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ABSTRACT

Using an asymptotic matrix formalism, we analyze the guided modes of Bragg fibers and the dielectric coaxial fibers.
In the asymptotic limit, the Bloch theorem can be applied to describe the optical field within the cladding layers,
while the core region field is described by the exact solutions of Maxwell equations. From the asymptotic analysis,
we derive an approximate expression for the radiation loss of Bragg fibers and dielectric coaxial fibers and give the
number of Bragg pairs required to achieve 0.2dB/km radiation loss. The dispersions of the guided modes of Bragg
fibers and dielectric coaxial fibers are calculated using both the asymptotic approach and the finite difference time
domain method. The results obtained from these two approaches are shown to have excellent agreement. We use
asymptotic analysis to calculate the dispersion parameter D of the guided dielectric coaxial fiber modes, which is
found to be much larger than that of the conventional telecom fibers.
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1. INTRODUCTION

In conventional optical fibers, the light confinement is achieved through total internal reflection and photons propagate
mainly in the high index silica core. A completely different confinement mechanism, Bragg reflection, provides an
alternative way of guiding photons, and has recently attracted a lot of attention.'8 Since Bragg reflection and total
internal reflection are completely different guiding mechanisms, it is not surprising that fibers with Bragg confinement
offer many possibilities that are difficult to achieve in conventional fibers. A particularly appealing application of
Bragg confinement is the possibility of guiding light in air instead of silica glass, which can lead to lower propagation
loss and reduce the threshold for nonlinear effects. We can also utilize Bragg reflection to design a fiber that supports
a single guided mode without azimuthal dependence. In contrast with the fundamental mode in conventional fibers,

which is always doubly degenerate, these guided fiber modes are truly single mode. Consequently, many undesirable

polarization dependent effects, such as polarization mode dispersion (PMD) and polarization dependent loss (PDL),
can be completely eliminated.7
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Figure 1. Schematic of (a) a Bragg fiber, (b) a dielectric coaxial fiber, and (c) a metallic coaxial cable.

The possibility of guiding light using Bragg confinement was first pointed out by Yeh et al.,1 where the concept
of Bragg fibers was proposed. The experimental fabrication of Bragg fibers has been recently reported.4 Fig. (la)
is the schematic of a Bragg fiber, which consists of a low index dielectric core surrounded by cladding layers with
alternating high and low refractive indices. A new approach of using Bragg reflection to transmit optical signals
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was recently syggested by Ihanescu et al.7 In this design, they proposed to use an all-dielectric coaxial fiber to
overcome problems of polarization rotation and pulse broadening in high data rate telecommunication. The coaxial
fiber is essentially a Bragg fiber with an extra high index core, as shown in Fig. (ib). The cladding of the coaxial
fiber is a cylindrical omnidirectional mirror, which can be designed such that there is a frequency range within
which light incident from the low index medium is completely reflected back irrespective of the incident angle and

polarization.9 Thus analogy can be drawn between dielectric coaxial fibers and metallic coaxial cables [see Fig.
(ib) and Fig. (ic)]. Based on this analogy, Ibanescu et al. predicted small dispersion for dielectric coaxial fibers.

To find the dispersion and field distribution of the guided modes in Bragg fibers and coaxial fibers, we can use
a two-dimensional (2D) finite difference time domain (FDTD) algorithm.12 The advantage of this approach is the
ability to analyze fibers with arbitrary 2D profiles. The drawback is that the numerical approach tends to be time
consuming and physically less transparent. Here we develop an efficient analytical method for Bragg fibers and
coaxial fibers by taking advantage of their cylindrical symmetry and radial periodicity of the cladding layers.

2. ASYMPTOTIC MATRIX THEORY

We begin the asymptotic analysis by separating the cylindrical fibers into two regions: the core region and the
cladding region. The core region consists of N concentric layers each with refractive index n0 and thickness
i = 1 . . . N. The cladding region is composed of pairs of alternating layers of different dielectric media. Layer type I
has refractive index n1 and thickness l . Layer type II has refractive index n1 and thickness i , as shown in Fig. 2.

2.1. Exact Solution in the Core Region

In the asymptotic matrix formalism, we apply exact solutions of Maxwell equations to describe the fields in the core
region. It should be emphasized that the refractive index and thickness of layers in the core region can be chosen
arbitrarily. If we take the z axis as the direction of propagation, due to the translational symmetry, every field
component has the following form1

b(r, 0, z, t) = 'çb(r, , (1)

where L' can be E , E, E0 , H , H , and H0 , w is the mode frequency, and 3 is the propagation constant.

Due to the cylindrical symmetry of Bragg fibers, we can take the azimuthal dependence of the field components
as cosfrn9) or sin(mO). As a result, the electromagnetic field at radius r, which is within the ith core layer, can be
written in the following matrix form'

,E

i;:o =M(n0,k0,r) , (2)

-E9

z Core Region : Cladding Region
fr '*—
1tcore 2nd coreNth core 1st cladding 2nd cladding nth cladding

iayer layer layer pair air pair
I / I

Figure 2. Schematic of the r — z cross-section of a fiber with Bragg cladding.
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where the matrix M(i40, k0, r) is defined as

M(n0,k0,r) (3)

Jm(kor) Ym(koT) 0 0

= wfo(n)2 J(k0r) wfo(n)2 Y(k0r) (k)2r Jm(/c0r) (k)2r Ym(kor)
0 0 Jm(ko) Ym(kor)

rn T (/i \ Tfl v Ii.i w1Lo TF fJ,i \ wIO VI (7,)i(k)2r m co1) i2r m Qr) k,/3 m 0rj kj3 m\ co

with k;;0 = /(m0w/c)2 _ 32 The coefficients A, B, C, and D are constant within the ith layer. We emphasize
that as long as < i40w/c, Eq. (2) and Eq. (3) are the exact solution of Maxwell equations.1

Once the electromagnetic field in the ith layer is known, we can easily find the field in the (i + 1)th layer by
applying the condition that E, E0, H, H0 are continuous at r = p0, the interface between the ith and (i + 1)th
layer:

A+1 A

g1 = T , T =
[M(n1 k , p0)] M(n0, k0 0) . (4)

D+i

We notice that within the first core layer, the coefficients B1 and D1 are zero, since Ym(X) jS infinite at x =0.

