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Asymptotic analysis of a class of
functional equations and applications

by P. J. GRABNER~, H. PRODINGER AND R. F. TICHY~

ABSTRACT. Flajolet and Richmond have invented a method to solve a large
class of divide-and-conquer recursions. The essential part of it is the as-
ymptotic analysis of a certain generating function for z ~ oo by means
of the Mellin transform. In this paper this type of analysis is performed
for a reasonably large class of generating functions fulfilling a functional
equation with polynomial coefficients. As an application, the average life
time of a party of N people is computed, where each person advances one
step or dies with equal probabilities, and an additional "killer" can kill at
any level up to d survivors, according to his probability distribution.

1. Introduction

In [3] Flajolet and Richmond presented an ingenious method to deal
with a class of recursions where a typical example looks like

Here, d &#x3E; 0 is a fixed integer. For d = 0 and d = 1 such recursions

(and their solutions!) occur frequently as divide-and-conquer recursions in
the Analysis of Algorithms, (see [6] as a general reference on the subject.
However, the new approach allows it for the first time to deal with the
cases d = 2, 3, ... ; it consists of several stages. First, the recursion is
translated into the language of exponential generating functions. Then,
a related function (sometimes called the Poisson transform) is considered.
Then, from its coefficients, an ordinary generating function G(z) is built
up. The analytic behaviour of the latter for z - oo is then to be analyzed
by Mellin transform methods, (this is the heart of the method). Then, by a
substitution, the asymptotic behaviour as z -~ 1 of the ordinary generating
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function of the desired numbers fn is found. As the last step, this local
information is translated to the asymptotic behaviour of the coefficients by
transfer theorems.

The relevant function G(z) fulfills a functional equation

where the polynomial Po(z) depends on the starting values.
We devote this paper to the general study of recursions as in (1.2), with

general polynomials as factors and "-I" replaced by an arbitrary parameter
0~1.

This is not only interesting by itself, but can be applied in the last
section to a stochastic process which is a generalization of one presented
in [10]. Although formulated in terms of "recreational mathematics" the
recursions describe either average "trie" parameters or the behaviour of an
"approximate counter". In order to keep this paper short, we refrain from
describing those algorithms and data structures and refer for all computer
science algorithms to [6] a,nd [7]. For the Mellin transform, which has proven
to be very useful especially in number theory and in theoretical computer
science, we refer to [1, chapter 13], [6], [8] and to the survey [4]. We note
here that the classical applications of the Mellin transform occur in prime
number theory and, more recently, in the analysis of digital problems (cf.
[9] and for a detailed survey see [2]).

Let us recall the fundamental properties of the Mellin transform

If is a piece-wise continuous function with

and a &#x3E; (3, then the Mellin transform exists as a holomorpluc function in
the vertical strip -a  -(3 (fundamental strip" ). Our basic tool is
Mellin’s inversion formula
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for any -a  c  -,(3. This formula yields a correspondence between the
singularities of f*(s) and the asymptotics of f(x) (cf. [8, chapter 1.5]).
This technique is especially useful in the asymptotic analysis of harmonic
sums h(x) := ¿k Àkf(akx) since

Thus the Mellin transform of a harmonic sum is the product of a generalized
Dirichlet series and the transform of the base function.

In Section 2 we introduce a class of functional equations with polynomial
coefficients generalizing (1.2) and perform the asymptotic analysis by the
Mellin transform approach. Two cases have to be distinguished: in the

first one the main term does not contain an oscillating part (Section 2)
and in the second one there are oscillations in the main term (Section 3).
Section 4 is devoted to a direct extension of [3]. In the final section this
method is applied to analyze a special evolution process where N persons
are climbing up an infinite staircase as folllows: at each step either a person
goes to the next step or the person dies. We compute the avera,ge of the
maximum lifetime.

2. A class of functional equations

We consider the functional equation

I ~ I 1 v i - v 1 - v i ·

where Po(z) = ao + a1 z -E- p1 ( z) _ bo -~- bl z + ... + 
and P2 (z) - Co -f- c1 z + ... + Cd2Z d2 are polynomials of degrees do, dl, d2
(with d2, do &#x3E; 0), respectively, assume that PI and P2 have no non-
negative real roots, PZ (o) and 0  A  1. Our main result gives an
asymptotic expansion for the unique analytic solution of (2.1). Formally
iterating the functional equation we get

Let now
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Thus we can write

Our next step is to establish an asymptotic expansion of G(z) for z --&#x3E; oo.

