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Abstract
We study the refined blow-up behaviour of a sequence of Dirac-harmonic maps from degen-
erating spin surfaces with uniformly bounded energy in the case that the domain surfaces
converge to a spin surface with only Neveu–Schwarz type nodes. For Dirac-harmonic necks
appearing near the nodes, we show that the limit of the map part of each neck is a geodesic in
the targetmanifold.Moreover, we give a length formula for the limit geodesics appearing near
the node in terms of the Pohozaev type constants associated to the sequence. In particular, if
the Ricci curvature of the target manifold has a positive lower bound and the Dirac-harmonic
sequence has bounded index, then the limit of the map part of the necks consist of geodesics
of finite length and the energy identities hold.

Mathematics Subject Classification 53C43 · 58E20

1 Introduction

Motivated by the nonlinear supersymmetric nonlinear sigma model from quantum field the-
ory, Dirac-harmonic maps are defined as solutions of a harmonic map type system coupled
with a Dirac type equation. They were introduced and studied in [2,3]. This subject general-
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izes the theory of harmonic maps and harmonic spinors, which has been widely studied. In
dimension two, similarly to harmonic maps, the conformal invariance of the Dirac-harmonic
map system leads to non-compactness of the space of Dirac-harmonic maps. In general, bub-
bling phenomena can occur, due to the possible energy concentration at finitelymany points in
the domain. When the domain is fixed, the blow-up theory for a sequence of Dirac-harmonic
maps with uniformly bounded energy has been systematically studied in [2,19,26] for Dirac-
harmonic maps and in [11] for the case of a more general model. To study the existence
problem for Dirac-harmonic maps, a heat flow approach was investigated in [4,5,12,15]; see
[13–15] for the blow-up analysis of the corresponding approximate Dirac-harmonic maps.
Roughly speaking, the results of these works assert that the failure of strong convergence
occurs at finitelymany energy concentration points. At such points, finitelymany bubbles, i.e.
non-trivial Dirac-harmonic spheres, can separate, and the sumof the energies of these bubbles
accounts for the loss of energy during the process of weak convergence. This is known as the
energy identity. Moreover, the image of the map part of the limit Dirac-harmonic map and
those of the bubbles are connected in the target manifold. This is called the no neck property.

However, if we allow the domain surface to vary, then the energy identity does not hold in
general, see e.g. the example in the case of harmonic maps constructed by Parker [20]. Such
a situation was first systematically investigated in [28] where the author proved a generalized
energy identity for the sequence when the domain surfaces degenerate to a spin surface
with only Neveu–Schwarz type nodes and gave a sufficient and necessary condition that
the energy identity holds, extending the case of harmonic maps from degenerating surfaces
systematically studied in [29]. In this paper, we shall explore the finer asymptotic behaviour
of the Dirac-harmonic necks appearing near the degenerating region of the domain. In the
case of harmonic maps, where the spinors are vanishing, such necks converge to geodesics
in the target [7,8,10]. In the more general case of Dirac-harmonic maps investigated in the
present paper, it is natural to conjecture that the limit of the map part of these Dirac-harmonic
necks are curves in the target manifold with specific properties similar to geodesics. Also,
it should be possible to calculate the lengths of the limiting curves of the necks appearing
near the nodes in terms of some geometric quantities associated to the Dirac-harmonic map
sequence, as is achieved in the case of harmonic maps in [7,29].

To state our problem more precisely, let φ be a smooth map from a spin Riemann surface
(M, h)withmetric h to another compact Riemannianmanifold (N , g)with dimension n ≥ 2.
Let φ�T N be the pull-back bundle of T N by φ and consider the twisted bundle�M⊗φ�T N
with induced metric 〈·, ·〉�M⊗φ�T N and induced connection ˜∇. A smooth section ψ of the
twisted bundle �M ⊗ φ�T N is called a spinor field along the map φ. Critical points (φ, ψ)

of the action functional

L(φ, ψ) =
∫

M

(|dφ|2 + 〈ψ, /Dψ〉�M⊗φ�T N
)

dM

are called Dirac-harmonic maps from M to N . Here /D is the Dirac operator along the map
φ, defined by /Dψ := eα ·˜∇eαψ . See Sect. 2 for more details on the notations and definitions.

Now, let (Mn, hn, cn, σn) be a sequence of closed hyperbolic Riemann surface of genus
g > 1, equipped with hyperbolic metrics hn , compatible complex structures cn and spin
structures σn . We consider a sequence of smooth Dirac-harmonic maps

(φn, ψn) : (Mn, hn, cm, σn) → (N , g),

with uniformly bounded energy

E(φn, ψn; Mn) ≤ � < ∞.
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Here the energy of the pair (φ, ψ) on a domain 	 ⊂ M is defined by

E(φ, ψ;	) =
∫

	

(|∇φ|2 + |ψ |4)dM .

Denote the energy of φ on 	 ⊂ M by

E(φ;	) =
∫

	

|∇φ|2dM,

the energy of ψ on 	 ⊂ M by

E(ψ;	) =
∫

	

|ψ |4dM .

We shall often omit the domain M from the notation and simply write E(φ) = E(φ; M),
E(ψ) = E(ψ; M) and E(φ, ψ) = E(φ, ψ; M).

In two dimensional geometric variational problems, Pohozaev type identities play an
important role in the study of the qualitative behavior for a sequence of solutions. When
the domain surface varies and possibly degenerates, one needs to study solutions defined on
long cylinders and in such situations, Pohozaev type identities in general no longer hold.
Therefore, we need to find some geometric quantities associated to the sequence of solutions
and domains to characterize the asymptotic behaviour of the solutions. Such a scheme was
first explored in [29] for harmonic maps and then in [28] for Dirac-harmonic maps. Consider
a Dirac-harmonic map (φ, ψ) defined on a standard cylinder P = [t1, t2] × S1 with flat
metric ds2 = dt2 + dθ2. Denote

T (φ, ψ) = |φt |2 − |φθ |2 + Re

〈

ψ,
∂

∂t
· ˜∇ ∂

∂t
ψ

〉

− 2i〈φt , φθ 〉 − i Re

〈

ψ,
∂

∂t
· ˜∇ ∂

∂θ
ψ

〉

.

(1.1)

It is well known that the quadratic differential Tdz2 is holomorphic. See [3] for details. By
Lemma 3.4 in [28] (or Lemma 2.1 in the present paper), we know that

α(φ,ψ, P) :=
∫

{t}×S1
T (φ, ψ)dθ (1.2)

is a complex number which is independent of t ∈ [t1, t2]. The quantity defined in (1.2) can be
considered as a Pohozaev type constant associated to the Dirac-harmonic map (φ, ψ) defined
on the cylinder P and it measures the extent to which the Pohozaev type identity fails. In the
case of a vanishing spinor fieldψ ≡ 0, it reduces to the Pohozaev type constant associated to
the harmonic map φ introduced in [29] (page 64). Such quantities played an important role
in the study of the asymptotic behaviour of harmonic maps and Dirac-harmonic maps from
degenerating surfaces [28,29]. Pohozaev type constants appear also in other two dimensional
geometric variational problems, like the singular super-Liouville type systems [16].

Now, we assume that (Mn, hn, cn) degenerates to a hyperbolic Riemann surface (M, h, c)
by collapsing p (1 ≤ p ≤ 3g−3) pairwise disjoint simple closed geodesics γ

j
n of lengths l jn ,

j = 1, . . . , p. For each j , the geodesics γ
j
n degenerate into a pair of punctures (ε j,1, ε j,2).

Let P j
n be the standard cylindrical collar about γ j

n . We associate the sequence (φn, ψn, Mn)

with a sequence of p-tuples (α1
n, . . . , α

p
n ), where

α
j
n := α(φn, ψn, P

j
n ) ∈ C

are quantities defined by (1.2). Pulling back the hyperbolic metrics hn and the compatible
complex structures cn by suitable diffeomorphisms M → Mn\ ∪p

j=1 γ
j
n and passing to a
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subsequence, we can think of (hn, cn) as all living on the limit surface M , converging in C∞
loc

to (h, c), and the pull back of σn is a fixed spin structure σ on M . Note that M has p pairs
of punctures. As in [28], we require the following assumptions on the limit surface:

All punctures of the limit spin sur f ace (M, σ ) are of Neveu−Schwarz type.

Then σ extends to some spin structure σ on M , where M is the surface obtained by
adding a point at each puncture of M . Thus, (φn, ψn) can be considered as a sequence of
Dirac-harmonic maps defined on (M, hn, cn, σ ).

In [28], the following generalized energy identities for Dirac-harmonic maps from degen-
erating surfaces were proved:

Theorem 1.1 Assumptions and notations as above. Then there exist at most finitely
many blow-up points {x1, . . . , xI } which are away from the punctures {(ε j,1, ε j,2), j =
1, 2, . . . , p} and finitely many Dirac-harmonic maps
• (φ, ψ) : (M, c, σ ) → N, where (M, c, σ ) is the normalization of (M, c, σ ),
• (σ i,l , ξ i,l) : S2 → N, l = 1, 2, . . . , Li , near the blow-up point xi ,
• (ω j,k, ζ j,k) : S2 → N, k = 1, 2, . . . , K j , near the j-th pair of punctures (ε j,1, ε j,2),

such that after selection of a subsequence, (φn, ψn) converges to (φ, ψ) in C∞
loc × C∞

loc on
M\{x1, . . . , xI } and the following identities hold:

lim
n→∞ E(φn) = E(φ) +

I
∑

i=1

Li
∑

l=1

E
(

σ i,l
)

+
p

∑

j=1

K j
∑

k=1

E
(

ω j,k
)

+
p

∑

j=1

lim
n→∞

∣

∣

∣Reα
j
n

∣

∣

∣ · 2π
2

l jn
,

(1.3)

lim
n→∞ E(ψn) = E(ψ) +

I
∑

i=1

Li
∑

l=1

E
(

ξ i,l
)

+
p

∑

j=1

K j
∑

k=1

E
(

ζ j,k
)

. (1.4)

When the domain is fixed, it was shown in [19] that the images of the map parts of the
weak limit and all the bubbles emerging from any blow-up point are connected, which is
known as the no neck property. By slightly modifying the arguments in [19], it is easy to
see that the same property holds if the domain surfaces are non-degenerating and stay in a
compact region of the moduli space. Therefore, in Theorem 1.1, we know that the image
φ(M) ∪I

i=1 ∪Li
l=1σ

i,l is a connected set, as the bubbles (σ i,l , ξ i,l) occur at blow-up points
that are away from the punctures.