2.2. Asymptotic Approximation in the Cladding Region
The electromagnetic fields in the cladding region can be described in the same way as the core regions fields. However,
with a sufficiently large r, it suffices to approximate the exact solution in the asymptotic limit, which allows us to
replace Jm(X) and Ym() with exp(ix)/J and exp(—ix)/J.13 Under this condition, the field distribution in type
I layer of the nth cladding pair can be written as:8

E =
[ane1fr_P.') + bne1(7'_11)]

H0 = wO(flj)2
_L9L_ [aneiifr_z) bne_u1(T1)]ci \/i n< < n+l1 5

H = _Lxf_ [cneu11(Pi) + dne_1(TP1)]
PCI _ r CI

E — W/LO ITE F ik11(r—p,) d jl1fr_pfl1)9 — TJr
Similarly, fields inside type II of the same cladding pair are given by

E — _LTM_ 1a' _L b' e,(r_P'l)Z_/[n n

H — WfO(fl1) _.Lz:.L_ F ' ik,(r—p'1) _ b' —ik1(r—p'1)9— k2 r—In
C' Vkzr L in < < in 12 6

H — _L2:._ Fi _L d'
P CI — r p Cl ' Cl

n j

E — W/LO _Lx_ F' ei("_P'z) d1 e_uz0_P'i)OJ'Ln
In Eq. (5) and (6), k'1 = /(!jw/c)2 32 , k1 = /(n1w/c)2 32, p , p1 are defined in Fig. 2. It should be
noted that TM component (including E and H0) and TE component (including H and E9) are decoupled in the

asymptotic limit, with TM component amplitude being fTM and TE component amplitude being fTE. The values
of fTE and fTM are constant within the entire Bragg cladding region.

The field amplitudes in type II layer of the uth cladding pair can be easily related to those in type I layer of the

same cladding pair. By applying the condition of E, E0, H, H9 being continuous at r =p, we find

/ /1\22 • 1 /1\22\i 1 2 i 1 —— knUj ik l 1 n1i —ik la — 1 (n21)2k11 e
—

(n21)2k1, )e an
(7)

—

2V
(i

— _______ 1 + i1)e_Thii bn
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for the TM component, and

I C2
1 [ (1 + 1)eicilct (i _ ')e1ii 1 I c

L d ] [ (' - )eii1i (1 + )ei1t j L d ]
(8)

for the TE component. Similarly, we can relate a, b, c and d to a+i ,b+i c and d+ by applying the field
continuity condition at r = p+l . This allows us to express a+i , b+i c72 and 4+i in terms of the corresponding
parameters in the nth layer:

[

a1
] = [

ATM BTM I a 1
b D* iI j,n+1 TM 'TM J L

[cfl+I1IATE
BTE1ICfl1 (10)d1 j L BTE ATE i L d j

The parameters ATE, BTE, ATM and BTM are respectively defined as:

ATE e11j (k1)2 + (k1)2
sin(k1lj) + cos(kili)] , (11)[ 2k1Ic1

BTE ie_111
(k1)2 — (k)2

2' i.2 sin(k1l1) (12)
'c1 'cl

ATM e'' [(fli)4(ki)2 + (n1)4(k1)2
2(n1)2(n2 \271 72 sin(k1l1) + cos(kili)] , (13)

ci) "cl"cl

BTM ieikcItci
(n1)4(k1)2 — (n1)4(k2 )2

2(n1)2(n1)2k1k2

ci sin(k1l1) . (14)
ci

Since ATE, BTE, ATM, and BTM are the same for all cladding layers, we can apply the Bloch theorem to the
cladding fields:

E

a
]

_ (A n-i BTM

]
, TM RC(ATM) {Re(ATM)]2 1 . (15)— TM) Ib [ATMATM

I c 1
(TE)1 BTE

]
, ATE Re(ATE) [Re(ATE)12 1 , (16)1dH

L J [ATE—ATE

These results clearly indicate that in the asymptotic limit, the properties of Bragg fiber cladding resemble those
of planar Bragg stacks,14 which is directly due to the radial periodicity of the cladding layers and the fact that the
asymptotic solutions in Eq. (5) and (6) takes the form of traveling plane waves. There are two solutions for ATE and
ATM. In the Bragg bandgap, which is defined by the condition of Re(ATE) > 1 or Re(ATM) > 1, the two solutions
of ATE and ATM are real numbers, with one having absolute value less than one and the other greater than one.
We shall take the solutions of ATE and ATM with absolute values less than unity, since they correspond to modes

decaying in the Bragg cladding. Once we find the values of a, b, c, d, a', b', c, d', from Eq. (15) and Eq.
(16), the only unknown quantities in Eq. (5) and Eq. (6), which give the electromagnetic field in the entire cladding
region, are fTE and fTM. The problem of finding them lies at the center of our asymptotic matrix formalism.

