
increasing functions of the rj , we argued in the main text that

κn(rmin, N) ≤ κn({rj}, N) ≤ κn(rmax, N), (S15)

where rmax = limN→∞max1<j<N rj and rmin = limN→∞min1<j<N rj . The cumulants κn(rmax, N) and κn(rmin, N)
correspond to auxiliary Markov chains where bj + dj is unchanged, but rj = rmax or rj = rmin respectively.

Following Ref. [1], we provide asymptotic bounds on κ(r,N) that lead to an analytic criterion for the Gaussian
universality class. Since the diagonal elements of the weights wn are greater than 1, we can bound the cumulant
κn from below by a sum of the unweighted diagonal elements (bi + di)

−n. To bound from above we can take the
maximum value of (bi + di)

−n times the sum of the weighting factors. The sum over weighting factors wni1i2···in(r) is

precisely the nth cumulant for a biased random walk (with bi + di = 1 and uniform r). This sum can be computed
exactly using eigenvalues of the transition matrix [1]. In particular, the sum is O(N) for any n as long as r < 1 and
asymptotically can be represented in the integral form given below. Note that rmax < 1 as long as rj < 1− ε for all j
and some ε > 0: this condition was the first requirement for the Gaussian universality class quoted in the main text.
Altogether we have,

N∑

n=1

1

(bi + di)n
≤ κn(r,N) ≤

(
max

1≤i≤N
1

bi + di

)n
× N

π

∫ π

0

(n− 1)!

(1− 2
√
r/(1 + r) cosx)n

dx

=

(
max

1≤i≤N
1

bi + di

)n
×O(N).

(S16)

We can now read off the second condition for the Gaussian universality class. To nail down the asymptotics of
κn(r,N) we want the upper and lower bounds in Eq. (S16) to have the same scaling for large N . Specifically, we
require

1

N

N∑

i=1

1

(bi + di)n
∼ cn

(
max

1≤i≤N
1

bi + di

)n
, (S17)

for some N -independent constant cn. Setting n = 1 in this equation leads to the condition Eq. (3) quoted in the
main text. We can make this simplification because when Eq. (S17) is satisfied for n = 1, it is also satisfied for
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n > 1. To see this fact, first note that 〈(bi + di)
−n〉 < maxi(bi + di)

−n trivially. Furthermore, we can write the
left hand side of Eq. (S17) as N−1||(b + d)−1||pp, where || · ||p is the p-norm and (b + d)−1 is the vector containing

elements (bi + di)
−1. Using p-norm inequalities, we have N−1||(b+ d)−1||1 < N−1/n||(b+ d)−1||n for n > 1. Then if

c ·maxi(bi + di)
−1 < 〈(bi + di)

−1〉 as N →∞ for some constant c, it follows that cn maxi(bi + di)
−n < 〈(bi + di)

−n〉
in this limit as well. Thus, it is sufficient to check Eq. (S17) holds for n = 1, since this implies the condition holds for
all n > 1.

As discussed in the main text, the condition Eq. (S17) can be interpreted as the waiting times being ‘flat’ in the
following sense: all (or at least a significant fraction) of the (bi + di)

−1 are the same order as their maximum value. If
this condition holds, then for large N we have that κn(r,N) ∼ cn(r)f(N)nN where f(N) ∼ max1≤i≤N (bi + di)

−1 as
N →∞. Since these asymptotics hold for both r = rmin and r = rmax, it follows from Eq. (S15) that κn({rj}, N) ∼
cn({rj})f(N)nN as well, possibly with a different constant cn(rmin) < cn({rj}) < cn(rmax). These asymptotics imply
that the higher-order cumulants are dominated by the variance and hence the distribution looks normal for large N ,

i.e. the standardized cumulants κ̃n = κn/κ
n/2
2 → 0 as N →∞.