In this paper, we shall explore the finer asymptotic behaviour of the Dirac-harmonic necks
that appear near the nodes when the domain surfaces degenerate. It turns out that the map part
of these Dirac-harmonic necks converge to geodesics in the target manifold (see Theorem
3.1). To achieve this, we need to carry out a refined neck analysis for Dirac-harmonic maps
from long cylinders. Our first main result is the following:

Theorem 1.2 Under the assumptions and notations of Theorem 1.1, the images of φ(M) and
ω j,k(S2), k = 1, . . . , K j , j = 1, . . . , p are connected by geodesics on N. Moreover, for
each j = 1, . . . , p, the asymptotic limit of the sum of the lengths of the geodesics appearing
near the j-th pair of punctures is

lim
n→∞

√

|Re α
j
n | ·

√
2π3

l jn
.
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Remark 1.3 In the above theorem, the length of each geodesic can be finite or infinite and a
geodesic of zero length means that the map part of the corresponding neck is converging to
a point in the target.

To prove Theorem 1.2, we need to establish a key lemma about the exponential decay
along long cylinders of the tangential energies of both themap part and the spinor part. For the
case ofψn ≡ 0, i.e. when the φn are harmonic maps, this is achieved in [7] where the authors
used the ideas in [9] to derive a differential inequality on a long cylinder. However, this kind
of technique requires the structure of a harmonic map type equation and cannot be applied to
the Dirac equation. Instead, we shall apply the three circle theorem for Dirac-harmonic type
systems developed in [19]. The idea is inspired from the work [21], which used a special case
of the three circle theorem due to [25] to show that the tangential energy of the sequence on
the long cylinder decays exponentially. To derive the exponential decay of the whole energy
of spinor, we shall firstly conformally change the long cylinder to an annulus, then we apply
a Hardy type inequality as in [11,15] to obtain some differential inequality on this annulus.

According to Theorem 1.1, it is easy to see that the energy identities hold if and only if
the following analytical condition is satisfied

lim
n→∞

∣

∣Re α
j
n
∣

∣ · 2π
2

l jn
= 0, j = 1, . . . , p.

A natural question then is whether we can exploit some geometric conditions to ensure
that the limiting necks are some geodesics of finite length so that the energy identity follows
immediately.

To achieve this, in analogy to the works on minimal hypersurfaces [23] and harmonic
maps [18], we shall impose the assumptions that the Ricci curvature of the target manifold
has a positive lower bound and the sequence of Dirac-harmonic maps has bounded Morse
index (see Sect. 4). In the following, we state our second main result:

Theorem 1.4 Under the assumption of Theorem 1.1, suppose the Ricci curvature of the target
manifold (N , g) has a positive lower bound, i.e. there exists a positive constant λ0 > 0 such
that RicN ≥ λ0 > 0 and assume the sequence (φn, ψn) has bounded index, then the limit of
the map part of the necks consists of geodesics of finite length. Moreover, the energy identities
hold, i.e.

lim
n→∞ E(φn) = E(φ) +

I
∑

i=1

Li
∑

l=1

E
(

σ i,l) +
p

∑

j=1

K j
∑

k=1

E
(

ω j,k), (1.5)

lim
n→∞ E(ψn) = E(ψ) +

I
∑

i=1

Li
∑

l=1

E
(

ξ i,l
) +

p
∑

j=1

K j
∑

k=1

E
(

ζ j,k). (1.6)

We remark that a similar but more subtle and complicated analysis for α-Dirac-harmonic
maps was carried out in [15], that is, when the functional is perturbed in the sense of [22].
This problem naturally emerges in our context, because our existence scheme for Dirac-
harmonic maps works with such a perturbation to control the asymptotic behavior of our
elliptic-parabolic flow.

The rest of the paper is organized as follows. In Sect. 2, we shall review some geometric
and analytic aspects of Dirac-harmonic maps. Then we establish the three circle theorem
for Dirac-harmonic maps on long cylinders and derive the exponential decay of tangential
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energies of both themap and the spinor. In Sect. 3, we prove ourmain Theorem 1.2. In Sect. 4,
we calculate the second variation formula for the functional L , provide the notion of index
of Dirac-harmonic maps and then prove Theorem 1.4.

2 Preliminaries and some basic lemmas

In this section, we shall first recall the definition of Dirac-harmonic maps and some basic
lemmas like the energy gap theorem, the small energy regularity theorem and so on. Then
we will establish the three circle lemma for Dirac-harmonic maps on long cylinder which
yields the energy exponential decay in the tangential direction.

Let (M, h, σ ) be a Riemann surface, equipped with a Riemannian metric h and with a
fixed spin structure σ , �M be the spinor bundle over M and 〈·, ·〉�M be the metric on �M
induced by the Riemannian metric h. Choosing a local orthonormal basis eα, α = 1, 2 on
M , the usual Dirac operator is defined as /∂ := eα · ∇eα , where ∇ is the spin connection on
�M . The usual Dirac operator /∂ on a surface can be seen as the Cauchy-Riemann operator.
Consider R2 with the Euclidean metric dx2 + dy2. Let e1 = ∂

∂x and e2 = ∂
∂ y be the standard

orthonormal frame. A spinor field is simply a map ψ : R2 → �2 = C
2, and the action of e1

and e2 on spinors can be identified with multiplication with matrices

e1 =
(

0 1
− 1 0

)

, e2 =
(

0 i
i 0

)

.

If ψ :=
(

ψ1

ψ2

)

: R2 → C
2 is a spinor field, then the Dirac operator is

/∂ψ =
(

0 1

− 1 0

) (

∂ψ1
∂x
∂ψ2
∂x

)

+
(

0 i

i 0

)

⎛

⎝

∂ψ1
∂ y

∂ψ2
∂ y

⎞

⎠ = 2

(

∂ψ2
∂z

− ∂ψ1
∂z

)

, (2.1)

where

∂

∂z
= 1

2

(

∂

∂x
− i

∂

∂ y

)

,
∂

∂z
= 1

2

(

∂

∂x
+ i

∂

∂ y

)

.

For more details on spin geometry and Dirac operators, one can refer to [17].
Let φ be a smooth map from M to another compact Riemannian manifold (N , g) with

dimension n ≥ 2. Let φ�T N be the pull-back bundle of T N by φ and then we get the twisted
bundle �M ⊗ φ�T N . Naturally, there is a metric 〈·, ·〉�M⊗φ�T N on �M ⊗ φ�T N which
is induced from the metrics on �M and φ�T N . Also we have a natural connection ˜∇ on
�M ⊗φ�T N which is induced from the connections on �M and φ�T N . Let ψ be a section
of the bundle �M ⊗ φ�T N . In local coordinates, it can be written as

ψ = ψ i ⊗ ∂yi (φ),

where eachψ i is a usual spinor on M and ∂yi is the nature local basis on N . Then˜∇ becomes

˜∇ψ = ∇ψ i ⊗ ∂yi (φ) +
(

�i
jk∇φ j

)

ψk ⊗ ∂yi (φ), (2.2)

where�i
jk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac operator

along the map φ is defined by /Dψ := eα · ˜∇eαψ .
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We consider the following functional

L(φ, ψ) =
∫

M

(|dφ|2 + 〈ψ, /Dψ〉�M⊗φ�T N
)

dM

=
∫

M

(

gi j (φ)hαβ ∂φi

∂xα

∂φ j

∂xβ
+ gi j (φ)

〈

ψ i , /Dψ j 〉

�M

)

dM .

The functional L(φ, ψ) is conformally invariant. That is , for any conformal diffeomor-
phism f : M → M , setting

˜φ = φ ◦ f and ˜ψ = λ− 1/2ψ ◦ f .

Then L(˜φ, ˜ψ) = L(φ, ψ). Here λ is the conformal factor of the conformal map f , i .e.
f ∗h = λ2h. Critical points (φ, ψ) of the action functional L are called Dirac-harmonic
maps from M to N .

The Euler–Lagrange equations of the functional L are
(

�φi + �i
jkh

αβφ j
αφk

β

) ∂

∂ yi
(φ(x)) = R(φ, ψ), (2.3)

/Dψ = 0, (2.4)

where R(φ, ψ) is defined by

R(φ, ψ) = 1

2
Rm
li j (φ(x))

〈

ψ i ,∇φl · ψ j 〉 ∂

∂ ym
(φ(x)).

Here Rm
li j stands for the Riemann curvature tensor of the target manifold (N , g).

By the Nash embedding theorem, we embed N into R
K . Then, the critical points (φ, ψ)

satisfy the Euler–Lagrange equations

�φ = A(φ)(dφ, dφ) + Re(P(A(dφ(eα), eα · ψ);ψ)), (2.5)

/∂ψ = A(dφ(eα), eα · ψ), (2.6)

where /∂ is the usual Dirac operator, A is the second fundamental form of N in R
K , and

A(dφ(eα), eα · ψ) := (∇φi · ψ j ) ⊗ A
(

∂yi , ∂y j

)

,

Re(P(A(dφ(eα), eα · ψ);ψ)) := P
(

A
(

∂yl , ∂y j

); ∂yi
)

Re
(〈

ψ i , dφl · ψ j 〉).

Here P(ξ ; ·) denotes the shape operator, defined by 〈P(ξ ; X), Y 〉 = 〈A(X , Y ), ξ 〉 for X , Y ∈
�(T N ), and Re(z) denotes the real part of z ∈ C. We refer to [2,6,11,24,27] for more details.

Next, we recall some basic lemmas which will be used in this paper.

Lemma 2.1 (Lemma 3.4 in [28]). Let (φ, ψ) : [T1, T2] × S1 → N be a Dirac-harmonic
map. Then

α(φ,ψ) :=
∫

{t}×S1
T (φ, ψ)dθ

is independent of t ∈ [T1, T2], where T (φ, ψ) is defined in (1.1).
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Lemma 2.2 (Theorem 3.1 in [2]). Let M be a closed spin Riemann surface with a fixed spin
structure and N be a compact Riemannian manifold. Then there is a small constant ε0 > 0
such that if (φ, ψ) : M → N is a smooth Dirac-harmonic map satisfying

∫

M
(|dφ|2 + |ψ |4)dM ≤ ε0,

then φ is a constant map and ψ is a tuple of harmonic spinors.