2.3. Matrix Formalism

The guided modes in a Bragg fiber are founded by matching the exact solution in the core region [i.e., Eq. (2)J with
the asymptotic solution in the cladding region [i.e., Eq. (5)] at the interface r =p = which gives us

fTM (A MATM+BTM)T

N N I BN = k1 (ATM — ATM — BTM)
(17)

r AN

]

iw€o(n1)2 fTM

M(n, kco, 0) ITE (ATE — ATE + BTE)
L DN — bO ITE (ATE — ATE BTE)ø
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We then relate the amplitude coefficients in the Nth core layer (i.e., AN, BN, CN and DN) to the coefficients in

the first core layer (i.e., A1 , B1 , C and D1). We remember that in the first core layer B1 = D1 = 0 and we further

denote A1 as ATM , and C1 as CTE. Applying Eq. (4) repeatedly, we have

I AN 1
1

[

Jm(kopo) 0

I BN I - o()2J 'k1 m Jm(kopo) ATM

CN
= TN_i . . . T2

[M(n0, 0)] 0 J(k0p0) I
X [ GTE ]

(18)k0fl m 00) (k0)2p'

L DN j (k0)2p m 0P0) J(k0p0) jm j (k' 1\ )Io

Substituting Eq. (18) into Eq. (17), we find the following matrix relation

ITM (TM—ATM+BTM)

k
Jmkopo) 1 CTE ]

=

[

Jm(kopo) 0

p1
iwfO(n1)2 !TM02J(k0p0) (k)2p m co co) ATM T k1 1(TM ATM BTM)

, (19)
____ m J(k1

fT (ATE — ATE + BTE)
ø m 00) j(k)2pl0Jm('coPco)
Lo Ji 'k1 ______

m
— iWLO

ITE1 (ATE _ ATE BTE)

where an overall transfer matrix T is defined as

N Ni
T = [M(n0, k0, p0)M1 (n0, k0, 0)] . . . [M(n, k, p1)M1 (n, k0, Pco)]

[

t11 t12 t13 t14 1
N

t21 t22 23 t24 I= H =
t31 t32 33 34 I

• (20)
i=2

t41 t42 t43 t44 j

In Eq. (19), ATM and CTE, which represent field in the first core layer, are linearly related to field in the first
cladding layer (fTM and fTE) via a 4 x 4 transfer matrix T as defined in Eq. (20). Eq. (19) gives us four equations
with four independent variables ATM, CTE, fTM, fTE, and is sufficient to determine the dispersion of the guided
modes. To see this more clearly, we introduce eight new parameters YM and YJ'E' = 1, .. . , 4 as

iwiLo
gTE tj3(TE _ ATE + BTE) — tj4(TE

_ ATE BTE) ,j = 1, . . . , 4 , (21)

iWEo (n1)2
gTM tji. (ATM _ ATM + BTM) —

k1$
(ATM _ ATM BTM) ,j = 1, . . . , 4 , (22)

where ti , 3j2 , tj3 and t4 are the matrix elements given in Eq. (20) . With these new parameters, we can split Eq.
(19) into two equations:

[

Jm(kopjo) 0 1 1 ATM 1 1 YI'M gTE 1 I fTM 1

k0 m\ (k0)2pl0 00) j L CTE j
=

L gTM gTE j L fTE j_______ _______ (23).€o(n)2
(k0p0) m j 'k1

I 0 Jm(kopo) 1 1 ATM 1 1 1 4M YVE ' I fTM 1

L (k0)2p0 m m 00) j [ CTE j
=

4M YE j L ITE j
I m j (k0p0) wpo j! "k1_______ (24)

These two equations lie at the center of our asymptotic matrix method. To fully understand their consequences, we
consider two separate cases, the TE or TM modes with m = 0, and the mixed modes with m 0.

For modes with m = 0, we first notice that the matrix M(n0, k0, r) is block diagonalized into two 2 x 2 matrices.
As a result, the transfer matrix T, as defined in Eq. (20), is also block diagonalized into two 2 x 2 matrices with
t31 = t41 = t32 = t42 = t13 = t23 = t14 = t24 = 0. According to the definitions in Eq. (21) and Eq. (22), we have
gTM = gTM = 0, and gTE = gTE = 0.

By definition, the H component of any TM mode must remain zero in the entire Bragg fiber, i.e., CTE = 0 and
fTE = 0. With this condition in mind, from Eq. (23) we can easily find

w€o(n0)2 Jç(k0p0) — grM
(25)

Jo(k0p0)
— g'cot,
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Once we have specified the Bragg fiber parameters and chosen the frequency w, the propagation constants of TM
modes are found by solving for ,@TM satisfying Eq. (25). We substitute the result /3TM back into Eq. (23), and obtain
the following relation

gTM
ATM . 26

The importance of this result is that it relates the mode amplitude ATtVI in the first core layer to ITM, which
determines the fields within the entire fiber cladding region. We can choose the normalization factor of the guided
mode such that ATM = 1. Combining this condition with Eq. (26), fTf = 0, and the results in Sec. 2, we obtain the
TM field distribution in the cladding region. The TM field distribution in the core region can also be easily found.
In the center core layer, we have A1 = ATM = 1, and B1 = C1 = D1 = 0. Applying Eq. (4) repeatedly, we find all
the mode coefficients A, B, C, and D in the N core layers. The TM field distribution in the core region is simply

given by substituting these mode coefficients into Eq. (2) and applying Eq. (3).

For TE modes, we have ATM 0 and Eq. (24) gives us

rifil 1 \ 4 3
W,LtO JOVbcoPco) TE gTF 2

Jo(k0p0)
= , TE TE.

Following the same procedure as for the TM modes, we can find the propagation constant 3 and field distribution
for the TE modes.

