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This paper is concerned with a diffusion-controlled movbwndary problem in drug dissolution, in
which the moving front passes from one medium to another fackvthe diffusivity is many orders of
magnitude smallerThe classical Neumanr simrilarity solttion holds while the front is pasing through

the first layer bul this break: dowr in the sewonc layer. Asymptotic methods are used to understand
what is happening in the second layer. Although this netassinumerical computation, one interesting
outcome is that only one calculation is required, no matteaitvthe diffusivity is for the second layer.
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1. Introduction

Moving boundary problems arise in many industrial, enuin@mtal and technological applications.
These include the freezing and defrosting of food (Bakal.€f1870)), swelling grains or polymers
(Anderson (1982)), etching (Vuik & Cuvelier (1985)), deitidrsolidification (Schmidt (1996)), metal
processing (Segal et al. (1998)), crystal growth (ContdD®QLibbrecht (2005)), chemically-reactive
and heat-diffusive liquids surrounded by ice (Fila & Sou#901)), laser-induced heating and melting
in solids (Shen et al. (2001)), environmental engineerimjthermal energy storage systems (Mehling
& Cabeza (2002); Zalba et al. (2003)), shore-line movemdéhtecean depth (Lorenzo-Trueba & Voller

*Present address: Department of Applied Mathematics arit®ts, Institute of Mathematical and Computer Scientés;
versity of Sao Paulo at Sao Carlos, PO Box 668, 13560-@it0CZirlos, Sao Paulo, Brazil

© The author 2018. Published by Oxford University Press orlbeti the Institute of Mathematics and its Applications!| Aghts reserved.



20f21

(2010)), supercooling/superheating phenomena (Gotz &&wn (1995); Tabakova et al. (2010)), solid-
ification of nanostructure-enhanced phase change matéE&kHasadi & Khodadadi (2013)), porous
thermal heart processes (Trelles & Dufly (2003)), phenomamdving nano-sized particles (McCue et
al. (2009); Fan et al. (2015)) and melting and solidificatmmancement (Sharifi et al. (2014)).

Although moving boundary problems date back to Stefangioai paper (Stefan (1890)), the area
received a reawakening with a meeting held in Oxford in 199dkendon & Hodgkins (1975)). Two
papers stand out in the proceedings. Tayler (1975) corssamenathematical formulation of the Ste-
fan problem and its generalizations: in particular, he uises problems that do not have a continu-
ous second derivative and develops a weak formulation wélichvs for the so-called mushy region.
Ockendon (1975), on the other hand, discusses an integnalifation, the use of transform techniques
and asymptotic methods.

When a problem is well-characterized by a one-dimensiorsaém of equations, analytic solutions
are often readily obtained. For example, if the system cisapra one-dimensional diffusion equation
with appropriate initial and boundary conditions, as wallaaStefan condition to track the position
of the moving boundary, then it can often be shown that thélpro is self-similar, and through a
similarity reduction one may convert the original partidfetential equation to an ordinary differential
equation (ODE). Some discussion of the analytic solutidnsaving boundary problems arising in
diffusive systems, such as the Neumann solution to theicisStefan problem, can also be found in
Crank (1984).

When this is not possible, many authors resort to numerieghods. An early review of four
different numerical techniques, including immobilizatiof the free surface through an appropriate
coordinate transformation and the enthalpy method, wagedasut by Furzeland (1980). Indeed, most
of the authors cited above have employed a variety of numlariethods. Text books dealing with these
techniques include Crank (1984), Hill (1987), Gupta (20@%) Tarzia (2011).

A particular class of one-dimensional Stefan problem foirchlone would expect numerical meth-
ods to be necessary is when the diffusivity is not constdtitpagh there are some notable analytic
exceptions even to this for particular non-linear formstfar diffusivity (Cho & Sunderland (1974);
Hill & Hart (1986); Rogers (1986); Natale & Tarzia (2003);i@zo et al. (2007); Voller & Falcini
(2013)). On the other hand, the moving boundary value prolitethis paper has a diffusivity which is
spatially dependent in the sense that it takes one constaue in one part of the domain and another
constant value in the other part; in addition, the two camstdiffer by several orders of magnitude. This
is the situation that arose in a recent experimental and¢tieal investigation Vo et al. (2018) concern-
ing drug release from polymer-free coronary stents withraporous surfaces. The theoretical analysis
led to the following one-dimensional, one-phase, diffastmntrolled moving boundary problem:

Jdc 0 Jc
E—E(DW&), x>s(t), t>0, (1.1)