B. Leading correction to the Gaussian

The leading correction to the Gaussian distribution for finite N comes from the skew, κ̃3 = c̃3/
√
N . Here we

will give a bound on the magnitude of the skew, that can be used to predict when finite systems will have a nearly
Gaussian absorption-time distribution. First, define

K2 = lim
N→∞

1

Nf(N)2

N∑

i=1

1

(bi + di)2
, (S18)

where f(N) ∼ max1≤i≤N (bi + di)
−1 as N → ∞ as above. Then from Eq. (S16) that κ2 ≥ K2Nf(N)2. Evaluating

the integral in Eq. (S16) we have κ3 ≤ 2f(N)3N(rmax + 1)3(r2
max + 4rmax + 1)/(1− rmax)5. Putting these together,

κ̃3 ≤
2(rmax + 1)3(r2

max + 4rmax + 1)

(1− rmax)5K
3/2
2

1√
N
. (S19)

The convergence is slowest (i.e. the coefficient of 1/
√
N is large), when the conditions for the universality class are

pushed to their limits: if the system is barely extinction-prone, rmax ≈ 1, or the waiting times are not very uniform,
K2 � 1 (the sum in Eq. (S17) is nearly dominated by the maximal term). Finally, we note that this is a rough upper
bound; in many cases the convergence is much faster, e.g., if only a few rj ≈ 1 but the rest are very small. Replacing
rmax with the average rj in Eq. (S19) may often give a better estimate of the actual skew for a given system, even if
it does not give a strict upper bound.

C. Transition matrix spectrum

As noted in the main text, we can also connect the spectrum of the transition matrix to the Gaussian universality
class. Specifically, if Eq. (S17) is satisfied with bi + di replaced by the eigenvalues λi of the negative transition
matrix −Ω, the absorption-time distribution will be Gaussian. To show this, we use the spectral representation of the
absorption-time cumulants [1, 3],

κn = (n− 1)!

N∑

i=1

λ−ni . (S20)

If Eq. (S17) is satisfied for the eigenvalues, we have

N∑

i=1

λ−ni ∼ cn
(

max
1≤i≤N

λ−1
i

)n
, (S21)

Since the left-hand side of this expression is exactly the cumulant κn (up to the constant (n − 1)!), it immediately
follows that κn ∼ cng(N)nN where g(N) ∼ max1≤i≤N λ

−1
i as N →∞. Just as in the main text, this scaling implies

that the standardized cumulants vanish for large N : κ̃n ∼ c̃nN1−n/2 and the distribution is asymptotically Gaussian.
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More generally, the distribution approaches a Gaussian as long as κ̃n → 0 as N →∞. This condition with Eq. (S20)
describes a broader class of eigenvalue spectra that give rise to Gaussian absorption-time distributions. Specifically,
we need

(
N∑

i=1

λ−ni

)/(
N∑

i=1

λ−2
i

)n/2
N→∞−−−−→ 0. (S22)

While this condition is difficult to interpret, we consider two examples that illustrate the type of spectra that can give
rise to Gaussian absorption-time distributions. First, if λm = mp, the above condition is satisfied for p ≤ 1/2. This
result is related to the emergence of Gaussian distributions for the systems considered in Section S5.B, which have
transition rates that decay as a power-law with p ≤ 1/2. Also, if λm = P (m)/Q(m) for some polynomials P and Q,
the condition is satisfied when the degree of Q is greater than that of P .

S4. ASYMPTOTIC ANALYSIS FOR THE GUMBEL UNIVERSALITY CLASS

A. Cumulant bounds

For the Gumbel universality class we require bm + dm = f(N)m[1 + O(m/N)], bαN + dαN be of order at least
O(Nf(N)) for any 0 < α < 1, and rm = r +O(m/N) for large N . These properties are sufficient to guarantee that
the absorption-time cumulants are asymptotic to those for an exactly solvable canonical model (for which the above
equalities hold exactly, not just to leading order). Following Ref. [1], we restrict two of the indices in Eq. (S7) to be
O(N) away from the absorbing state, αN ≤ in−1 ≤ in ≤ N . With this restriction we can bound the sums,

∑

1≤i1≤i2≤···≤in−1

αN≤in−1≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

≤ 1

f(N)nN2

∑

1≤i1≤i2≤···≤in≤N
wni1i2···in(r). (S23)

In the previous section, we established that the sum over the weighting factors is O(N), so this portion of the sum is
O(f(N)−nN−1). We now consider indices 1 < i1 < αN and αN < in < N ,

∑

i1≤i2≤···≤in
1≤i1≤αN≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

≤ 1

f(N)nN

∑

i1≤i2≤···≤in
1≤i1≤αN≤in≤N

wni1i2···in(r). (S24)

Since the weighting factors decay exponentially away from the diagonal elements, the sum on the right hand side of
Eq. (S24) is O(1) and this portion of the sum is also O(f(N)−nN−1).