For any mixed mode with m 0, both Eq. (23) and Eq. (24) are needed and the solutions are more complicated.
To simplify our final results, we introduce more definitions

H4E + +
(k1)1 (28)

HE Jm(koPo)gE _ w€o(n)2J(k0p0)gE -(ii Jm(kopo)gE ' (29)

HM — J(k0p0)gM _
(1)21 Jm(kopo)g'M ' (30)

HM Jm(koPo)YM + w€) J(k0p0)gM + (i)iJm(kCOPCO)TM . (31)

To find the propagation constant of any mixed mode, we first express ATM and CTE in terms of fTM and fTE
by inverting the leftmost 2 x 2 matrix in Eq. (23). Substituting the results of ATM and CTE into Eq. (24), we find

I 1:T1 1:T1 1 1 t
I 11TM 'TE I I JTM —o (32)HM —HEjLfTE —

with HE, HE, HM and HM defined in Eq. (28) through Eq. (31). In order for Eq. (32) to have non-zero
solutions, the determinant of the matrix must be zero, which gives

HM H4EH2 H2TM TE

As can be seen from the definitions in Eq. (28) to Eq. (31), the parameters H4E, HE, H4M, and HM are
complicated. However, once the Bragg fiber structure is chosen and the frequency is given, they only depend on
Therefore, the solution of Eq. (33) gives us the propagation constant of any mixed mode.

After finding the solutions of Eq. (33) and choosing an appropriate normalization constant, we can determine the

values of fTM and .fTE from Eq. (32):

[ I = (/1)21 {Jm(kopo)J2 Vt I [ ]
(34)
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As before, by combining this result with those in Sec. 2, we can find the who'e cladding field distribution. To obtain
the fields in the fiber core region, we substitute Eq. (34) into Eq. (24) and find

1 W/LO TI (j,.1 1 \I 3 j-1 3 jj1 \ i T fj.1 1 \f 4 jj-1 t 4 j1
ATM I _ 1Ø'm coPcoRTM T] gTE TM) ' "mv pRgTM TE ' gTE TM
/7 I — in j 1k H1 H1'-'TE J (/c())2pQ m p0RgTM TE gTE TM

Thus within the first core layer, we have A1 = ATM, C1 = CTE, and B1 = D1 = 0. By applying the equations in
Sec. 2.1 throughout the entire core layers, we find the electromagnetic fields in the Bragg fiber core region.

3. RADIATION LOSS

Two sources contribute to the propagation loss in Bragg fibers or coaxial fibers: the material absorption loss and
the radiation loss. The material absorption loss depends on the choice of dielectric medium. The radiation loss
mainly depends on the index contrast between the cladding media and the number of cladding pairs. In principle,
the radiation loss can be reduced below any given number simply by using a large enough number of cladding pairs.
In this case, the propagation loss in an air core fiber is mostly due to the residual absorption in the fiber cladding.
Thus if appropriate cladding materials can be found, it is possible to reduce the propagation loss in an air core fiber
below that of conventional optical fibers. However, since using too many cladding pairs is generally undesirable or
even impractical, it is important to know how many layers are required to reduce the radiation loss below a given
number.

To simplify our analysis, we study a Bragg fiber with a central air core bounded by N pairs of cladding layers, as
shown in Fig. 3. We treat the air core exactly and apply the asymptotic approximation to the entire Bragg cladding
structure. This means that the transfer matrix T relating the cladding region to the core region is simply a 4 x 4
identity matrix. From Eq. (21) and Eq. (22), we find

gTE ATE ATE + BTE , (36)

4 iwI_to
TE = —--j--\TE ATE BTE) , 37

Y'M = ATM ATM + BTM , (38)

2 iw€o(n1)2IJTM = —---i 1 (ATM _ ATM BTM) . (39)

Other values of gTE and YJ'M are all zero. As a further simplification, we shall confine ourselves to the study of
TE and TM modes. The reasons are two-fold. As we have mentioned before, the modes with m = 0 are of special
interest, since they do not have any polarization dependent effects. Secondly, in the asymptotic limit, the mixed
modes (m 0) in the cladding structure can always be classified into a TE component and a TM component, and
should exhibit similar radiation loss characteristics.

We first consider TE modes. According to Eq. (2), the H(r) component in the Bragg fiber core is simply
H(r) = CTEJo(k0r) and the other two components are1

. wo , i TT fl TI I 1 1
£i9 —i--—t-TEJO0r) , r 1TEJOV10r

Co CO

From these expressions for E9 and Hr, we find the power flux along the z direction in the low index core:

(R rP0rTE ,' 27rwItoi I r ii /,1 \12= '-'TE /7 1 \2 I ar rIJO0r)j
VbCO) Jo

If the Bragg fiber consists of an infinite number of cladding pairs, the asymptotic fields in the (N + 1)th cladding
pair can be extracted from Eq. (5)

H = fTE
[c

eifr+') + dN+le_ rp')] (42)
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gives

(48)

(49)

z
N Bragg Cla

Pr

Al

Figure 3. The radiation loss of an air core Bragg fiber with N cladding pairs. P is the power flux inside the air
core. Pr represents the outgoing radiation power flux through a cylindrical surface with radius R and height dz.

W/tO ITE I ik11(rp1) _iklj(r_pN+l)E0 = --— jcN+ie c ci —dN+le C ci 43
1cl Vk1r

In the above expressions, we notice that the fields consist of two components: an outgoing wave with amplitude

proportional to CN+1 , and an incoming wave with amplitude proportional to dN+1 . It can be shown that the two
components are of equal value and cancel each other such that the Bragg fiber has no net radial power flux. This,
however, is directly due to the assumption of infinite cladding pairs. In fact, we can regard the incoming component
in the (N + 1)th cladding pair as due to the reflection by the remaining Bragg cladding. Therefore, it is reasonable
to assume that if the Bragg fiber has only N cladding pairs, the radiation field outside the cladding structure can be

well approximated by the outgoing component of Eq. (42) and Eq. (43) (i.e. , we replace dN+1 with 0). To calculate
the radial power flow, let us consider a cylindrical surface with radius R and height dz that encloses the Bragg fiber,

as shown in Fig. 3. Using Eq. (42) and Eq. (43) and taking dN+1 = 0, we find the radial power flux through this
surface to be

pTE IfTEI2ICN+lI2dz . (44)