Jc ds
c=0s, —D()=F(C—Co) atx=s(t),t>0, (1.2)
c—0 asx—o,t>0, (1.3)
s(0)=Lg, ¢(x0)=0 forx> Lg. (1.4)

Here,c represents the concentration of the drs@) a free surface between the dissolved and undis-
solved drugly denotes the thickness of the drug layer initially, whichugaies the region & x < Lq,
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A Moving boundary
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dissolved drug L
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FiG. 1. Schematic showing the problem considered by Vo et al§p0The region G< x < L4 initially contains drug at uniform
concentratiorcg. Fort > 0, drug dissolves on a moving front (where the concentrasigtentically cs, the solubility of the drug),
starting atx = Lq. Drug dissolution is complete when the moving boundarykisdzack tox = 0. Dissolved drug diffuses out of
the system into a release medium which is considered to etafil he diffusivity of the dissolved drug in the region< < a
is much smaller than that in the regign> a.

a < Lq denotes the mean position of the microporous region (alatagung drug) cs the solubility of
the drug andy the initial constant concentration far< Ly. The spatially dependent diffusivity is

[ De(<Dy) ifO<x<a
D(x) = { Dy, it x> a, (1.5)
We note that the resulting model may bear a passing simyilémitmoving boundary problems for
swelling-controlled drug release (Cohen & Erneux (198gadithough the mechanism is not the same
and neither is our handling of the analysis.

The problem given by (1.1)-(1.5) gives rise to a two-stadease of drug, which is explained with
the help of Figure 1. In Stage 1, the drug dissolves on a mdviong in the regiona < x < Lq and
diffuses out of the system. In Stage 2, the moving boundasyriaaked back t& = a and the drug then
proceeds to dissolve from the rough surface region whereritleased at a slower rate. For Stage 1
(s(t) > a), McGinty et al. (201£ anc Vo et al. (2018 founc tha: the classical Netmanr solttion holds,
namely

cserfc ( z’i;l'j;jvt )

s(t) =Lg—06vt, c(xt)=
erfc(

RN Lg—BvVi<x<oo, 0<t<ty, (1.6)
_zm)

where®@ is determined by

6 62 6 1 ¢
——exp| — |erfc| = | = —=——"—. 1.7
2y/Dw p(4DW> ( 2\/Dw> V/TTCo— Cs (7
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Note that(1.7) will have a positive solution fof, which is required by (1.6) provided thag > cs;
moreover, the solution will be unique because the left-ledé is an increasing function fér> 0. As
for (1.6) itself, it is valid untilt = t5, whereupors(ta) = a, so that

(Lg —a)®

5 (1.8)

ta:

Note that the transcendental equation (1.7) is the sameaasitained by Paul & McSpadden (1976)
in a problem for the diffusional release of a solute from ayp@r matrix. Observe also thatdf > cp,
we obtainf < 0 and the solution is identical to that of the freezing of aesapoled liquid, originally
considered by Carslaw & Jaeger (1959) and referred to moently by Voller (2006); thus, although
not commented on by McGinty et al. (2015) or Vo et al. (2018appears that (1.6) withs < ¢y is a
solution that does not have an exact counterpart in thetitee. Furthermore, at=t,,

cserfc ( 2"\/%)

a< X< oo, (1.9
erfc(

c(X,ta) =Ca(X) =

)

“z)

For Stage 2, a numerical procedure was employed.

However, the fact thdde < Dy, suggests that formal asymptotics may be a useful tool irctmsext.
Indeed, such methods have been used for Stefan-like preitdefare, although not for problems exactly
like this one. Comparatively recent examples are the pdyyeBsruckmeier & Unterreiter (2001), Evans
& King (2000), King & Evans (2005) and McCue et al. (2008) haligh in each case the diffusivities
on either side of the moving boundary differ by orders of magte; here, on the other hand, the front
passes from a highly diffusive medium to one that is not.

In this paper, we will be concerned with the release of dragnfthe system during Stage 2. In
particular, we adopt an asymptotic approach to derive agymiate solutions for this phase of release.
In Section 2, we start by presenting the equations that sepiteStage 2 of the release. We then outline
our asymptotic argument. In Section 3, we provide resulthiging comparisons with the numerical
solutions obtained by Vo et al. (2018), whilst the findings discussed in Section 4.