Lemma 2.3 (Theorem 3.2 in [2]). There is a small constant ε0 > 0 such that if (φ, ψ) : D →
N is a smooth Dirac-harmonic map where D ⊂ R

2 is the unit disk, satisfying
∫

D
(|dφ|2 + |ψ |4)dM ≤ ε0,

then

‖dφ‖
W 1,p

(

D 1
2

) ≤ C(p, N )‖dφ‖L2(D), ‖∇ψ‖
W 1,p

(

D 1
2

) ≤ C(p, N )‖ψ‖L4(D),

‖dφ‖
L∞

(

D 1
2

) ≤ C(N )‖dφ‖L2(D), ‖ψ‖
L∞

(

D 1
2

) ≤ C(N )‖ψ‖L4(D).

Lemma 2.4 (Theorem 4.6 in [3]). Let (φ, ψ) : D\{0} → N be a smooth Dirac-harmonic
map with finite energy E(φ, ψ; D) ≤ � < ∞, then (φ, ψ) can be extended smoothly to the
whole disk D.

Let L > 0 be a constant, denote Pi = [(i − 1)L, i L] × S1 and

‖(u, v)‖2L2(Pi )
=

∫

Pi
(|u|2 + |v|2)dtdθ.

Proposition 2.5 (Proposition 3.3 in [19]). Suppose (u, v) ∈ C∞(Pi−1 ∪ Pi ∪ Pi+1) satisfy
equations

�u = A1u + A2∇u + A3v + 1

2π

∫ 2π

0
A4u + A5∇u + A6vdθ, (2.7)

/∂v = B1u + B2∇u + B3v + 1

2π

∫ 2π

0
B4u + B5∇u + B6vdθ, (2.8)

with L is given and large. Then there exists a positive constant δ0 such that if ‖A j‖L∞ ≤ δ0,
‖B j‖L∞ ≤ δ0 for j = 1, . . . , 6 and

∫

(i−1)L×S1
udθ,

∫

(i−1)L×S1
vdθ,

∫

i L×S1
udθ,

∫

i L×S1
vdθ ≤ δ0, (2.9)
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then

(a) ‖(u, v)‖L2(Pi+1)
≤ e− 1

2 L‖(u, v)‖L2(Pi ) implies ‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi−1)

;

(b) ‖(u, v)‖L2(Pi−1)
≤ e− 1

2 L‖(u, v)‖L2(Pi ) implies ‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi+1)

;

(c) either ‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi+1)

or ‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi−1)

.

Lemma 2.6 (Lemma 3.1 in [19]). Suppose (u, v) ∈ C∞([−2, 2] × S1) satisfy (2.7)–(2.8).
Assume A j , B j ∈ C∞([−2, 2]× S1), j = 1, . . . , 6 and

∑6
j=1 ‖A j‖L∞ +∑6

j=1 ‖B j‖L∞ ≤
C < ∞, then

‖u‖W 2,2([−1,1]×S1) ≤ C
(‖u‖L2([−2,2]×S1) + ‖v‖L2([−2,2]×S1)

)

,

‖v‖W 1,2([−1,1]×S1) ≤ C
(‖u‖L2([−2,2]×S1) + ‖v‖L2([−2,2]×S1)

)

.

In the end of this section, we derive the exponential decay of the tangential energy on the
long cylinder. Set

Qt (k) := [t − k, t + k] × S1.

Lemma 2.7 Let N be a compact Riemannian manifold. Let (φn, ψn) : [−Tn, Tn] × S1 → N
be a sequence of Dirac-harmonic maps with uniformly bounded energy

E(φn, ψn; [−Tn, Tn] × S1) ≤ �,

where [−Tn, Tn] × S1 is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞
as n → ∞.

If there is no energy concentration for (φn, ψn), then for any fixed k > 0 and for any
tn ∈ [−Tn + T + k, Tn − T − k], when n and T are sufficiently large, there holds

(

∫

Qtn (k)

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ

) 1
2

+
(

∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

dtdθ

) 1
2

+
(

∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

4
3

dtdθ

)
3
4

≤ C
(

e− tn−k−(−Tn+T )
2 + e− Tn−T−(tn+k)

2

)

o(n, T ),

where limT→∞ limn→∞ o(n, T ) = 0 and C = C(L) is a positive constant, L is the positive
constant in Proposition 2.5.

Proof The idea is similar to the argument in the proof of Theorem 1.4 in [19]. Since there is
no energy concentration for (φn, ψn), by a standard contradiction argument in [10,26], we
have

lim
T→∞ lim

n→∞ sup
t∈[−Tn+T+2,Tn−T−2]

E
(

φn, ψn; [t − 2, t + 2] × S1
) = 0.

This means that for any ε > 0, there exist two positive integers Tε and Nε which are large
enough such that when n ≥ Nε , there holds

sup
t∈[−Tn+Tε+2,Tn−Tε−2]

E
(

φn, ψn; [t − 2, t + 2] × S1
) ≤ ε. (2.10)

Now, by (2.10) and Lemma 2.3, we have that for any small ε > 0, when n and T are large
enough, there holds

‖dφn‖L∞([−Tn+T ,Tn−T ]×S1) + ‖ψn‖L∞([−Tn+T ,Tn−T ]×S1) ≤ ε. (2.11)
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Denote

φ∗
n (t) = 1

2π

∫ 2π

0
φn(t, θ)dθ, ψ∗

n (t) = 1

2π

∫ 2π

0
ψn(t, θ)dθ,

and

u = φn − φ∗
n , v = ψn − ψ∗

n ,

by a direct computation as in [19], we can prove that (u, v) satisfy Eqs. (2.7)–(2.8) (see
equations (3.17) and (3.18) in [19]). Moreover, using the estimate (2.11), (u, v) satisfy the
conditions in Proposition 2.5 (see also [19] for details).

For simplicity of notations, we also set

Pi = [−Tn + T + (i − 1)L,−Tn + T + i L] × S1,

where L > 0 is a constant in Proposition 2.5. Without loss of generality, we may assume

2(Tn − T ) = knL,

where kn is a positive integer which goes to infinity as n → ∞.
By (c) of Proposition 2.5, we obtain

‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi+1)

or ‖(u, v)‖L2(Pi ) ≤ e− 1
2 L‖(u, v)‖L2(Pi−1)

.

Then, using the (a) and (b) of Proposition 2.5, by iterating, we have

‖(u, v)‖L2(Pi ) ≤ e− i
2 L‖(u, v)‖L2(P1) or ‖(u, v)‖L2(Pi ) ≤ e− kn−i

2 L‖(u, v)‖L2(Pkn ).

This yields

‖φn − φ∗
n‖L2(Pi ) ≤

(

e− i
2 L + e− kn−i

2 L
)

(‖φn − φ∗
n‖L2(P1) + ‖φn − φ∗

n‖L2(Pkn )

)

, (2.12)

‖ψn − ψ∗
n ‖L2(Pi ) ≤

(

e− i
2 L + e− kn−i

2 L
)

(‖φn − φ∗
n‖L2(P1) + ‖φn − φ∗

n‖L2(Pkn )

)

. (2.13)

Applying the interior estimates Lemma 2.6, we get
∥

∥

∥

∥

∂φn

∂θ

∥

∥

∥

∥

L2(Pi )
≤ ‖∇(φn − φ∗

n )‖L2(Pi )

≤ C
(‖φn − φ∗

n‖L2(Pi∪Pi−1∪Pi+1)
+ ‖ψn − ψ∗

n ‖L2(Pi∪Pi−1∪Pi+1)

)

≤ C
(

e− i
2 L + e− kn−i

2 L
)

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )

)

(2.14)

and
∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L2(Pi )
≤ ‖∇(ψn − ψ∗

n )‖L2(Pi )

≤ C
(‖φn − φ∗

n‖L2(Pi∪Pi−1∪Pi+1)
+ ‖ψn − ψ∗

n ‖L2(Pi∪Pi−1∪Pi+1)

)

≤ C
(

e− i
2 L + e− kn−i

2 L
)

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )

)

.

(2.15)
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Then it is easy to see that the conclusion of the lemma follows immediately from the above
decay estimates. In fact, there exist two positive integers i1, i2, such that 1 ≤ i1 ≤ i2 ≤ kn
and

−Tn + T + (i1 − 1)L ≤ tn − k < −Tn + T + i1L,

−Tn + T + (i2 − 1)L ≤ tn + k < −Tn + T + i2L.

According to (2.14) and (2.15), we have
∥

∥

∥

∥

∂φn

∂θ

∥

∥

∥

∥

L2(Qtn (k))
+

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L2(Qtn (k))
+

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L
4
3 (Qtn (k))

≤
i2

∑

i=i1

(

∥

∥

∥

∥

∂φn

∂θ

∥

∥

∥

∥

L2(Pi )
+

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L2(Pi )
+

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L
4
3 (Pi )

)

≤ C(L)

i2
∑

i=i1

(

∥

∥

∥

∥

∂φn

∂θ

∥

∥

∥

∥

L2(Pi )
+

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L2(Pi )

)

≤ C
i2

∑

i=i1

(

e− i
2 L + e− kn−i

2 L
)

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )

)

≤ C
(

e− i1L
2 + e− (kn−i2)L

2

)

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )

)

≤ C
(

e− tn−k−(−Tn+T )
2 + e− Tn−T−(tn+k)

2

)

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )

)

.

Lastly, by (2.11), it is easy to see that

(‖φn − φ∗
n‖L2(P1∪Pkn ) + ‖ψn − ψ∗

n ‖L2(P1∪Pkn )) = o(n, T ).

We finished the proof of the lemma. ��

As a corollary of the above lemma, we have

Lemma 2.8 Let N be a compact Riemannian manifold. Let (φn, ψn) : [−Tn, Tn] × S1 → N
be a sequence of Dirac-harmonic maps with uniformly bounded energy

E(φn, ψn; [−Tn, Tn] × S1) ≤ �,

where [−Tn, Tn] × S1 is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞
as n → ∞.

Suppose there is no energy concentration for (φn, ψn), then there hold

(1) if limn→∞ |Re α(φn, ψn)|Tn = 0, then

lim
T→∞ lim

n→∞ E
(

φn, ψn; [−Tn + T , Tn − T ] × S1
) = 0;

(2) if limn→∞
√|Re α(φn, ψn)|Tn = 0, then

lim
T→∞ lim

n→∞ Osc[−Tn+T ,Tn−T ]×S1φn = 0.