For TE modes propagating along the z direction of the Bragg fiber, with the presence of radiation loss, the optical
power decays as exp(—cTEz), where the parameter cETE is the radiation loss constant. From the definitions of p
and pE we can identify TE as

rTE 1 ii n 2 ri iii 1 \1271 1
— Ur I fbCO \2 '-)TE 2N t'OY'coPo)J 'ciPciOTE — TE ATE 1Pz dz /3 '1 ATE ATE + BTE fPco dr r[J/(k0r)]2

For TM modes, we can follow the same procedure to obtain the radiation loss constant cTM. First, we find the
power flux in z direction within the low index core as

I 1 \2 jp0rTM A 2 F' I i r ii ii 1 \12JTz = JTM \2 I urrJOI0r)j
V"co) Jo

Similarly, the outgoing radial power flux outside the Nth cladding pairs can also be identified from Eq. (5) as

pTM wfo(flll)2IfI2II2d , (47)

which gives the radiation loss constant to be

rTM 1 1 ii r 2 ri hi 1 \1271 1
— Ur _ I (ClCO \2 -°TM 2N ciPciTM — TM 1 1 1 TM iPz dz /3 n0k1 )TM ATM + BTM fPco dr r{J(k0r)]2

We introduce a new parameter x = k0p0. For the fiber structure shown in Fig. 3, Pi is the same as p0, which

[Jo(k0p0)]2k,p1 = k1 k1
x{Jo(x)]2

1 cod X

ffodrr[Ji(kir)]2 f0 duu[Ji(u)]2
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where we have applied J(x) = —Ji (x).13 For an order of magnitude estimate, we can simply choose x = 3.8317,
the first zero point of J1 (x), and the integral fdn u[Ji(u)J2 becomes x2[J2(x)]2/2.13 Combining these results, we
find Ii- hi 1 \12i1 1

V'O''coPco)i ciPci n r'i I i I
1

,.— U.t)LLf, oc!

fdrr[J(k0r)]2
As can he seen from Eq. (11) to Eq. (16), ATE, BTE, ATE, ATM, BTM, and have the same order of magnitude.
Therefore, in our estimation of radiation loss, we take the values of BTE/()TE —ATF + BTE) and BTM/()\TM —

ATM + BTM) to be 1. Combining these approximations with Eq. (50), we find Eq. (45) and Eq. (48) become

hi \3 1 2(11 '3
— r \ 2N c-(ci \ .''co) 2NTE — UL)LL ATE , TM U.iL j J i ATM

/3 k1 \nco I /3k1

These two expressions can be further simplified by taking n = 1 (air core), ) = 2rrc/w = 1.55,um, and assuming
3 = k0 = w//c, k1 = n1w/c:

TE(dB/km) = 4.6 x 1O9IATEI2N TM(dB/km) = 4.6 x 1O9fllITMI2N (52)
nd

where the unit for radiation loss has been converted to dB/km. Many assumptions are made to simplify Eq. (45)
and Eq. (48) into (52). It is worthwhile to see how we can justify the simplified results from an intuitive point of
view. Without the Bragg cladding, the light confinement can only be achieved on the order of the wavelength, which
means that the radiation loss constant must be of the order of dB/,um = lO9dB/km. With the presence of Bragg
cladding, the light amplitude reduction due to each cladding pair is ATE for TE modes and ATM for TM modes.
Therefore, the radiation loss for a fiber with N Bragg cladding pairs should be of the order of (.XTE)2N x lO9dB/km
for TE modes and ()TM)2N x lO9dB/km for TM modes.

The values of )'TE and ATM also have complicated dependence on /3, n1 , l , n1 and l . However, when

the cladding layers form quarter wave stack (i.e., k1l1 = k1l1 = rr/2) such that light is optimally confined, the
expressions for P'TEI and PTMI take simpler forms:

j,,2 ,1 2 ,.1 1 j,.2

' . (Tvj cl\ ' . 1fnCl\2Cl fnCl\2 ciATE = mm iT ' ) ' ATM = mm —- - , —- ) T-ci ci n1 ci n1 ci

We choose cladding layer II to be the low index medium with n1 = 1.5, typical of silica glass and polymers. With

this value, it can be shown that for 0 < 3 < w/c the minimum value of P'TEI /[(n1)2 1]/[(n1)2 — 1], and the
minimum value of PTMI is n1/n1. Substituting them into Eq. (52), we find the minimum number of Bragg layer
pairs required to achieve 0.2dB/km radiation loss is

N — 23.9 — ln(n1) N — 23.9 + ln (n,)
(54)TE —

ln {(n1)2 — 1]
— ln [(n1)2 — 1]

' TM —

2[ln (n1) — ln (ni)]

for TE and TM modes, respectively.

We plot Eq. (54) in Fig. 4. The top figure corresponds to the case of weak index contrast. For /�tn less than
0.01, it takes 1000 or more cladding pairs to reach 0.2dB/km. Fabricating such large number of cladding pairs is
likely to be very difficult in practice. For tin between 0.1 and 1, we find that it takes less than 200 cladding pairs to
reduce the radiation loss of TE and TM modes to 0.2dB/km. We notice that this index contrast range corresponds
to what can be achieved in air core PBG fiber.6 Of course, the light confinement in PBG fibers is achieved through
two-dimensional Bragg reflection rather than one-dimensional Bragg reflection. However, if we take an effective index
approach and approximate the 2D air hole patterns as alternating layers of concentric dielectric layers with high and
low refractive index, the index contrast between the effective refractive indices should fall within the range of 0.1 to
1. Thus for air core PBG fibers, 0.2dB/km propagation loss can be achieved with 200 or less air hole layers. The
bottom figure in Fig. 4 corresponds to the case of large index contrast. We notice that for /.n between 1 and 3
(2.5 < n1 < 4.5), 25 pairs may suffice to guide TE and TM modes with less than 0.2dB/km radiation loss.