2. Stage?2 (s(t) < a)

The Stage 2 problem, when> t;, may then be formulated in dimensional form as:

Jc 0 Jc
EZO_X(DW(?—X), a<x<o, t>t,, (2.1)
Jc 0 dc
= = 3x ( ed_x) . st)y<x<a, t>t,, (2.2)
Jdc ds
C = Cs, _Ded_x_ a(cs—co), atx=s(t), (2.3)
c—0, asx— oo, (2.4)

s(ta) =a, c(xta) =ca(X), x=a (2.5)
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Par ameter Value
a 1x10°%-4x10®m
Co/Cs 10-200
De 2.5x 10175 x 10 16 m2s1
Dw 5x 10 11 m?s1
Ly 10 °m

Table 1. Model parameters

In addition, we require

[t =0 atx=a, (2.6)

Jc ac
<De&) = (DWE(>+ atx=a. (2.7)

We non-dimensionalize the problem by setting

X gt g s o c . G
x_ a’ T_ aZ/De7 S_ a7 C_ CS’ Ca_ CS’ (2'8)

with typical values for the dimensional parameters, as idensd by Vo et al. (2018), being given in
Table 1. This gives

oC o9°C
T — ax2’ l1<X<oo, T>0, (2.9)
oC 9°C
3T = ax2 S(T)<X<1 T>0, (2.10)
oC dS Co
cC=1, _W_ﬁ(l_@’ atX=S(T), (2.12)
C—0, asX-— oo, (2.12)
S(0)=1, C(X,0)=Ca(X), X>1, (2.13)

whered = D¢/Dy, < 1 and

Ca(X) = —2Y2was (2.14)

In addition, we have

atxX =1, (2.15)

0
5<0—C>_ (§)+ atX = 1. (2.16)
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Considering (2.9)-(2.16) at leading orderdnwe have just

9’C
C—0, asX-— oo, (2.18)
oc
<0_X>+N 0 atX=1, (2.19)
which would requireC = 0, for X > 1. ForX < 1, we would have
oC 9d%C
3T~ ax2 ST)<X<1l T>0, (2.20)
oC dS Co
C=1, _a_x_ﬁ(l_c_s)’ atX =S(T). (2.21)
Also, (2.15) would imply
C=0atX=1

In fact, this cannot hold for all time, since@=1 atX =1 atT =0, i.e. in dimensional form¢ = cg
whenx=s(ta) = a.

2.1 Asymptotic argument

The above suggests that we must try to retain the term on fibdad side of (2.9), which can be
achieved ifT ~ &. This will mean that the left-hand side of (2.10) will be layged would need to be
balanced by the right-hand side, indicating that X, i.e. the width of the lower region, must be of an
appropriately small width. If we suppose that X ~ [X], where[X] <« 1 and is still to be determined,
then there are only two possibilitiegX] ~ 8, so that the full form of (2.16) is retained af] ~ 5/2.
However, the first of these does not lead to a distinguishmei, Ibut merely results in an inconsistency
in the leading-order equations f@rand leavesS undetermined; thus, we choose the second option.
Setting

1-X=0Y2X, 1-S=06%Y2§ T=0T, (2.22)

we also introduce regular perturbation expansion€fandS of the form
c=c4Y2cM 1 0(9), (2.23)
S$=8945Y28Y 1+ 0(5), (2.24)

and consider the leading-order problengtl) ; the expansions given above are uniformly valid, and
there will be no need to consider higher-order problemsppirog the superscrip?, we have

oC o9°C =
ﬁ—ﬁ, l<X<o, T>0, (225)
subject to
C—0, asX — oo, (2.26)
and, from (2.16),
ocC
— =0 atX=1 (2.27)

X
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Also, (2.10) becomes

oC 9%C . N
o X>0, T>0 2.28
3T = a%2 >0, T>0, (2.28)
subject to
C=C,(T) atX=0, (2.29)
aC dS . «co N
C TR a8 () (2.30)
where
Ci (T)=C(X=1,,T). (2.31)

Note thatC, (0) =1, i.e.c(a,ta) = Cs.
We observe that the problem f&r> 1 (i.e. x > a) decouples from that foX < 1 (x < a); we now
solve these in turn.

22 X221

First, we solve the problem fox > 1,7 > 0, corresponding tx > a,t > t,. From Section 2.1, the
problem at hand is, on settifg= X — 1,

oC 9°C
== 2.32
oT 09&% ( )
subject to
oC
FTin 0 até =0, (2.33)
C—0 asé — o, (2.34)
C=Ca(§) atT=0, (2.35)
where
erfc( 38 —ta
Ca(E) = (2— VDwt) (2.36)
erfc(—ﬁ)

Using Fourier transforms, we obtain

0 _zNn2 n2
C(&T)= ﬁ/o Ca(&) {exp(—%) +exp<—%> }df’. (2.37)

Before we can tackle the second problem (i.e. the ¥asel), we shall require€, (T) =C (& =0,T)
for condition (2.29)i.e.

Ci(T)= \/% /:