Proof Noting that
∣

∣

∣

˜∇ ∂
∂θ

ψn

∣

∣

∣ ≤ C(N )

(∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

+
∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

|ψn |
)
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and

/Dψn = ∂

∂t
· ˜∇ ∂

∂t
ψn + ∂

∂θ
· ˜∇ ∂

∂θ
ψn = 0,

by Lemma 2.1, we have
∫

[−Tn+T ,Tn−T ]×S1
|∇φn |2dtdθ

=
∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ +
∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂t

∣

∣

∣

∣

2

dtdθ

= 2
∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ +
∫

[−Tn+T ,Tn−T ]×S1
Re

〈

ψn,
∂

∂θ
· ˜∇ ∂

∂θ
ψn

〉

+ 2(Tn − T )Re α(φn, ψn)

≤ 2
∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ + 2(Tn − T )|Re α(φn, ψn)|

+ C(N )

∫

[−Tn+T ,Tn−T ]×S1

(

|ψn |2
∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

+ |ψn |
∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

)

≤ 2
∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ + 2(Tn − T )|Re α(φn, ψn)|

+ C(N )

(∫

[−Tn+T ,Tn−T ]×S1
|ψn |4

) 1
2
(

∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2
) 1

2

+ C(N )

(∫

[−Tn+T ,Tn−T ]×S1
|ψn |4

) 1
4
(

∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

4
3
)

3
4

. (2.16)

We recall the notation

Pi = [−Tn + T + (i − 1)L,−Tn + T + i L] × S1,

and without loss of generality, we assume 2(Tn − T ) = knL where L is the positive constant
in Proposition 2.5 and kn is a positive integer which will go to infinity as n → ∞.

By Lemma 2.7, we get

∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

=
kn

∑

i=1

∫

Pi

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

≤ C
kn

∑

i=1

(

e− −Tn+T+(i−1)L−(−Tn+T )
2 + e− Tn−T−(−Tn+T+i L)

2

)

o(n, T )

= C
kn

∑

i=1

(

e− (i−1)L
2 + e− 2(Tn−T )−i L

2

)

o(n, T )

≤ C
kn

∑

i=1

(

e− i
2 L + e− kn−i

2 L
)

o(n, T ) ≤ Co(n, T ). (2.17)
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Similarly,

∫

[−Tn+T ,Tn−T ]×S1

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

4
3 =

kn
∑

i=1

∫

Pi

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

4
3

≤ C(L)

kn
∑

i=1

∫

Pi

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

≤ C
kn

∑

i=1

(

e− i
2 L + e− kn−i

2 L
)

o(n, T ) ≤ Co(n, T ). (2.18)

Combining (2.16) with (2.17) and (2.18), we obtain

lim
T→∞ lim

n→∞

∫

[−Tn+T ,Tn−T ]×S1
|∇φn |2dtdθ = 0. (2.19)

In order to prove

lim
T→∞ lim

n→∞

∫

[−Tn+T ,Tn−T ]×S1
|ψn |4dtdθ = 0, (2.20)

taking a cut-off function η ∈ C∞
0 ((−Tn + T , Tn − T ) × S1) such that

0 ≤ η ≤ 1, η|(−Tn+T+1,Tn−T−1)×S1 ≡ 1 and |∇η| ≤ C,

by the elliptic estimates for the Dirac operator, we have

‖ηψn‖
W 1, 43 (R1×S1)

≤C‖/∂(ηψn)‖
L

4
3 (R1×S1)

≤C‖∇η · ψn‖
L

4
3 (R1×S1)

+ C‖η/∂ψn‖
L

4
3 (R1×S1)

≤C‖ψn‖L4((−Tn+T ,−Tn+T+1)×S1∪(Tn−T−1,Tn−T )×S1)

+ C‖dφn‖L2((−Tn+T ,Tn−T )×S1)‖ψn‖L4((−Tn+T ,Tn−T )×S1),

where we used the Hölder inequality in the last estimate. Then (2.20) follows immediately
from (2.19) and (2.10). Thus, we proved the statement (1) of the lemma.

For the statement (2), similar to the argument in (2.16), we may obtain

∫

Pi
|∇φn |2dtdθ ≤2

∫

Pi

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ + L|Re α(φn, ψn)|

+ C(N )

(∫

Pi
|ψn |4

) 1
2
(

∫

Pi

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2
) 1

2

+
(∫

Pi
|ψn |4

) 1
4
(

∫

Pi

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

4
3
)

3
4

≤C(N , L,�)

⎛

⎝

(

∫

Pi

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2
) 1

2

+
(

∫

Pi

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2
) 1

2
⎞

⎠ + L|Re α(φn, ψn)|
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≤Co(n, T )
(

e− i
2 L + e− kn−i

2 L
)

+ L|Re α(φn, ψn)|. (2.21)

where the last inequality follows from (2.14) and (2.15).
Combining this with Lemma 2.3, we get

OscPi φn ≤ C
√

E(φn; Pi−1 ∪ Pi ∪ Pi+1)

≤ Co(n, T )
(

e− i
4 L + e− kn−i

4 L
)

+ C
√

L|Re α(φn, ψn)|. (2.22)

Therefore,

Osc[−Tn+T ,Tn−T ]×S1φn ≤
kn

∑

i=0

OscPi φn

≤
kn

∑

i=0

Co(n, T )
(

e− i
4 L + e− kn−i

4 L
)

+ √

L|Re α(φn, ψn)|Tn

≤ Co(n, T ) + C
√|Re α(φn, ψn)|Tn .

Then the conclusion of statement (2) follows immediately and we finished the proof of this
lemma. ��

3 Convergence to geodesics

In this section, we will prove our main Theorem 1.2.
In fact, in [28], it was shown that the energy concentration at the nodes can be reduced

to the study of the asymptotic behaviour of a sequence of Dirac-harmonic maps from long
cylinders. Therefore, we just need to study the following problem:

Let Pn = [−Tn, Tn]× S1 with standard metric ds2 = dt2+dθ2 and Tn → ∞ as n → ∞.
Given a sequence of Dirac-harmonic maps (φn, ψn) from Pn to N with uniformly bounded
energy E(φn, ψn) ≤ � < ∞, which satisfies

(φn(t − Tn, θ), ψn(t − Tn, θ)) → (ω−, ζ−) in C∞([0,∞) × S1), (3.1)

and

(φn(t + Tn, θ), ψn(t + Tn, θ)) → (ω+, ζ+) in C∞((−∞, 0] × S1), (3.2)

does φn converges to a geodesic? If so, how to compute the lengths of these curves?

Denote

μ := lim
n→∞

√|Re α(φn, ψn)|Tn .
Now, we state the main theorem in this section.

Theorem 3.1 Let N be a compact Riemannianmanifold. Let (φn, ψn) : [−Tn, Tn]×S1 → N
be a sequence of Dirac-harmonic maps with uniformly bounded energy

E(φn, ψn; [−Tn, Tn] × S1) ≤ �,
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where [−Tn, Tn] × S1 is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞
as n → ∞. Suppose that

(φn(t − Tn, θ), ψn(t − Tn, θ)) → (ω−, ζ−) in C∞([0,∞) × S1), (3.3)

and

(φn(t + Tn, θ), ψn(t + Tn, θ)) → (ω+, ζ+) in C∞((−∞, 0] × S1), (3.4)

if there is no energy concentration for (φn, ψn), then we have

(1) when 0 ≤ μ < ∞, φn converges to a geodesic of length
√

2
π
μ;

(2) when μ = ∞, the neck contains at least an infinite length geodesic.

To show Theorem 3.1, we shall first prove some lemmas.

Lemma 3.2 Under the assumption of Theorem 3.1, let λ ∈ (0, 1) and

μ = lim
n→∞

√|Re α(φn, ψn)|Tn > 0,

then for any tn ∈ [−λTn, λTn] and k > 0, we have

lim
n→∞

1

|Re α(φn, ψn)|

(

∫

Qtn (k)

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ +
∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

dtdθ

)

= 0.

Proof By Lemma 2.7, we have

(

∫

Qtn (k)

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ

) 1
2

+
(

∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

dtdθ

) 1
2

≤ C
(

e− tn−k−(−Tn+T )
2 + e− Tn−T−(tn+k)

2

)

o(n, T )

≤ Ce− (1−λ)Tn−k−T
2 o(n, T ).

Since μ > 0, when n is big enough, there holds

1√|Re α(φn, ψn)| ≤ CTn .

Thus,

1

|Re α(φn, ψn)|

(

∫

Qtn (k)

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ +
∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

dtdθ

)

≤ Ce−((1−λ)Tn−k−T )T 2
n o(n, T ).

Letting n → ∞ and then T → ∞, we will get the conclusion of the lemma. ��

From the above proof, it is easy to see that a stronger property holds.
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Remark 3.3 Under the assumption of Lemma 3.2, there holds

lim
n→∞

1

(|Re α(φn, ψn)|)r
(

∫

Qtn (k)

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ +
∫

Qtn (k)

∣

∣

∣

∣

∂ψn

∂θ

∣

∣

∣

∣

2

dtdθ

)

= 0,

for any positive integer r .

Next, we will show that there is no concentration for some stronger energy norm of the
spinor part. The proof is based on applying some Hardy-type inequality on R2, as was done
in [11,15].

Lemma 3.4 Under the assumption of Theorem 3.1, there holds

lim
T→∞ lim

n→∞

∫

[−Tn+T ,Tn−T ]×S1
|ψn |2dtdθ = 0.

Proof The key of the proof is the Hardy-type inequality onR2 that for any f ∈ C∞
0 (R2\{0}),

there holds
∥

∥

∥

∥

f

|x |
∥

∥

∥

∥

L1(R2)

≤ ‖∇ f ‖L1(R2) (3.5)

where the constant 1 is the best possible constant (for a simple proof, see [1]).
Firstly, we introduce a new coordinate system. Let (r , θ) be polar coordinates centered at

0. Let F : R1 × S1 → R
2, F(t, θ) = (et , θ) (t, θ) ∈ R

1 × S1 where R1 × S1 is equipped
with the metric g = dt2 + dθ2, which is conformal to the standard Euclidean metric ds2 on
R
2. In fact,

(F−1)∗g = 1

r2
ds2.

For convenience, we will respectively denote

�n := φn ◦ F−1 and �n := e
t
2 ψn ◦ F−1. (3.6)

Denoting T0 := −Tn+T , T1 := Tn−T , then DeTn−T \De−Tn+T changes to� := [T0, T1]×S1

and (�n, �n) : DeTn−T \De−Tn+T → N is also a Dirac-harmonic map.
We choose the cut-off function η ∈ C∞

0 (DeTn−T \De−Tn+T ) such that 0 ≤ η ≤ 1 and η ≡ 1
on DeTn−T−1\De−Tn+T+1 and

|∇η| ≤ C

eTn−T
on DeTn−T \DeTn−T−1 and

|∇η| ≤ C

e−Tn+T
on De−Tn+T+1\De−Tn+T .