This will be done by a Mellin-transform technique. Let for the following

(gk and vk denoting the multiplicities of the roots) and take the Mellin-
transforms of the logarithms of these equations

for -1  0. Observing that log Q1 and log Q2 are harmonic sums
yields

In order to establish an asymptotic expansion for Ql a,nd Q2 we apply
Mellin’s inversion formula

(and similarly for Q2). Inserting (2.4) and shifting the line of integration
to = -1 (cf. [8, chapter 1.5~) yields
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where mx = are the roots of 1 - A-’ = 0. Note that for s = 0 we
1091

have a triple pole and in the other cases simple poles. Computing residues
(and applying Vieta’s rule) we get

where

For the residues at 0 we obtain

Thus we have

where is a continuous periodic function of period 1, whose Fourier
expansion is given by
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Similar calculations yield the asymptotic expansion for Q2:

where

and p2(u) is a continuous periodic function of period 1, whose Fourier
expansion is given by

- A - A

and observing the rate of growth of the transforms in (2.4), we derive

for z - oo inside an angular region

As above we obtain
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Let us first consider the case d1 = d2 = d a.nd ao # 0. Then we need
leol [  Ibol to ensure convergence in (2.2). Setting

and observing that this is a harmonic sum yields for its Mellin transform

Notice that this Mellin transform only exists if - L + do - d  0, since "the
order at oo" has to be smaller than "the order at 0". From our asymptotic
expansion (2.10) we want to extract some information on the singularities
of the transformed harmonic sum H*(s). The fundamental strip of this
transform is 

I- -

Thus we have to distinguish two cases. First we consider the case occurring
in our applications in Section 3, i.e.

This is the case where the singularities originate directly from the individual
summands (in the other case the singularities are caused by the harmonic
summation and a apecial example of this type was extensively studied by
Flajolet and R.ichmond [3]). For  Cdad, by (2.10) we have

where 6’ is a suitable positive number. Combining (2.14) and (2.9) the
fluctuation &#x26; cancels out in the asymptotics of G(z) and we obtain

For = cdad the function H*(s) has double poles at 
Thus the asymptotic formula (2.14) has to be replaced by
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Combining (2.16) and (2.9) we derive
I - . - 1,

, "V --?D A-11 B--0 ~ / /

where W is an unspecified periodic fluctuation.

Until now we have restricted ourselves to the case ao 7~ 0. In general
let i be defined by = ziPO(z) with a polynomial po( z) such that

0. Then the equation corresponding to (2.11) is

The sum in this expression is exactly of the type considered above and
therefore we need the condition Àllcol [  Ibol [ to ensure convergence. Thus
we obtain the same asymptotic expansions also in the general 0.

Summing up what we have proved until now yields

THEOREM 1. Let G(z) be tlae unique analytic solution of a functional equa-
tion of type (2.1) and let L~ be the smallest number such that al =1= 0.

Furthermore assume the additional properties dl = d2 = d, À1lcol  lbol
and CdAd. Then G(z) has an asymptotic expansion for z - 00,

6  of the form

where - is a suitable positive number and BII denotes a continuous periodic
function of period 1.

Remark 1: We note that in the case covered by Theorem 1 the periodic
fluctuations do not occur in the main term.

3. Fluctuations in the main term

First we consider functional equations of type (2.1) with di = d2 = d
satisfying the condition bdad° &#x3E; cdad converse to (2.13). In the previous
section the convergence of the Fourier series for cpl and p2 was immediate.
In the case treated now we establish a preparatory lemma generalizing
Lemma 5 in [3], from which the convergence of the corresponding Fourier
series can be deduced. In the following let v denote the maximal order of
a zero of the entire function Q2. Note that v is finite, but may be larger
than maxk Vk-
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LEMMA 1. Let F(z) = Then the Mellin transform F*(s)
admits the representation

where the Et’s are entire functions. Thus for a &#x3E; 0

Proof. Proceeding as in [3] let

where H denotes a Hankel contour that goes from iO, circles around
0 clockwise and returns to + iO. Then a standard argument (cf. [11])
yields J(s) = 2i sin rsF*(s). Now we want to evaluate the loop integral by
residues. For this purpose we have to know polynomial upper bounds for
F(z), which follow from

where a, /~ and 4 &#x3E; e &#x3E; 0 are given numbers and Kl and li2 are positive
constants depending on those numbers and on A.