We have only discussed radiation loss for TE and TM modes so far. According to the discussions in Sec. 2.3,
modes with m 0 are mixtures of TE and TM components in the Bragg cladding layers. Therefore, their radiation
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Figure 4. The number of Bragg cladding pairs necessary to achieve 0.2dB/km radiation loss. An is the index
contrast between the two cladding dielectric media n1 —n1, with n1 = 1.5. The solid line gives the minimum Bragg
pairs for TE modes to O.2dB/km, while the dash line gives the corresponding quantity for the TM modes.

loss is determined by the TM component, since TM component is less confined and suffers more radiation loss
compared with TE component, as can be seen from Fig. 4.

Since we use the smallest possible values for P'TEI and IATMI ' deriving Eq. (54), our results in Fig. 4 give
the minimum number of Bragg pairs needed to achieve 0.2dB/km radiation loss and should serve as an order of
magnitude estimate. Obtaining a better estimate of radiation loss requires values of , n1 , l , n1 , and l . Once

they are known, we can find TE and ATM from Eq. (15) and (16), and substitute them into Eq. (51) for cTE and

aTM.

One notable exception to the above estimate is worth mentioning. In an air core fiber, if /3 is only slightly less than

w/c, the value of k0 can be very close to zero (whereas in deriving Eq. (54) we use fi= k0 = w//c). According
to Eq. (45) and Eq. (48) , a small can greatly reduce the radiation loss.2 Therefore, when 3 becomes very close
to w/c, it may be necessary to use Eq. (45) and Eq. (48) to obtain accurate results of radiation loss.

4. BRAGG FIBER DISPERSION

Having developed the asymptotic formalism in the previous section, we shall apply it to study the dispersion of a
Bragg fiber. We choose to study an air core (n0 =1.0) Bragg fiber with cladding parameters as follows: n1 = 4.6,
ll = O.25A, n = 1.5 and = O.75A, where the parameters are defined in Fig. 2 and A =l,+l is the total thickness
of a Bragg cladding pair. We choose the air core radius to be p0 = 1.OA. In the asymptotic calculations, the core
region consists of 5 concentric dielectric layers. Using the notations in Fig. 2, we explicitly write out the core region

parameters as n0 = 1.0, n0 = n0 = 4.6, n0 = n0 = 1.5, l' = 1.OA, l =l = O.25A, and l, = l, = O.75A. In
2D FDTD calculations, we choose A = 24 computational cells and use 3 cladding pairs around the air core to define
the Bragg fiber. In Fig. 4, we find that for index contrast we have chosen, 10 cladding pairs are enough to reduce
the radiation loss to approximately 0.2dB/km. Not surprisingly, 3 cladding pairs should give us well defined guided
modes .

Both the asymptotic results and the FDTD results are shown in Fig. (5a), where we plot the effective index

fleff 13c/w as a function of w, and w as a function of propagation constant 3. Within the frequency range shown
in Fig. 5, both the asymptotic analysis and FDTD calculations show that the Bragg fiber supports a guided mode
with m = 1 propagating in the air core. In Fig. (5a), the two approaches agree well with each other, while the small
discrepancy can be attributed to the discretization error in the FDTD algorithm. In fact, if we consider that only 6
computational cells are used for l , the agreement between the asymptotic approach and FDTD approach is quite
impressive. In Fig. (5b), we show the distribution of the H field obtained from FDTD calculation. The frequency
and propagation constant of the mode are respectively w = O.291(2irc/A) and 3 = O.143(27r/A). Fig. (5b) clearly
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Figure 5. (a) The dispersion of an air core Bragg fiber with a m = 1 mode. The Bragg fiber parameters are:
no = 1.0, p0 = 1.OA, n1 = 4.6, l = O.25A, n = 1.5 and l, = O.75A. The solid line is from the asymptotic
analysis, while the dots represent the 2D FDTD results. The effective indices fleff 5 defined as /3c/w. (b) The H
field distribution of the guided m = 1 Bragg fiber mode at w =O.291(2irc/A) and f3 = O.143(2rr/A).

shows that the guided mode has an azimuthal number m = 1 and most of the field is concentrated within the air
core and the first cladding layer. The radiation field outside of the Bragg cladding can also be seen in Fig. (5b).

To find the field distribution using the asymptotic approach, we must first obtain the propagation constant using
Eq. (33). Substituting the result into Eq. (34) and Eq. (35), we obtain the modal amplitude coefficients in the first
layer of the cladding region (i.e., fTM and fTE) and those in the center air core (i.e., ATM and CTE), respectively.
Then the cladding fields are easily found from Eq. (5) and Eq. (6), while the core fields are obtained by applying Eq.
(2) and Eq. (3) repeatedly. We apply this algorithm to study the field distribution of the guided Bragg fiber mode
at w = O.286(2rrc/A). Using a core region of 5 layers, we find the propagation constant to be /3 = O.128(2ir/A). The
field distribution given by this asymptotic approach is represented by the solid lines in Fig. 6.

.
. Exact

— Asymptotic

) I 2 3 4 5 6 7

r/A

, Exact
— Asyrnptotc

Figure 6. The electromagnetic field distribution of the guided Brag fiber mode at w =O.286(2irc/A). The interface
between the core region and cladding region is indicated by dash line. The exact solutions are obtained using Eq.