Taking f = η|�n |2 in the inequality (3.5), we get
∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

≤ ‖∇(η|�n |2)‖L1(R2)

≤ ‖2η�n∇�n‖L1(R2) + ‖∇η|�n|2‖L1(R2)

≤
∥

∥

∥

∥

2η�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(R2)

+
∥

∥

∥

∥

2η�n
∂�n

∂r

∥

∥

∥

∥

L1(R2)

+ ‖∇η|�n |2‖L1(R2).

On the one hand, from the equation or spinor and conformal invariance, we know

∂�n

∂r
= ∂

∂r
· 1

|x |
∂

∂θ
· 1

|x |
∂�n

∂θ
+ ∂

∂r
· A(d�n(eγ ), eγ · �n)
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So, we have
∣

∣

∣

∣

2η�n
∂�n

∂r

∣

∣

∣

∣

≤
∣

∣

∣

∣

2η�n
1

|x |
∂�n

∂θ

∣

∣

∣

∣

+ C |η||d�n ||�n |2.

On the other hand, by inequality (2.11), we have

|x ||d�n | + √|x ||�n | ≤ Cε on DeTn−T \De−Tn+T . (3.7)

Combining these, we get
∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

≤ 4

∥

∥

∥

∥

η�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(R2)

+ C‖η|d�n||�n |2‖L1(R2) + ‖∇η|�n|2‖L1(R2)

≤ 4

∥

∥

∥

∥

η�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(R2)

+ Cε

∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

+ ‖∇η|�n |2‖L1(R2).

(3.8)

Since we can take ε sufficiently small, we then have
∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

≤C

∥

∥

∥

∥

ψn
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(DeTn−T \De−Tn+T )

+ C‖∇η|�n|2‖L1(DeTn−T \De−Tn+T )

≤
kn

∑

i=1

∥

∥

∥

∥

�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(DeTn−T ei L \De−Tn+T e(i−1)L )

+ C‖∇η|�n|2‖L1(DeTn−T \De−Tn+T )

≤
kn

∑

i=1

‖�n‖L4(De−Tn+T ei L \De−Tn+T e(i−1)L )

∥

∥

∥

∥

1

|x |
∂�n

∂θ

∥

∥

∥

∥

L
4
3 (De−Tn+T ei L \De−Tn+T e(i−1)L )

+ C‖∇η|�n|2‖L1(DeTn−T \De−Tn+T )

≤C
kn

∑

i=1

∥

∥

∥

∥

1

|x |
∂�n

∂θ

∥

∥

∥

∥

L
4
3 (De−Tn+T ei L \De−Tn+T e(i−1)L )

+ C‖∇η|�n|2‖L1(DeTn−T \De−Tn+T )

≤C
kn

∑

i=1

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L
4
3 (Pi )

+ Ce−Tn+T ‖|�n |2‖L1(DeTn−T \DeTn−T−1 )

+ CeTn−T ‖|�n |2‖L1(De−Tn+T+1\De−Tn+T )

≤Cε

kn
∑

i=1

(

e− i
2 L + e− kα−i

2 L
)

+ C‖�n‖2L4(DeTn−T \DeTn−T−1 )

+ C‖�n‖2L4(De−Tn+T+1\De−Tn+T )

≤Cε + C‖ψn‖2L4(Pkn )
+ C‖ψn‖2L4(P1)

≤ Cε
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where we used (2.10) and (2.15).
Thus,

∫

[−Tn+T+1,Tn−T−1]×S1
|ψn |2dtdθ =

∫

DeTn−T−1\De−Tn+T−1

|�n |2
|x | dx ≤ Cε.

Combining this with (2.10) again, we have
∫

[−Tn+T ,Tn−T ]×S1
|ψn |2dtdθ ≤ Cε.

��
Combing Lemma 3.4 with the Hardy type inequality (3.5), we shall derive the exponential

decay of the energy of spinor part on the neck region.

Lemma 3.5 Under the assumption of Theorem 3.1, then we have
∫

Pi
|ψn |2dtdθ ≤ (

e− i L
4 + e− (kn−i)L

4
)

o(n, T ), (3.9)

which implies
∫

Pi
|ψn |4dtdθ ≤ (

e− i L
4 + e− (kn−i)L

4
)

o(n, T ). (3.10)

Proof Define

f1(t) :=
∫

D
e(t0+t)L e−Tn+T \D

e(t0−t)L e−Tn+T

|�n |2
|x | dx

for any t0 ∈ (1, kn) and 0 ≤ t ≤ min{t0, kn − t0}.
For any ρ > 0, taking the cut-off function η ∈ C∞

0 (De(t0+t)Le−Tn+T +ρ\De(t0−t)L e−Tn+T −ρ)

such that 0 ≤ η ≤ 1 and η ≡ 1 on De(t0+t)L e−Tn+T \De(t0−t)Le−Tn+T and |∇η| ≤ 2
ρ
. Taking

f = η|�n |2 in the Hardy inequality (3.5) and by (3.8), we get
∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

≤ 4

∥

∥

∥

∥

η�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(R2)

+ Cε

∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

+ ‖∇η|�n|2‖L1(R2).

(3.11)

Taking ε > 0 sufficiently small such that Cε ≤ 1
2 , we have

∥

∥

∥

∥

η
|�n |2
|x |

∥

∥

∥

∥

L1(R2)

≤ 8

∥

∥

∥

∥

�n
1

|x |
∂�n

∂θ

∥

∥

∥

∥

L1(D
e(t0+t)L e−Tn+T +ρ

\D
e(t0−t)L e−Tn+T −ρ

)

+ 2‖∇η|�n |2‖L1(D
e(t0+t)L e−Tn+T +ρ

\D
e(t0−t)L e−Tn+T −ρ

)

≤ 8‖�n‖L4(D
e(t0+t)L e−Tn+T +ρ

\D
e(t0−t)L e−Tn+T −ρ

)

∥

∥

∥

∥

|x |−1 ∂�n

∂θ

∥

∥

∥

∥

L
4
3 (D

e(t0+t)L e−Tn+T +ρ
\D

e(t0−t)L e−Tn+T −ρ
)

+ 4

ρ
‖|�n |2‖L1(D

e(t0+t)L e−Tn+T +ρ
\D

e(t0+t)L e−Tn+T )

+ 4

ρ
‖|�n |2‖L1(D

e(t0−t)L e−Tn+T \D
e(t0−t)L e−Tn+T −σ

)
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≤ C

∥

∥

∥

∥

∂ψn

∂θ

∥

∥

∥

∥

L
4
3 (Q−Tn+T+t0L (t L+1))

+ 4

ρ
‖|�n |2‖L1(D

e(t0+t)L e−Tn+T +ρ
\D

e(t0+t)L e−Tn+T )

+ 4

ρ
‖|�n |2‖L1(D

e(t0−t)L e−Tn+T \D
e(t0−t)L e−Tn+T −ρ

)

≤ (

e− 1
2 (t0−t)L + e− 1

2 (kn−t0−t)L)

o(n, T )

+ 4

ρ
‖|�n |2‖L1(D

e(t0+t)L e−Tn+T +ρ
\D

e(t0+t)L e−Tn+T )

+ 4

ρ
‖|�n |2‖L1(D

e(t0−t)L e−Tn+T \D
e(t0−t)L e−Tn+T −ρ

)

where ρ is small and the last inequality is from Lemma 2.7.
Letting ρ → 0, we get

f1(t) =
∫

D
e(t0+t)L e−Tn+T \D

e(t0−t)L e−Tn+T

|�n |2
|x | dx

≤ (

e− 1
2 (t0−t)L + e− 1

2 (kα−t0−t)L)

o(n, T ) + 4e(t0+t)LλαR
∫

∂D
e(t0+t)L e−Tn+T

|�n |2
|x |

+ 4e(t0−t)Le−Tn+T
∫

∂D
e(t0−t)L e−Tn+T

|�n |2
|x |

≤ (

e− 1
2 (t0−t)L + e− 1

2 (kn−t0−t)L)

o(n, T ) + 4

L
f ′
1(t).

This is

(e− L
4 t f1(t))

′ ≥ −e− L
4 t

(

e− 1
2 (t0−t)L + e− 1

2 (kn−t0−t)L
)

o(n, T )

= −e
L
4 t

(

e− 1
2 t0L + e− 1

2 (kn−t0)L
)

o(n, T ). (3.12)

Without loss of generality, we may assume t0 ≤ kn − t0. Then, integrating the above differ-
ential inequality from 1 to t0, we get

f1(1) ≤ Ce− L
4 t0 f1(t0) + o(n, T )e− L

2 t0

∫ t0

1
e

L
4 t dt = e− L

4 t0o(n, T )

where the second equality follows from Lemma 3.4 since

f1(t0) ≤
∫

DeTn−T \De−Tn+T

|�n |2
|x | dx =

∫

[−Tn+T ,Tn−T ]×S1
|ψn |2dtdθ.

In the case of kα − t0 ≤ t0, we can apply similar arguments to get

f1(1) ≤ e− L
4 (kn−t0)o(n, T ).

Thus, we have proved (3.9). The estimate (3.10) is a consequence of (3.9) and (2.11). ��
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Lemma 3.6 Under the assumption of Theorem 3.1, let μ > 0 and λ ∈ (0, 1), then there hold
∥

∥

∥

∥

1√|Re α(φn, ψn)|
(

φn − 1

2π

∫ 2π

0
φndθ

)∥

∥

∥

∥

C1([−λTn ,λTn ]×S1)
→ 0, (3.13)

∥

∥

∥

∥

ψn

|Re α(φn, ψn)|
∥

∥

∥

∥

C0([−λTn ,λTn ]×S1)
→ 0. (3.14)

Proof We first prove (3.14). In fact, for any t ∈ [−λTn, λTn]× S1 and k > 0, by Lemmas 2.3
and 3.5, we have

‖ψn‖C0(Qt (k)) ≤ C(N )‖ψn‖L4(Qt (2k)) ≤
(

e− t−Tn
16 + e− Tn−t

16

)

o(n, T )

≤ e− (1−λ)Tn
16 o(n, T ).

Noting that μ > 0, when n is big enough, there holds

1

Tn
≤ C

√|Re α(φn, ψn)|. (3.15)

Then, we get

‖ψn‖C0(Qt (k))

|Re α(φn, ψn)| ≤ e− (1−λ)Tn
16 T 2

n o(n, T ),

which implies (3.14) since λ ∈ (0, 1).

For (3.13), we prove it by a contradiction argument which is similar to the proof of Lemma
2.7 in [7].