Since the same bounds also apply for any other pair of the indices, the only remaining portion of the cumulant
sum Eq. (S7) is that where all indices are near 0. Here the approximations that bm + dm is linear and rm is constant
become asymptotically exact so that,

∑

1≤i1≤i2≤···≤in≤αN

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤αN

wni1i2···in(r)

i1i2 · · · in
. (S25)

The right hand side of Eq. (S25) is at least O(f(N)−n) and therefore this region of the cumulant sum dominates
asymptotically compared to the O(f(N)−nN−1) terms estimated above. In other words, the absorption process is
entirely dominated by the coupon collection behavior near the absorbing state. Furthermore, we can freely extend
the upper limit of the sum to N (instead of αN) since this will only add subdominant terms. Finally, we obtain the
result quoted in the main text,

κn({rj}, N) ∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤N

wni1i2···in(r)

i1i2 · · · in
. (S26)

Thus, for any Markov chain satisfying the conditions at the beginning of this section, the cumulants are asymptotic
to those for the “canonical model” with bm + dm = f(N)m and rm = r exactly. In Section S4.C we show this model
has an asymptotically Gumbel absorption-time distribution.
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B. Leading correction to the Gumbel

The leading correction δκ2 to the standard deviation comes from the quadratic term in the transition rates, bm +
dm ≈ f(N)m(1 + m/N). Plugging this into Eq. (S26) for one set of rates in the denominator and using the partial
fraction decomposition 1/i(j + j2/N) = 1/ij + 1/i(j +N) leads to

δκ2 ∼
1

f(N)2

∑

1≤i≤j≤αN

w2
i,j(r)

i(j +N)

=
1

f(N)2

αN∑

i=1

(1 + r)2(1− ri)2

(1− r)2i(i+N)
+ 2

j−1∑

i=1

αN∑

j=1

rj−i(1 + r)2(1− ri)2

(1− r)2i(j +N)

(S27)

where in the second line we make use of the fact that rm ≈ r is approximately constant to write the explicit expression
for w2

i,j (obtained from Eqs. (S5) and (S12)). The sums in the second line can be evaluated explicitly in terms of special
functions, including harmonic numbers and the Lerch transcendent. The first sum is asymptotically dominant, leading
to δκ2 ∼ f(N)−2N−1 ln(N). More generally, the asymptotics above hold if bm+dm ≈ f(N)m(1+m/g(N)) as long as
the function g(N)→∞ as N →∞. An analogous calculation shows that for this case δκ2 ∼ [ln g(N)]/g(N)f(N)2. If
g(N) grows superlinearly, however, [ln g(N)]/g(N)f(N)2 is dominated by the corrections due to Eq. (S23) and (S24)
computed above, leading to δκ2 ∼ f(N)−2N−1.

The higher-order cumulants can be analyzed in similar fashion. Since the weights decay exponentially away from
the diagonal, the terms with i1 = i2 = · · · = in ≡ i is asymptotically dominant. For these elements wni1i2···in({rj}) =

(n− 1)!V nii and it is straightforward to show that δκn ∼ N−1f(N)−n. for the standardized cumulants κ̃n = κn/κ
3/2
2 ,

the factors of f(N) in the asymptotics cancel and we are left with O(N−1 lnN) corrections from the standard
deviation. In other words, the deviations from the Gumbel cumulants scale like δκ̃n = κ̃n − κ̃Gumbel

n ∼ CnN
−1 lnN

for large N . For the more general case, where the quadratic term in the rates is suppressed by g(N), the scaling is
δκ̃n ∼ Cn[ln g(N)]/g(N) for sublinear g(N) and κn ∼ Cn/N otherwise.