(2) and (3) only. The asymptotic solutions are obtained using Eq. (2) and Eq. (3) in the core region, and Eq. (5)
and (6) in the cladding region.

Having obtained the field distribution using the asymptotic algorithm, naturally we would like to know how
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accurate the asymptotic approximation works without having to check asymptotic resulis using either the orginal
algorithm by Yeh et al. or the FDTD method. We notice that the essence of the whole asymptotic algorithm is that
the field distribution in the cladding region can be well described in the asymptotic limit. As long as this condition
is satisfied, the asymptotic approach should provide a satisfactory description of the guided mode. To check the
accuracy of the asymptotic approximation in the cladding region, we can calculate the exact field distribution in
the cladding region by repeatedly applying Eq. (2) and (3). We use "exact solution" to denote results obtained
this way. In other word, to find the "exact solution," we still need to find ATM and CTE using Eq. (33), (34) and

(35), as described in the previous paragraph. The only difference between the "exact solution" and the asymptotic
solution is that for the "exact solution," the field distribution in the entire Bragg fiber is obtained from Eq. (2)
and (3). Consequently, within the core region, the "exact solution" and the asymptotic solution are the same. In
the cladding region, the two solutions differ from each other, and their difference indicates how well the asymptotic
approximation works. In Fig. 6, the "exact solutions" are represented by the dots. As expected, the "exact solution"
and the asymptotic solution are the same within the core region. However, even in the cladding region, the difference
between the two solutions are very small. Thus we can conclude that the asymptotic algorithm gives an accurate
description of the field distribution of the guided mode.

It should be mentioned that our asymptotic algorithm can be arbitrarily precise by incorporating more and more
dielectric layers into the core region. More specifically, if we use a superscript N to denote the asymptotic results
obtained using an inner core region consisting of N dielectric layers, the results should converge as a function of N
to the exact solutions. Thus the asymptotic results can be arbitrarily precise.

5. COAXIAL FIBER DISPERSION

It is well known that the fundamental TEM mode of a metallic coaxial cable has no polarization effect or any modal
dispersion, which make it very attractive for transmitting electromagnetic signals. The problem is that metals are
very lossy in the optical range. Recently Ibanescu et al. drew an analogy between the metallic coaxial cables and
dielectric coaxial fibers, and proposed to use dielectric coaxial fibers in optical communications.7 There are, however,
several important problems to be solved before coaxial fibers can find wide applications in optical telecommunication.
Firstly, it is critical that the coaxial fiber mode has small dispersion within the entire telecom frequency window
instead of at a single point. Secondly, we should keep in mind that the analogy between omnidirectional mirrors and
high refractive index materials with metals is not perfect. For example, if the outer cladding of a metallic coaxial
cable is taken out, the center metal rod does not support lossless propagating mode. Yet if we take away the Bragg
cladding of the coaxial fiber, the center high index dielectric rod resembles an optical fiber and supports at least one
propagating mode. In this section, we apply the asymptotic matrix theory to address the aforementioned problems.

As in Bragg fibers, each guided coaxial fiber mode can be classified according to its propagation constant /3

(momentum in the z direction) and angular momentum m. Using the asymptotic method, we analyze one of
the coaxial fibers studied by Ibanescu et al.7 For the high index medium of the coaxial fiber cladding, we choose
nl = 4.6 and l = (1/3)A, whereas for the low index cladding medium we have n1 = 1.6 and l, = (2/3)A. A is
the total thickness of the Bragg cladding pair. The parameters of the Bragg stack are chosen such that it forms
an omnidirectional reflector.7 The refractive index and radius of the center core are respectively n0 =4.6 and
ico = O.4A. The refractive index and thickness of the coaxial region are respectively coax 1 and 1coax 1.OA.

We use four core layers in our asymptotic calculations and normalize the results with respect to A. The asymptotic
results are shown in Fig. (7a) as thick solid lines. We also use the 2D FDTD algorithm to verify the validity of
our asymptotic calculations. The FDTD results are shown in Fig. (7a) as dots. The shaded region in Fig. (7a)
corresponds to the TM cladding modes that can propagate in the cylindrical omnidirectional reflector.

In Fig. (7a), the asymptotic analysis gives us four photonic bands, a TE band (m =0), a TM band (m = 0),
and two m = 1 bands. The asymptotic results agree well with FDTD calculations. We point out that the TE band
was missed in the results obtained by Ibanescu et al.7 We notice that the asymptotic results for the TM band and
two m = 1 bands are confined within the region of TM gap. This is simply due to the fact that all three bands
contain TM components and that the TM components must decay in the Bragg cladding to define guided coaxial
fiber modes. The TE band, on the other hand, does not contain any TM component and asymptotic analysis gives
us guided TE modes up to the light line in cladding medium II (/3 = n1w/c). The excellent agreement between the
asymptotic analysis and FDTD calculations demonstrates the validity of asymptotic approach.
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As mentioned before, if we take out the Bragg cladding, the center dielectric core becomes a conventiona' optica'
fiber whose modal dispersion is well known.15 The dispersion of these conventional fiber modes was plotted in Fig.
(7a) as dash lines. Comparing the conventional fiber modes with the FDTD calculations of the full coaxial fiber,
we find excellent correspondence between the two for the region below the air light line 3 = w/c. This strongly
suggests that once the guided coaxial fiber modes pass through the air light line, the main confining mechanism is
actually provided by the center high index core. To see this point more clearly, we show two FDTD calculations of
field distribution of the lower m = 1 band. The m = 1 mode in Fig. (7b) has /3 = O.153(2ir/A), w = O.187(2rrc/A)
and belongs to the TM bandgap above the air light line. For any modes above light line, guiding cannot be achieved
through total internal reflection and therefore in Fig. (7b) we observe a substantial field distribution in both the
coaxial region (air) and the Bragg cladding. The rn = 1 mode in Fig. (7c) has /3 = O.611(2rr/A), w = O.229(2rrc/A)
and is clearly below the air light line. As expected, the guided coaxial fiber mode becomes essentially the HE mode
of a conventional fiber, with optical fields concentrated in the center dielectric core and only a negligible amount in

the Bragg cladding.