If it was false, then there would exist tn ∈ [−λTn, λTn] and θn ∈ [0, 2π] such that
1√|Re α(φn, ψn)|

(|∇φn(tn, θn) − ∇φ∗
n (tn)| + |φn(tn, θn) − φ∗

n (tn)|
) → b �= 0. (3.16)

By (2.21), for any t ∈ [−λTn, λTn] × S1 and k > 0, when n is big enough, we have
∫

Qt (k)
|∇φn |2dtdθ ≤ C(k)

(

e− t+Tn
2 + e− Tn−t

2

)

o(n, T ) + 2k|Re α(φn, ψn)|

≤ C(k)e− (1−λ)Tn
4 o(n, T ) + 2k|Re α(φn, ψn)|. (3.17)

Combining this with (3.15) and (3.17), since λ ∈ (0, 1), when n is sufficiently large, we
get

∫

Qt (2k)
|∇φn |2dtdθ ≤ C(k)|Re α(φn, ψn)|. (3.18)

By small energy regularity Lemma 2.3, we obtain that for any β ∈ (0, 1), there holds

‖∇φn‖Cβ (Qt (k)) ≤ C(β, k)
√|Re α(φn, ψn)|. (3.19)

Setting

un := 1√|Re α(φn, ψn)| (φn(tn + t, θ) − φn(tn, 0)) ,

then from (3.19), it is easy to see that

‖∇un‖Cβ (Q0(k)) ≤ C(β, k). (3.20)
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Combining this with the fact that un(0, 0) = 0, we have

‖un‖C1,β (Q0(k)) ≤ C(β, k).

Noting that |ψn | ≤ C |Re α(φn, ψn)|, it is easy to prove that un satisfies the following
equation

�un + √|Re α(φn, ψn)|(A(y) + o(1))(∇un,∇un) + |Re α(φn, ψn)|2O(|∇un |) = 0.

Therefore, we know that after passing to a subsequence, there holds

un → u ∈ C1
loc(R

1 × S1)

where u is a harmonic function, i.e. �u = 0.
Moreover, by Lemma 3.2, we get

∂u

∂θ
= 0.

Thus, we know that the harmonic function u must be of the form

u(t) = −→a t,

where −→a = (a1, . . . , aK ) ∈ TyN . Let limn→∞ θn = θ0, then it is obvious that

|∇u(0, θ0) − ∇u∗(0)| + |u(0, θ0) − u∗(0)| = 0.

However, by (3.16), we have

b = lim
n→∞

1√|Re α(φn, ψn)|
(|∇φn(tn, θn) − ∇φ∗

n (tn)| + |φn(tn, θn) − φ∗
n (tn)|

)

= lim
n→∞ |∇un(0, θn) − ∇u∗

n(0)| + lim
n→∞ |un(0, θn) − u∗

n(0)|
= |∇u(0, θ0) − ∇u∗(0)| + |u(0, θ0) − u∗(0)| = 0,

which is a contradiction. So, (3.13) holds and we finished the proof of the lemma. ��

Lemma 3.7 Under the assumptions of Theorem 3.1, let μ > 0 and λ ∈ (0, 1), then there
holds

∥

∥

∥

∥

1√|Re α(φn, ψn)| |∇φn | − 1√
2π

∥

∥

∥

∥

C0([−λTn ,λTn ]×S1)
→ 0. (3.21)

Proof In fact, if (3.21) does not hold, then there exist tn ∈ [−λTn, λTn] and θn ∈ [0, 2π]
such that

1√|Re α(φn, ψn)| |∇φn(tn, θn)| → d �= 1√
2π

.

By similar argument as in the proof of Lemma 3.6, we may assume

un := 1√|Re α(φn, ψn)| (φn(tn + t, θ) − φn(tn, 0)) → u(t) in C1
loc(R

1 × S1),

where

u(t) = −→a t
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with |−→a | = d . Then,

lim
n→∞

∫

[−1,1]×S1
|∇un |2dtdθ = 4π |−→a |2. (3.22)

On the other hand, by Lemmas 2.1 and 3.2, we have

lim
n→∞

∫

[−1,1]×S1
|∇un |2dtdθ

= lim
n→∞

1

|Re α(φn, ψn)|
∫

Qtn (1)
|∇φn |2dtdθ

= lim
n→∞

1

|Re α(φn, ψn)|
∫

Qtn (1)

(

∣

∣

∣

∣

∂φn

∂t

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

− Re

〈

ψn,
∂

∂θ
· ˜∇ ∂

∂θ
ψn

〉

)

dtdθ

= 2. (3.23)

Combining (3.23) with (3.22), we get

d = |−→a | = 1√
2π

,

which is also a contradiction. Thus, (3.21) holds and we finished the proof of this lemma. ��

Now, with the help of the previous lemmas, we can prove Theorem 3.1.

Proof of Theorem 3.1 Whenμ = 0, then the conclusions of Theorem 3.1 follow immediately
from Lemma 2.8. We just need to consider the case that μ > 0.

Denote

γn : φ∗
n (t) = 1

2π

∫ 2π

0
φn(t, θ)dθ,

where t ∈ [−λTn, λTn], λ ∈ (0, 1).
By Lemma 2.3, it is easy to see that γn converges to some curve on N denoted by γ . Next,

we will show that γ is just a geodesic on N .
Denoting

φ̇∗
n = dφ∗

n

dt
, φ̈∗

n = d2φ∗
n

dt2
,

by a direct computation, we have

φ̈∗
n (t) = 1

2π

∫ 2π

0

∂2φn

∂t2
(t, θ)dθ = 1

2π

∫ 2π

0
�φndθ

= 1

2π

∫ 2π

0
A(φn)(∇φn,∇φn)dθ + 1

2π

∫ 2π

0
Re(P(A(dφn(eγ ), eγ · ψn);ψn))dθ.

Let s be the arc length parameter of φ∗
n (t), i.e.

s(t) =
∫ t

t0
|φ̇∗

n (σ )|dσ,
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where t0 ∈ [−λTn, λTn]. Without loss of generality, we assume s(t0) = 0. By Lemmas 3.6
and 3.7, for any λ ∈ (0, 1), we have

∫ t0+λTn

t0−λTn
|φ̇∗

n |dt = 2λTn
√|Re α(φn, ψn)|

(

1√
2π

+ o(1)

)

→ 2λμ√
2π

> 0

as n → ∞. Thus, there exists λ′ ∈ (λ, 1) such that

φ∗
n |[s(t0)−s,s(t0)+s] ⊂ φ∗

n ([−λ′Tn, λ′Tn])
whenever s ∈ (0, λμ√

2π
).

Computing directly, we obtain

d2φ∗
n

ds2
=Aγn (φ

∗
n (s))

(

dφ∗
n

ds
,
dφ∗

n

ds

)

= 1

|φ̇∗
n |2

Aγn (φ
∗
n (t))

(

dφ∗
n

dt
,
dφ∗

n

dt

)

= 1

|φ̇∗
n |2

(

φ̈∗
n − 〈φ̈∗

n , φ̇
∗
n 〉

|φ̇∗
n |2

φ̇∗
n

)

= 1

|φ̇∗
n |2

1

2π

(∫ 2π

0
A(φn)(∇φn,∇φn)dθ

+
∫ 2π

0
Re(P(A(dφn(eγ ), eγ · ψn);ψn))dθ

)

− φ̇∗
n

|φ̇∗
n |4

1

2π

∫ 2π

0
〈A(φn)(∇φn,∇φn), φ̇

∗
n 〉dθ

− φ̇∗
n

|φ̇∗
n |4

1

2π

∫ 2π

0
〈Re(P(A(dφn(eγ ), eγ · ψn);ψn)), φ̇

∗
n 〉dθ

:= I + II + III + IV. (3.24)

On the one hand, by Lemmas 3.6, 3.7 and using the fact that
〈

A(φn)(∇φn,∇φn),
∂φn

∂t

〉

= 0,

we have

III = φ̇∗
n

|φ̇∗
n |4

1

2π

∫ 2π

0

〈

A(φn)(∇φn,∇φn), φ̇
∗
n − ∂φn

∂t

〉

dθ

= φ̇∗
n

|φ̇∗
n |4

(

√|Re α(φn, ψn)|
)3

o(1) → 0 (3.25)

as n → ∞.
On the other hand, also from Lemmas 3.6 and 3.7, it is easy to see that

II + IV ≤ C(N )
1

|φ̇∗
n |2

‖∇φn‖L∞([−λTn ,λTn ]×S1)‖ψn‖2L∞([−λTn ,λTn ]×S1)

≤ C(N )|Re α(φn, ψn)| 32 → 0, (3.26)

as n → ∞.

123



142 Page 24 of 33 J. Jost et al.

Therefore, we obviously see that
∣

∣

∣

∣

d2φ∗
n

ds2

∣

∣

∣

∣

≤ C(N ).

Thus, φ∗
n (s) will converge locally to a smooth vector valued function from [0, s] into R

K ,
denoted by ω(s), in the sense of C1, i.e. γn |[−λTn ,λTn ] converges locally to the curve γ . Next,
we will show that γ is a geodesic.

By Lemmas 3.6 and 3.7, we obtain

I = 1

|φ̇∗
n |2

1

2π

∫ 2π

0
A(φn)(∇φn,∇φn)dθ

= 1

|φ̇∗
n |2

1

2π

(∫ 2π

0
(A(φn) − A(φ∗

n ))(∇φn,∇φn) + A(φ∗
n )(∇(φn − φ∗

n ),∇φn)dθ

)

+ 1

|φ̇∗
n |2

1

2π

∫ 2π

0
A(φ∗

n )(∇φ∗
n ,∇(φn − φ∗

n ))dθ + 1

|φ̇∗
n |2

1

2π

∫ 2π

0
A(φ∗

n )(∇φ∗
n ,∇φ∗

n )dθ

= 1

|φ̇∗
n |2

A(φ∗
n )(∇φ∗

n ,∇φ∗
n ) + |Re α(φn, ψn)|

|φ̇∗
n |2

o(1). (3.27)

Combining (3.24) with (3.25), (3.26) and (3.27), we have

dω

ds
(s) − dω

ds
(0) =

∫ s

0
A(ω)

(

dω

ds
,
dω

ds

)

which implies

d2ω

ds2
= A(ω)

(

dω

ds
,
dω

ds

)

.

Therefore, we get that the Dirac-harmonic neck converges to a geodesic γ on the target
manifold N .

Finally, we compute the length of the geodesic. We consider the following two cases.

Case 1: μ < ∞.

Suppose i1 ∈ [1, kn] is a positive integer such that

−Tn + T + (i1 − 1)L ≤ −λTn < −Tn + T + i1L.