For proving this assertion let y = 21al, 2 IP 1} and no - +
log x

1. Thus we have We split the product (3.2) into two parts
n  no and n &#x3E; no. The second product can be estimated by taking
logarithms
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For estimating the first part of the product in the region for
n = 0, ... , no - 1 we note tha,t the function f (w) = is continuous on

the compact subregion 11 + ,Bwl 2:: e of the Riemannian sphere, and hence
attains its maximum M = M(e, a, /~, ~) &#x3E; 1. Thus we obtain

and (3.2) is proved.
Observing that §j can be decomposed into finitely many factors of the

type (3.2) we get a polynomial upper bound for F(z) in the region

Notice that E is chosen small enough that arbitrarily large circles centered
at the origin are contained in this region. Again by a standard argument
we deri ve 

- - -

for ~s  ao  0. Next we calculate the residues and observe that the
maximum order of the poles is v. Let us consider a pole --= of multiplicity
b and set 

First we have for w = z + 2013-JQk

Expanding xk,(-= + w) around w = 0 we get01,
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where the products range over all (l, m) such that We
observe

with an absolute O-constant, where 77k is the minimal distance of tile to the
other roots of Q2. 

01.

Multiplying (3.3) and the expansion of Xk,n yields for the coefficient of
wb-1

Each residue provides one term in the power series expansion of the 
Because of the upper bound (3.4) the power series expansion of Ei is hy-
perexponentially convergent and Ei is an entire function. D

Now we are able to treat functional equations of type (2.1) with equal
degrees and fluctuations in the main term.

THEOREM 2. Let G(z) be the unique analytic solution of a functional equa-
tion of type (2.1) and let i be the smallest number such that al 54 0.

Furthermore assume the additional properties dl = d2 = d, Àtlcol  lbol
and Cdad. Then G(z) has an asymptotic expansion for z -~ oo,
(I arg zl [  b  of the form

h .. 
.. 

b M log d’TI 
.

where e is a suz a e positive number, At = ---r some contznuous
logy

periodic fluctuation (the Fourier expansion of which is discussed in the
proof) .

Proof. We apply Mellin’s inversion formula to (2.12) and observe that the
first singularities encountered when shifting the line of integration to the
right originate from the Notice that evaluations of the Ei’s
of Lemma 1 at the poles are constants and that the Fourier expansion of
the arising fluctuation is exponentially convergent because of the estimate
(3.1). The fluctuation Wi is obtained by multiplying with the periodic
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function as in (2.9). The proof is completed by multiplying with the
first case in the asymptotic formula (2.9). 0

Up to now we have only considered polynomials PI and P2 of equal
degree. What remains for a complete asymptotic analysis of functional
equations of type (2.1) is the case dl  d2, (we note here that the converse
case d1 &#x3E; d2 cannot be treated by the Mellin transform approach).

Remark 2: Lemma 1 remains true in the case dl  d2. The only problem
is to find a polynomial upper bound for Q2~z . This product can be split
into products of type (3.2) and d2 - dl additional linear factors in the
denominator. For these additional factors we easily find the polynomial
lower bound I( e( d2 -dl) log z .

By the same reasoning as above we obtain

THEOREM 3. Let G(z) be the unique analytic solution of a functional equa-
tion of type (2.1) with d1  d2. Then G(z) has an asymptotic expansion
for z - 00, 6  of the form

where - is a suitable positive number,
A ^ v /

some continuous periodic fluctuation. 
’-’ A ’-’ A

4. The Fla jolet-Richmond case

In [3] Flajolet and Richmond analyze a tree-partitioning process in which
n elements split into d at the root of a tree (d is a design parameter),
the rest going recursively into two subtrees with a binomial probability
distribution. They prove an asymptotic formula for the expected number
fn of non-empty nodes in such a random tree, by studying the generating
function G(z) = where fn = En 0 (’)gk. G(z) satisfies the
functional equation