Not only does the total internal reflection play a significant role in the modal dispersion of the guided coaxial
fiber below the light line, it also must be taken into account in determining the frequency window of single mode
operation. The lower single mode window, as shown in Fig. (7a), simply contains all the TM modes below the cutoff
frequency of the lower m = I band. However, finding the higher single mode window is more trickier. As the lower
m = 1 band enters the shaded region in Fig. (7a), the TM field component loses confinement in the Bragg cladding
and the m = 1 band is no longer a well defined guided mode. Thus the second single TM mode window in Fig.
(7a) begins at the lower intersection of the m = 1 band and the TM gap, and ends at the smallest of the following
frequencies: the cutoff frequency of the higher m = 1 band, the cutoff frequency of the TE band, and the higher
intersection point of the lower m = 1 band and the TM gap where the lower m = 1 band enters again into the TM
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Figure 7. (a) Dispersion of the coaxial fiber. The points in the shaded region indicate the existence of propagating
TM cladding modes in the omnidirectional reflector. The thick solid lines are results obtained from asymptotic
analysis. The dots represent the 2D FDTD results. The light lines in air (3 = w/c) and in the low index medium

of the Bragg cladding (3 =n1w/c) are also shown. If the omnidirectional cladding is taken away, the center core of
the coaxial fiber resembles a conventional optical fiber and supports three guided modes: HE, TE and TM modes.
Their dispersions are calculated using the formulae for conventional optical fibers and are shown as dash lines. The
single mode windows for the TM band are illustrated in the figure as two boxes. The H field distributions of the
lower m 1 band are shown in (b) and (c). In (b), the guided mode has 3 = 0.153(2ir/A) and w = 0.187(2rrc/A).
In (b), the guided mode has = 0.611(2rr/A) and w = O.229(2rrc/A).
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gap. The two single frequency windows are shown in Fig. (7a) as two boxes. Within the higher single frequency
window, the m = 1 quasi-band, even though not well confined, can still have low loss due to total internal reflection
in the coaxial air region. In fact, that is exactly why FDTD algorithm can give us m = 1 and TM band outside of
the TM gap. To study the influence of the rn = 1 quasi-band on the single mode operation of TM band, however, is
beyond the scope of this section.
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Figure 8. (a) Dispersion parameter D of the coaxial fiber TM band. At ) = 1.598gm {or w = O.202(2rrc/A)J, the
dispersion parameter D becomes zero, which is shown as the dash line. In the upper diagram, the absolute values of
D are show in a log scale. The two single mode windows in Fig. 7 are shown as shaded regions. To the left of the
dash line, D is negative, whereas D is positive to the left of the dash line. In the lower diagram, D is shown in the
linear scale. (b) The E and H0 fields of the TM coaxial fiber mode at w = O.202(2'irc/A). The unshaded, light, and

dark regions respectively represent air (flcoax 1), low index dielectric medium (n1 = 1.6) and high index dielectric
medium (n1 = 4.6). The units for electric field and magnetic field are chosen such that o = 1 and po = 1.

For the long distance communication fibers, the dispersion parameter D, which is defined as —f ,15 should
remain small within the entire telecommunication window. In Fig. (8a) , we show the dispersion parameter D
calculated from the asymptotic results. The wavelength ) is normalized such that the TM band crosses air light line
/3 = w/c at 1.55jm. The two single frequency windows are identified in Fig. (8) as shaded region. We immediately
notice that the dispersion parameter D takes very large value at most frequencies and can be both positive and

negative. Around 1.6pm {w = O.202(2irc/A)], D crosses the point of zero dispersion but remains small only within
a very small frequency range. Ibanescu et al. predicted a point of zero dispersion.7 Our results in Fig. (8a) confirm
their prediction, yet at the same time, point out an important problem: The frequency window of small D is too
narrow for optical signal transmission.

In Fig. (8b), we show E and H0 components of the TM mode at the zero dispersion frequency w =O.202(2rrc/A).
Since the magnetic field of a TM mode contains only H0 component, from Fig. (8b) it is obvious that there is
substantial presence of electromagnetic field in the high index core and the optical intensity in the high index core is
comparable to that in the air coaxial region. As a result, using this coaxial fiber mode to guide light does not provide
much benefit in terms of reducing material absorption and nonlinear effects. This also illustrates that the analogy
between dielectric coaxial fibers and metallic coaxial cables is not perfect. Turning our attention to the cladding
field, we find that the field strength in the first cladding pairs, even though relatively small, is not negligible. In fact,
the fields in the first Bragg pairs cannot be neglected, since optical fields must penetrate at least one cladding pair to

experience Bragg confinement. This also explains the large modal dispersion we find in Fig. (8a), since any guided
coaxial fiber mode must "feel" several different dielectric media: the high index core, air in the coaxial region, the
high index cladding, and the low index cladding. In contrast, for conventional optical fibers, the guided modes are
defined by the silica core and cladding whose index difference is generally less than 0.01.
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Summarizing this section, we find that both Bragg reflection and total internal reflection play important roles in
determining modal dispersion of the coaxial fiber. The analogy between dielectric coaxial fibers and metallic coaxial
cable are not entirely accurate, and there is substantial amount of optical fields in the high index core and the Bragg

cladding. As a result, guided coaxial fiber mode generally have large dispersion.
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