By (2.22), there holds

Osc[−Tn+T ,−λTn ]×S1φn ≤
i1

∑

i=1

OscPi φn

≤ Co(n, T )

i1
∑

i=1

(

e− i
4 L + e− kn−i

4 L
)

+ C
√

L|Re α(φn, ψn)|

≤ Co(n, T ) + C
√|Re α(φn, ψn)|((1 − λ)Tn − T ).

Similarly,

Osc[λTn ,Tn−T ]×S1φn ≤ Co(n, T ) + √|Re α(φn, ψn)|((1 − λ)Tn − T ).
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Therefore, we get

lim
λ→1

lim
T→∞ lim

n→∞(Osc[−Tn+T ,−λTn ]×S1φn + Osc[λTn ,Tn−T ]×S1φn) = 0.

Combining this with Lemma 3.6, the length of the limit geodesic is

L(γ ) = lim
λ→1

lim
n→∞

∫ λTn

−λTn
|φ̇∗

n |dt

= lim
λ→1

lim
n→∞ 2λTn

√|Re α(φn, ψn)|
(

1√
2π

+ o(1)

)

=
√

2

π
μ.

Case 2: μ = ∞.

In this case, from the above argument, it is easy to see that the neck contains at least an
infinite length geodesic. ��

In the end of this section, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By Theorem 3.1, we know that the images of the base map φ(M) and
the bubbles ω j,k(S2), k = 1, . . . , K j , j = 1, . . . , p are connected by geodesics on N . Next,
we compute the sumof the lengths of these geodesics. By [28], the energy concentration at the
punctures can be reduced to the study of (φn, ψn) on the long cylinders Pn = [T 1

n , T 2
n ] × S1

with uniformly bounded energy E(φn, ψn; Pn) ≤ �, where 1 � T 1
n � T 2

n , i.e.

lim
n→∞

1

T 1
n

= 0, lim
n→∞

T 1
n

T 2
n

= 0.

Moreover, there exists a constant K > 0 independent of n and 2K sequences {a1n}, {b1n},
{a2n}, {b2n},…, {aKn }, {bKn }, such that

T 1
n ≤a1n � b1n ≤a2n � b2n ≤· · · ≤ aKn � bKn ≤ T 2

n

(

ain � bin means lim
n→∞ bin − ain =∞

)

and (bin − ain) � T 2
n , i.e.

lim
n→∞

bin − ain
T 2
n

= 0, i = 1, . . . , K .

Denote

J j
n := [a j

n , b
j
n ] × S1, j = 1, . . . , K ,

I 0n := [T 1
n , a1n] × S1, I Kn := [bKn ] × S1, I in := [bin, ai+1

n ] × S1, i = 1, . . . , K − 1.

Then
(1) ∀i = 0, 1, . . . , K ,

lim
n→∞ sup

t∈I in

∫

[t,t+1]×S1
|∇φn |2 = 0.

The maps φn on I in are necks corresponding to collapsing homotopically nontrivial curves.
(2) ∀ j = 0, 1, . . . , K , there are finitely many Dirac-harmonic maps (σ j,lξ j,l) : S2 → N ,

l = 1, . . . , L j , such that
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lim
n→∞ E(φn, J

j
n ) =

L j
∑

l=1

E(σ j,l),

lim
n→∞ E(ψn, J

j
n ) =

L j
∑

l=1

E(ξ j,l).

By Theorem 3.1, we know that map parts φn on I in are converging to the geodesics on N
of length

lim
n→∞

1√
2π

√|Re α(φn, ψn)|(ai+1
n − bin),

and the spinor parts ψn on I in are converging to 0. By applying the neck analysis for Dirac-

harmonic maps from a fixed domain in [19], the maps φn on J j
n are converging to a point, i.e.,

we get the no neck property. Thus, the maps φn on the whole cylinder Pn converge to some
geodesics on N . The sum of the lengths of these geodesics can be calculated as follows:

lim
n→∞

K−1
∑

i=0

1√
2π

√|Re α(φn, ψn)|(ai+1
n − bin)

= lim
n→∞

1√
2π

√|Re α(φn, ψn)|
(

T 2
n − T 1

n −
K

∑

i=1

(bin − ain)

)

= lim
n→∞

1√
2π

√|Re α(φn, ψn)|(T 2
n − T 1

n ) · T 2
n

T 2
n − T 1

n

(

1 − T 1
n

T 2
n

−
K

∑

i=1

bin − ain
T 2
n

)

= lim
n→∞

1√
2π

√|Re α(φn, ψn)|(T 2
n − T 1

n )

= lim
n→∞

1√
2π

√|Re α(φn, ψn)||Pn | = lim
n→∞

1√
2π

√|Re α(φn, ψn)|2π
2

ln
,

which implies the conclusions of the theorem immediately. ��

4 Proof of Theorem 1.4

In this section, we shall calculate the second variation formula for the functional L and
define the notion of index of Dirac-harmonic maps. Similar calculation and definition for
α-Dirac-harmonic maps were given in [15]. Then, in analogy to [18], we shall give some
geometric conditions on the target manifold which ensures that the energy identities hold for
Dirac-harmonic maps from degenerating surfaces with bounded index.

Let (φ, ψ) : M → N be a Dirac-harmonic map. φ∗(T N ) is the pull-back bundle over M .
Let V be a section of L . Consider the following variation of (φ, ψ):

φτ (x) = expφ(x)(τV ), ψτ (x) = ψ i (x) ⊗ ∂

∂ yi
(φτ (x)). (4.1)

It is well-known that the following second variational formula for the energy of the map
holds [22]

δ2E(φ)(V , V ) = 2
∫

M
(〈∇V ,∇V 〉 − R(V ,∇φ,∇φ, V ) − 〈τ(φ),∇V V 〉) dtdθ,
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where τ(φ) = �φ − A(φ)(dφ, dφ) is the tension field of the map φ.
Next, we compute

d2

dτ 2
|τ=0

∫

M
〈ψτ , /Dψτ 〉 = 2

∫

M

〈

d

dτ
|τ=0ψτ ,

d

dτ
|τ=0 /Dψτ

〉

+
∫

M

〈

ψτ ,
d2

dτ 2
|τ=0 /Dψτ

〉

.

Choosing a local orthonormal basis {eα} on M such that [eα, ∂
∂τ

] = 0, ∇eαeβ = 0 at a
considered point, then we have

d

dτ
/Dψτ = d

dτ

(

eα · ˜∇eα

(

ψ i ⊗ ∂

∂ yi
(φτ )

))

= d

dτ

(

eα · ∇eαψ i ⊗ ∂

∂ yi
(φτ ) + eα · ψ i ⊗ ∇eα

∂

∂ yi
(φτ )

)

= eα · ∇eαψ i ⊗ ∇ ∂
∂τ

∂

∂ yi
(φτ ) + eα · ψ i ⊗ ∇ ∂

∂τ
∇eα

∂

∂ yi
(φτ )

= eα · ˜∇eα

(

ψ i ⊗ ∇ ∂
∂τ

∂

∂ yi
(φτ )

)

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

and

d2

dτ 2
|τ=0 /Dψτ = eα · ∇eαψ i ⊗ ∇ ∂

∂τ
∇ ∂

∂τ

∂

∂ yi
(φτ ) + eα · ψ i ⊗ ∇ ∂

∂τ
∇eα∇ ∂

∂τ

∂

∂ yi
(φτ )

+ eα · ψ i ⊗ ∇ ∂
∂τ

(

R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

)

= eα · ∇eαψ i ⊗ ∇ ∂
∂τ

∇ ∂
∂τ

∂

∂ yi
(φτ ) + eα · ψ i ⊗ ∇eα∇ ∂

∂τ
∇ ∂

∂τ

∂

∂ yi
(φτ )

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∇ ∂
∂τ

∂

∂ yi
(φτ )

+ eα · ψ i ⊗ ∇ ∂
∂τ

(

R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

)

= eα · ˜∇eα

(

ψ i ⊗ ∇ ∂
∂τ

∇ ∂
∂τ

∂

∂ yi
(φτ )

)

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∇ ∂
∂τ

∂

∂ yi
(φτ )

+ eα · ψ i ⊗ ∇ ∂
∂τ

(

R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

)

.

Noting that

R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ ) = R j

ikl V
kdφl(eα)

∂

∂ y j
,

we have

∇ ∂
∂τ

(

R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

)

= R j
ikl;pV

pV kdφl(eα)
∂

∂ y j
+ R

(

∇ ∂
∂τ

∂

∂τ
, eα

)

∂

∂ yi
(φτ ) + R

(

∂

∂τ
,∇ ∂

∂τ
eα

)

∂

∂ yi
(φτ ).
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Combining these and using the equation /Dψ = 0, we get

d2

dτ 2
|τ=0

∫

M
〈ψτ , /Dψτ 〉

= 2
∫

M

〈

ψ j ⊗ ∇ ∂
∂τ

∂

∂ y j
(φτ ), eα · ˜∇eα

(

ψ i ⊗ ∇ ∂
∂τ

∂

∂ yi
(φτ )

)

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

〉

+
∫

M

〈

ψ, eα · ˜∇eα

(

ψ i ⊗ ∇ ∂
∂τ

∇ ∂
∂τ

∂

∂ yi
(φτ )

)

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∇ ∂
∂τ

∂

∂ yi
(φτ )

+ eα · ψ i ⊗
(

R j
ikl;pV

pV kdφl(eα)
∂

∂ y j
+ R

(

∇ ∂
∂τ

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

+ R

(

∂

∂τ
,∇ ∂

∂τ
eα

)

∂

∂ yi
(φτ )

) 〉

= 2
∫

M

〈

ψ j ⊗ ∇ ∂
∂τ

∂

∂ y j
(φτ ), eα · ˜∇eα

(

ψ i ⊗ ∇ ∂
∂τ

∂

∂ yi
(φτ )

)

+ eα · ψ i ⊗ R

(

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

〉

+
∫

M

〈

ψ, eα · ψ i ⊗ R

(

∇ ∂
∂τ

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

+ eα · ψ i ⊗
(

R j
ikl;pV

pV kdφl(eα)
∂

∂ y j
+ R

(

∂

∂τ
, eα

)

∇ ∂
∂τ

∂

∂ yi
(φτ )

+ R

(

∂

∂τ
,∇ ∂

∂τ
eα

)

∂

∂ yi
(φτ )

) 〉

.