C. Large-N limit for the canonical model

The canonical Markov model with coupon-collection behavior has bm + dm = f(N)m and rm = r. As noted in
the main text, f(N) simply sets the time scale for the process and does not affect the shape of the absorption-time
distribution. Therefore, for convenience, we will rescale time t → t(r + 1)/f(N) so that bm = rm and dm = m. For
this system, the absorption-time distribution p(t) has been computed exactly using generating functions [4, Appendix
B],

p(t) =
Neνtν2

(eνt − 1)2(1 + ν
eνt−1 )N+1

(S28)

where ν = 1 − r. To derive the asymptotic form of the distribution we standardize to zero mean and unit variance.
The standardized distribution is simply σp(σt + µ), where µ ∼ (lnN + ln ν + γ)/ν and σ ∼ π/ν

√
6 are the mean

and standard deviation of the absorption time. Here γ ≈ 0.5772 is the Euler-Mascheroni constant. Plugging in this
transformation and taking N →∞, we find

σp(σt+ µ)
N→∞−−−−→ π√

6
exp

(
−γ − πt/

√
6− e−γ−πt/

√
6
)
, (S29)

which is precisely the standardized Gumbel distribution.

D. Transition matrix spectrum

The Gumbel distribution also arises if the transition matrix eigenvalues decay linearly. For instance, suppose
λm = bm. Then, using Eq. (S20) and taking N →∞, we have that

κ̃n =

(
(n− 1)!

∞∑

m=1

(bm)−n
)/( ∞∑

m=1

(bm)−2

)n/2
= (n− 1)!

ζ(n)

ζ(2)n/2
, (S30)
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FIG. S1. The eigenvalues of the transition matrix for the canonical model bm = rm, dm = m with N = 2000 and r = 0.05, 0.5,
and 0.95 plotted on a log-log scale. The black lines show (1− r)m for each value of r. The eigenvalues closely follow this linear
relation up to a cut-off mc that is dependent on r. Since the leading eigenvalues are linear the absorption-time distribution is
Gumbel.

which are precisely the cumulants for a standardized Gumbel distribution. The result is unchanged if the dominant
eigenvalues are approximately linear, i.e. λm ≈ bm for m < αN where α is a constant 0 < α < 1. In this case, the
standardized cumulants are still κ̃n = (n−1)!ζ(n)/ζ(2)n/2 with the larger eigenvalues contributing O(1/N) corrections
that vanish asymptotically.

This second case appears to be what happens in practice: for N � 1 the eigenvalues become linear up to a
cutoff. We have carried out numerical calculations of the spectrum for the canonical model from the previous section,
bm = rm, dm = m for a few values of r < 1. As shown in Figure S1, the leading eigenvalues in the spectrum become
equally spaced: λm ≈ (1−r)m for indices below a cutoff mc. Numerical tests indicate mc is approximately a constant
proportion of N , i.e. mc ≈ α(r)N , where 0 < α(r) < 1. Above this cutoff the eigenvalues grow super-linearly. The
above calculation illustrates how the Gumbel absorption-time distribution arises in this model from the perspective
of the eigenvalue spectrum.

S5. ASYMPTOTIC ANALYSIS FOR THE POWER-LAW PROCESSES

In this section we generalize the Gumbel criteria discussed above. Consider Markov processes with transition rates
that satisfy bm + dm = f(N)mp[1 + O(m/N)]. Moreover, suppose that bαN + dαN is of order at least O(Npf(N))
for any 0 < α < 1, and rm = r +O(m/N) for large N . In other words, this process has transition rates that vanish
as a power-law mp near the boundary. In the main text we claimed that p ≤ 1/2 gives rise to Gaussian absorption
times, while p > 1/2 leads to a skewed family of distributions (whose shape depends on the parameters p and r). We
rigorously justify these claims in the following subsections.