where Po is a polynomial of degree d. This is not a functional equation of
type (2.1) since co = 0. Thus the above theorems cannot be applied. In the
following we extend our general approach to the case co = 0, d1 = d2 = d
which covers the special case (4.1) (in the case bo = 0 there is no analytic
solution, for the Mellin tansform approach cannot be applied).
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THEOREM 4. Let G(z) be the unique analytic solution of the functional
equation

where Pl(z) = P2(z) = (with bo 0 0,
C, 0 0, K &#x3E; 0) are polynomials of equal degree d with no positive real roots
and let Po(z) = ao + alz + ... -f- ad,Z do 0 0. Then G(z) has an asymptotic
expansion for z - oo, (I arg 6  7r - mink(1 arg aki, I argØkl), of the
form

where ê .... number, M = 
log and "’3, "’4 some con-where - is a suitable positive number, M = log Cd_ 1 and 3, 4 some con-

, 

tinuous periodic fluctuations.

Proof. Using the substitution t = z we can rewrite the explicit formula for
G(z)

where Po(z) = Pi (z) = and P2(z) = are poly-
nomials with deg Pt = d &#x3E; d - K = deg P2. Proceeding as in Section 2 we
set

and obtain
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Let F(t) = Po(t) C22(’t). Notice that Lemma 1 can be applied to this func-i (t)
tion. Furthermore we have, for t - oo, F(t)  exp ( _ q log2 t + O(logz)
with some constant q &#x3E; 0 and F(0) = ado. Thus the fundamental strip of
F*(s) is 0  Rs  oo. Denoting the sum in (4.2) by H(t) we obtain

with the fundamental strip  ~2s  oo. This yields the
desired asymptotic expansion for H(t), t - 0 which implies the expansion
for G(z), z --&#x3E; oo. 0

Remark 3: The computer science problem originally considered by Flajo-
let and Richmond is covered by the first alternative of Theorem 4.

5. An evolution process with killer

We consider the following stochastic process. N persons (starting at
level 1) are climbing up an infinite staircase. At every step for each person
there are two possibilities of equal probability: (i) go to the next step (ii)
the person dies. After this at any level an outside killer kills j persons with
given probability pj, (0  j  d, d is fixed; 0), (if there are only  j
persons available, all of them are killed). This situation is a generalization
of [10] where the case d = 1 was discussed (emerging from some computer
science problems).
We ask for the expectation C~v of the maximum lifetime. To this end, we

introduce the probability generating functions FN(z) where the coefficient
of zk is the probability that the maximum level of N persons is k. We have
the recursion (N &#x3E; 1)

(observe that 2-~’ ~ k ~ is the probability that ~; out of N people have made
it to the next level. The variable z marks the level, and the effect of the
killer is described by [poFk(z) -f- ~ ~ wf- Pk-dFk-dl). The cumbersone special
cases when there are less persons than the killer wants to kill can be avoided

by setting F;(z) = z for i  0.
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Now the expectations CN are obtained by differentiating the FN(z) and
then evaluating at z = 1. Doing this we obtain the recursion (N &#x3E; 1)

and the starting values Ci = 1 for i  0.

Setting up the exponential generating function C(z) = CNZN IN!
we find 

-

Now it is customary (in order to get an easier equation) to set D(z) =
e-zC(z) (the "Poisson transform" ). For simplicity, we replace z by 2z,
multiply the equation by e-’ and differentiate it d times, yielding

Furthermore, we can express (by Leibniz’ rule)

so that we obtain after another multiplication by e-’

Now set D(z) = and G(z) = DNZ N. Comparing
coefficients we find 

-

Finally, we multiply by and sum up for all N &#x3E; 0 to obtain
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with

and

We want to apply Theorem 4 and find do - d, ad = bd - cd = 2-d and
thus M = 0. Hence the second alternative of Theorem 4 gives

This leads to

for z - 1. Now, since

singularity analysis (cf. [5]) leads to Theorem 5.

THEOREM 5. The average level CN that a party of N people with an addi-
tional killer will reach is asymptotically given by

where cp(x) is a periodic function with period 1. Its Fourier coefficient
could be given in principle by evaluating an appropriate Mellin integral at
the points 2kr il log 2, k E 7G. depends on the probability distribution
(po, ... , pd), (with Pd 0 0) of the killer.
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