By the fact that τ(φ) = R(φ, ψ) and
〈

ψ, eα · ψ i ⊗ R

(

∇ ∂
∂τ

∂

∂τ
, eα

)

∂

∂ yi
(φτ )

〉

= 2〈R(φ, ψ),∇V V 〉,

we obtain the following proposition:

Proposition 4.1 Let (φ, ψ) : M → N be a Dirac-harmonic map and V be a smooth section
of φ∗T N. Then the second variational formula of the functional L(φ, ψ) with respect to the
variations (4.1) is

δ2L(φ, ψ)(V , V ) = d2

dτ 2
|τ=0L(φτ , ψτ )

= 2
∫

M

(

〈∇V ,∇V 〉 − R(V ,∇φ,∇φ, V )

)

dtdθ

+ 2
∫

M

〈

ψ j ⊗ ∇V
∂

∂ y j
, eα · ˜∇eα

(

ψ i ⊗ ∇V
∂

∂ yi

)

+eα · ψ i ⊗ R(V , eα)
∂

∂ yi

〉
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+
∫

M

〈

ψ, eα · ψ i ⊗
(

R j
ikl;pV

pV kdφl(eα)
∂

∂ y j

+R(V , eα)∇V
∂

∂ yi
+ R(V ,∇eαV )

∂

∂ yi

)〉

.

Definition 4.2 Let �(φ∗T N ) denote the linear space of smooth sections of φ∗T N . The
index of (φ, ψ) is defined as the maximal dimension of a linear subspace � of �(φ∗T N ) on
which the second variation of L with respect to the variations (4.1) is negative, i.e., for any
V ∈ � ⊂ �(φ∗T N ), there holds

δ2L(φ, ψ)(V , V ) < 0.

Before giving the proof of Theorem 1.4, we first prove the following theorem.

Theorem 4.3 Let N be a compact Riemannianmanifold. Let (φn, ψn) : [−Tn, Tn]×S1 → N
be a sequence of Dirac-harmonic maps with uniformly bounded energy

E(φn, ψn; [−Tn, Tn] × S1) ≤ �,

where [−Tn, Tn] × S1 is a cylinder with standard flat metric ds2 = dt2 + dθ2 and Tn → ∞
as n → ∞. Suppose there is no energy concentration for (φn, ψn), if μ = ∞ and RicN ≥
λN > 0, then the index of (φn, ψn) tends to infinity.

Since RicN ≥ λ0 > 0, by the well-known Myers’s theorem, we know that, if

a ≥ π
√

λ0(n − 1)−1
+ 2ε,

then there exists a tangent vector field V0(s) on N , which is smooth on γ , and is vanishing
on γ |[0,ε] and γ |[a−ε,a], such that the second variation of length of γ satisfies

Iγ (V0, V0) =
∫ a

0

(

〈∇γ̇ V0,∇γ̇ V0〉 − R(V0, γ̇ , γ̇ , V0)

)

ds < −δ < 0. (4.2)

Recalling the curve

φ∗
n (t) = 1

2π

∫ 2π

0
φn(t, θ)dθ,

let s = s(t) be the arc-length parametrization of the curveφ∗
n (t)with s(0) = 0. Set s(tan ) = a,

by results in Sect. 3, we know that φ∗
n (s) converges to γ on [0, a]. Moreover, according to

Lemma 3.7, we have

a = s(tan ) =
∫ tan

0
|φ∗

n |(t)dt =
(

1√
2π

+ o(1)

)

√|Re α(φn, ψn)|tan
which implies

lim
n→∞ tan = ∞ and

√|Re α(φn, ψn)|tan ≤ C(a). (4.3)
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Lemma 4.4 Under the assumptions of Theorem 4.3, for sufficiently large n, there exists a
section Vn of φ∗

n (T N ), which is supported in [0, tan ], such that

δ2L(φn, ψn)(Vn, Vn) < 0.

Proof Let P be projection from TRK to T N . We define

Vn(s, θ) = Pφn(s,θ)(V0(s)),

where s is the arc-length parametrization of φ∗
n (t) with s(0) = 0. Then, it is easy to see that

Vn is a smooth section of φ∗
n (T N )which is supported in [0, tak ]× S1. Since φn(s, θ) → γ (s)

in C1([0, a] × S1), we have

Vn(φn(s, θ)) → V0(s) in C
1([0, a] × S1).

Next, we will show

lim
n→+∞

1√|Re α(φn, ψn)|δ
2L(φn, ψn)(Vn, Vn) = 2

√
2π Iγ (V0, V0). (4.4)

By Proposition 4.1, we have

δ2L(φn, ψn)(Vn, Vn)

= 2
∫

(0,tan )×S1

(

〈∇Vn,∇Vn〉 − R(Vn,∇φn,∇φn, Vn)

)

dtdθ

+ 2
∫

(0,tan )×S1

〈

ψ j ⊗ ∇Vn
∂

∂ y j
, eα · ˜∇eα

(

ψ i
n ⊗ ∇Vn

∂

∂ yi

)

+eα · ψ i
n ⊗ R(Vn, eα)

∂

∂ yi

〉

+
∫

(0,tan )×S1

〈

ψn, eα · ψ i
n ⊗

(

R j
ikl;pV

p
n V k

n dφl
n(eα)

∂

∂ y j

+R(Vn, eα)∇Vn
∂

∂ yi
+ R(Vn,∇eαVn)

∂

∂ yi

)〉

:= I + II + III.

On one hand, using (4.3), it is easy to see that

II + III√|Re α(φn, ψn)| ≤ C(N , ‖V0‖C1)√|Re α(φn, ψn)|
∫

(0,tan )×S1

(|ψn |2 + |ψn ||∇ψn | + |ψn |2|∇φn |
)

≤ C(N , ‖V0‖C1)(
√|Re α(φn, ψn)|)3tan → 0.

On the other hand, we get

I = 2
∫ 2π

0

∫ tan

0

(

〈∇Vn,∇Vn〉 − R(Vn,∇φn,∇φn, Vn)

)

dtdθ

= 2
∫ 2π

0

∫ tan

0

(

〈

∇ ∂φn
∂t

Vn,∇ ∂φn
∂t

Vn
〉

− R

(

Vn,
∂φn

∂t
,
∂φn

∂t
, Vn

) )

dtdθ

+2
∫ 2π

0

∫ tan

0

(

〈

∇ ∂φn
∂θ

Vn,∇ ∂φn
∂θ

Vn
〉

− R

(

Vn,
∂φn

∂θ
,
∂φn

∂θ
, Vn

))

dtdθ

= I1 + I2.
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Noting

I1√|Re α(φn, ψn)| = 2
∫ 2π

0

∫ tan

0

(

〈

∇ ∂φn
∂s

Vn,∇ ∂φn
∂s

Vn
〉

− R

(

Vn,
∂φn

∂s
,
∂φn

∂s
, Vn

))

×
∣

∣
∂s
∂t

∣

∣

√|Re α(φn, ψn)|dtdθ,

we infer from Lemma 3.7

lim
n→+∞

I1√|Re α(φn, ψn)| = 2
√
2π Iγ (V0, V0).

For the term I2, we have

I2√|Re α(φn, ψn)|
= 2√|Re α(φn, ψn)|

∫ 2π

0

∫ tan

0

(

〈

∇ ∂φn
∂θ

Vn,∇ ∂φn
∂θ

Vn
〉

− R

(

Vn,
∂φn

∂θ
,
∂φn

∂θ
, Vn

))

dtdθ

≤ C√|Re α(φn, ψn)|
∫ 2π

0

∫ tan

0

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ.

For any given T > 0, we set

mn =
[

tan
T

]

+ 1,

which tends to infinity as n → ∞. By (4.3), there holds
√|Re α(φn, ψn)|mn ≤ C(T ).

Hence, it follows that

I2√|Re α(φn, ψn)| ≤ C√|Re α(φn, ψn)|
∫

∪mn
i=0[iT ,(i+1)T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ

≤ Cmn
√|Re α(φn, ψn)|

|Re α(φn, ψn)|
1

mn

∫

∪mn
i=0[iT ,(i+1)T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ

≤ C(T )

mn

(

1

|Re α(φn, ψn)|
∫

∪mn
i=0[iT ,(i+1)T ]×S1

∣

∣

∣

∣

∂φn

∂θ

∣

∣

∣

∣

2

dtdθ

)

.

In view of Lemma 3.2, we conclude that

lim
n→∞

1√|Re α(φn, ψn)| I2 = 0.

Immediately, it follows that

lim
n→+∞

1√|Re α(φn, ψn)|δ
2L(φn, ψn)(Vn, Vn) = 2

√
2π Iγ (V0, V0).

Hence, for n large enough, we have the desired inequality

δ2L(φn, ψn)(Vn, Vn) < 0.

Thus, we complete the proof of this lemma. ��
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Proof of Theorem 4.3 Since μ = ∞, then Theorem 3.1 tells us that the limit of the neck
contains a geodesic of infinite length. For given t0, by Lemma 2.7, we can always choose a
suitable positive constant t1n such that, when n is large enough, the arc length a of φ∗

n (t) on
[t0, t0 + t1n ] satisfies

a > lN = π
√

λ0(n − 1)−1
.

Therefore, by Lemma 4.4, there exists a section V 1
n of φ∗

n (T N ), which is 0 outside [t0, t0 +
t1n ] × S1, satisfying

δ2L(φn, ψn)(V
1
n , V 1

n ) < 0.

By the same method, for t1 = t0 + t1n , we can also pick t2n > 0 and construct a section V 2
n ,

which is 0 outside [t1, t1 + t2n ] × S1, such that

δ2L(φn, ψn)(V
2
n , V 2

n ) < 0.

Since the limit of the neck contains a geodesic of infinite length, then, when n is sufficiently
large, there exist in with in → ∞ such that we can construct via the same way as above a
series of sections {V 3

n , V 4
n , . . . , V in

n } satisfying that for any 1 ≤ i ≤ in there holds

δ2L(φn, ψn)(V
i
n , V i

n ) < 0.

Obviously, V 1
n , V

2
n , . . ., V

in
n are linearly independent. This means that the index of (φn, ψn)

tends to infinity as n → ∞. Thus, we complete the proof of the theorem. ��

Now, we prove Theorem 1.4.

Proof of Theorem 1.4 ByTheorem 4.3, we know that the limit ofφn on a neck domain consists
of finite length geodesics. By [28], we can reduce the energy concentration at the nodes to
the study of the asymptotic behaviour of a sequence of Dirac-harmonic maps from long
cylinders [−Tn, Tn]× S1 as stated in Theorem 3.1. Moreover, according to Theorem 3.1, we
have μ < ∞ which implies limn→∞ |Re α(φn, ψn)|Tn = 0. Then energy identities follow
immediately from Lemma 2.8. The proof is finished. ��
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