A. Skewed family for p > 1/2

When p > 1/2 the transition rates decay quickly enough that the process is dominated by slowdown near the
boundary (similar to coupon collection), giving rise to skewed distributions. To analyze this case, we can apply
similar asymptotic analysis to that given in Section S4.A for the Gumbel class. Repeating the bounds in Eqs. (S23)
and (S24) for the power-law process, we find that

∑

1≤i1≤i2≤···≤in−1

αN≤in−1≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

= O(f(N)−nN1−2p) (S31)

∑

i1≤i2≤···≤in
1≤i1≤αN≤in≤N

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

= O(f(N)−nN−p). (S32)
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As long as p > 1/2, these terms are each asymptotically dominated by the indices near 0,

∑

1≤i1≤i2≤···≤in≤αN

wni1i2···in({rj})
(bi1 + di1) · · · (bin + din)

∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤αN

wni1i2···in(r)

ip1i
p
2 · · · ipn

, (S33)

which are at least of order O(f(N)−n). Similar to the Gumbel class, the absorption process is dominated by the slow
behavior near the absorbing state, where the transition rates decay. Extending the upper limit on the sum from αN
to N (which only adds subdominant terms), we find that the cumulants κn satisfy

κn({rj}, N) ∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤N

wni1i2···in(r)

ip1i
p
2 · · · ipn

. (S34)

Notice that this asymptotic formula for the cumulants is identical to Eq. (4) in the main text, but with the denominator
(i1i2 · · · im) raised to the power p. Thus, we have shown the absorption-time cumulants for a general Markov process,
with bm+dm = f(N)mp[1+O(m/N)], are asymptotic to those for the minimal model bm = rdm = rmp (after rescaling
time so that f(N) = r + 1). The absorption-time distributions for the minimal model were explored numerically in
Figs. 1(d) and 2 in the main text. For p > 1/2, we find a family of distributions that become more skewed as p
increases. The shape of the distributions depends subtly on r except when p = 1, where the distribution is Gumbel,
as revealed by our analysis above.

B. Gaussian distributions for p ≤ 1/2

To show the normality of the absorption-time distribution for p ≤ 1/2, we show that the variance κ2 diverges at
least as fast as the higher-order cumulants. Using the asymptotic estimate from the previous section, we have that

κn({rj}, N) ∼ 1

f(N)n

∑

1≤i1≤i2≤···≤in≤N

wni1i2···in(r)

ip1i
p
2 · · · ipn

+O(f(N)−nN1−2p). (S35)

As noted above, when p < 1/2, we can not guarantee that the first term is dominant. If the second term is dominant
than the cumulants scale like κn ∼ cnf(N)−nN1−2p. Then the standardized cumulants asymptotically vanish, κ̃n =

κn/κ
n/2
2 ∝ N (2−n)(1−2p)/2 → 0 as N → ∞. Hence, the absorption-time distribution is asymptotically normal. On

the other hand, if the first term in Eq. (S35) is dominant, we can show the distribution is still Gaussian. Since the
weight factors fall off exponentially away from the diagonal, the diagonal terms are asymptotically dominant. Using
the fact that wni1i2···in({rj}) = (n− 1)!V nii ≥ 1, when i1 = i2 = · · · = in ≡ i together with Eq. (S5), we have

κn({rj}, N) ∼ (1 + r)n

(1− r)nf(N)n

N∑

i=1

(1− ri)n
inp

. (S36)

Notice that when p = 1/2, the sum in this expression diverges as N → ∞ for the variance (n = 2), but converges
for the higher-order cumulants (n > 2). More generally, for any p ≤ 1/2, it is straightforward to show that the
sum in Eq. (S36) always diverges faster with N for the variance than for the higher-order cumulants. As above, this

scaling leads to κn/κ
n/2
2 → 0 for large N , so that the distribution asymptotically approaches a Gaussian. Figures

1(d) and 2 in the main text show this result is confirmed in numerical simulations: the distribution for p ≤ 1/2 looks
approximately normal and the skew approaches 0.

S6. EXAMPLE MODELS

In this section we provide details of the evolutionary game, SIS, logistic, and autocatalytic chemical reaction models,
each of which exhibit Gaussian, Gumbel, or exponential absorption-time distributions in different parameter regimes.
Parameters used for the simulations presented in the main text are provided in Table S1.

A. Evolutionary games

In the main text, we present absorption-time distributions measured via simulations of a two-strategy evolutionary
game. In this game, two types of individuals, mutants (M) and wild-types (W), compete and have frequency dependent
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TABLE S1. Parameter choices for the simulations used to measure absorption-time distributions shown in Figures 1(a)-
(c) and 3(b) in the main text. See Section S6 for model and parameter definitions. Evolutionary games use well-mixed
population structure except in Figure 1(a). In Figure 1(c) the relative weighting of the convolution of Gumbel distributions is

s = (1 + eβ(c−a))/(1 + eβ(b−d)) ≈ 0.73 for both sets of parameters.

Figure Model Parameters

1(a) 1D Evolutionary Game β = 1, a = 2, b = 4, c = 1, d = 0.1

1(b)

SIS Model Λ = 0.5

Logistic Model B = 0.5, K = 1

Chemical Reaction Model k1 = 1, k2 = 0.75, k3 = 1.25

1(c)
Evolutionary Game (black circles) β = 1, a = 1, b = 0.5, c = 0.8, d = 0.1

Evolutionary Game (red circles) β = 2, a = 0.3, b = 1.3, c = 0.06, d = 1.2

3(b)

SIS Model Λ = 1.4

Logistic Model B = 1.4, K = 1

Chemical Reaction Model k1 = 1, k2 = 1.35, k3 = 0.14

Evolutionary Game β = 1, a = 1, b = 1.5, c = 1.2, d = 1

fitness, which means that an individual’s fitness depends on the identity of its neighbors. This dependence is encoded
by the payoff matrix,

M W
M a b
W c d

(S37)

For example, a mutant (M) with 2 mutant neighbors and 3 wild-type neighbors will have payoff π = 2a + 3b.
The fitness is then exp(βπ), where the parameter β, the selection intensity, controls how strongly payoff influences
fitness. This choice is known as the exponential fitness mapping [3]; we note that other fitness mappings do not
change the qualitative behavior discussed below. The dynamics of the model are as follows: an individual is chosen
randomly, proportional to their fitness. The selected individual gives birth to an offspring of the same time (M or
W) which replaces a random neighbor (selected uniformly). We will let m denote the number of wild-types in the
population. Thus, when m = 0, the mutants have taken over the population (in the jargon, the mutation becomes
fixed). We focus on cases in which the mutation becomes fixed, ignoring those when the mutation dies out (which
have infinite absorption time). We consider evolution in two types of network populations: a one-dimensional (1D)
ring of individuals and a well-mixed (complete graph) population. Each exhibits different absorption-time behavior.

1. 1D ring population structure

First we consider individuals connected in a 1D periodic ring [5]. Assuming a single initial mutant, the mutant
population grows as a connected chain. Any changes in the population must occur at the boundary between mutants
and wild-types. The boundary mutants and wild-types have payoff a+ b and c+d respectively (they have one of each
type as a neighbor). Thus the probability bm of removing a mutant, and the probability dm of adding a mutant, are
given by

bm = eβ(c+d)/Fm , dm = eβ(a+b)/Fm , for 1 < n < N − 1, (S38)

where Fm is the average fitness:

Fm = 2eβ(a+b) + (N −m− 2)eβ2a + 2eβ(c+d) + (m− 2)eβ2d. (S39)

The rates are slightly different for m = 1 and m = N − 1 [5]. For example, when m = 1 there is a single wild-type
with two mutant neighbors. These transition rates are:

b1 =
eβ2c

2eβ(a+b) + (N − 3)eβ2a + eβ2c
d1 =

eβ(a+b)

2eβ(a+b) + (N − 3)eβ2a + eβ2c
(S40)

bN−1 =
eβ(c+d)

eβ2b + 2eβ(c+d) + (N − 3)eβ2d
dN−1 =

eβ2b

eβ2b + 2eβ(c+d) + (N − 3)eβ2d
. (S41)
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For large N , however, these changes to the transition rates do not affect the absorption-time distribution. One can
check that these transition rates satisfy the requirements of the Gaussian universality class if (a+ b) > (c+ d).

2. Well-mixed population

If the population is well-mixed, every individual has contact with every other, and hence their fitness depends simply
on the fraction of mutants in the population. The payoffs (per contact) for mutants and wild-types respectively are
πM = a(N −m − 1)/(N − 1) + bm/(N − 1) and πW = c(N −m)/(N − 1) + d(m − 1)/(N − 1), where again a, b, c,
and d are elements of the payoff matrix Eq. (S37) and m is the number of wild-types in the population. The rates at
which the wild-type population increases or decreases are [3]

bm =
meβπW

meβπW + (N −m) eβπM
(N −m)

N − 1
, dm =

(N −m) eβπM

meβπW + (N −m) eβπM
m

N − 1
. (S42)

For the birth (death) rate the first fraction represents the probability of choosing a wild-type (mutant) to give birth,
while the second fraction is the probability of the offspring replacing a mutant (wild-type) in the populations.

Probability flows toward the absorbing state (rm < 1) if b > d and a > c. From the transition probabilities it is clear
bm+dm decays linearly near both m = 0 and m = N . Expanding around these points, bm+dm = f(N)(N−m)+O(m)

and bm + dm = f̃(N)(N −m) +O((N −m)2). Our theory predicts the distribution will be a convolution of Gumbel

distributions with relative weighting s = limN→∞ f(N)/f̃(N). Taking this limit for the transition probabilities in
Eq. (S42) we find

s =
1 + eβ(c−a)

1 + eβ(b−d)
. (S43)

B. SIS model

The stochastic susceptible-infected-susceptible (SIS) model of epidemiology [6] describes the spread of an infectious
disease through a population. The population is broken into two groups, those susceptible to the disease and those
currently infected. This model describes diseases that do not confer immunity following recovery (or the immunity
lasts only for a short time compared to the time scale on which the disease spreads). The rate per contact at which
the disease is transmitted between individuals is Λ/N , and we set the time-scale so that the recovery rate is 1. Letting
m represent the number of infected individuals, there are m(N −m) contacts between infected and susceptible people
in a well-mixed population. The m infected individuals each recover at rate 1. Thus the rates at which the infected
population increases and decreases are respectively

bm = Λm(1−m/N), dm = m. (S44)

This system has the vanishing transition probabilities near m = 0, indicating coupon collection behavior (it is also
straightforward to explicitly check it satisfies our requirements for the universality class as long as Λ < 1). Our
simulations show that it has the expected Gumbel distribution of times for the infection to die out (Fig. 1(b) in the
main text).

C. Logistic model

The stochastic logistic model describes the dynamics and fluctuations of an ecological population [7]. The model
assumes a constant birth rate B per individual as well as a constant death rate (which we set to 1 by choosing
the appropriate time scale) when the population is sparse. For higher populations, competition between individuals
increases the death rate quadratically. The transition rates are

bm = Bm, dm = m+Km2/N, (S45)

where the parameter K controls how strongly competition influences death rates (this parameter is related to the
carrying capacity of the ecosystem). Again the transition rates vanish linearly near m = 0 and this model belongs to
the Gumbel universality class as long as B < 1.
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D. Autocatalytic chemical reaction model

Our final example model describes a stochastic autocatalytic chemical reaction [8],

2X +A
k1−⇀↽−
k2

3X, X
k3−⇀ B, (S46)

where ki are the reaction rates. The concentrations of species A and B are fixed at saturation levels and we want to
describe the dynamics and fluctuations of m, the number of particles of species X. This is a variation of the Schlögl
model where the reaction X → B is irreversible and the reactions cease when no particles of X remain. Applying our
results to this model we will classify the distribution of reaction times: how long does the reaction proceed before the
supply of X is exhausted.

The birth-death transition rates for the reaction given above are

bm =
k1

N
m(m− 1), dm =

k2

N2
m(m− 1)(m− 2) + k3m. (S47)

Again, the transition rates decay linearly near the absorbing boundary at m = 0, indicating the Gumbel universality
class; it is straightforward to check that the required expansions hold. The conditions that guarantee rm = bm/dm < 1
are more intricate. In particular, if k3 > k2, then rm < 1 as long as k1 < k2 + k3. On the other hand, if k3 < k2

we need k2 < 2
√
k2k3. With either of these conditions satisfied the autocatalytic reaction times will be Gumbel

distributed. Note that this model has an infinite state space: the number of X particles can be any positive integer.
As discussed in the main text, we expect our results to apply to this class of models as long as the initial condition
is large. The simulation shown in Figure 1(b) indicates this expectation is indeed borne out.
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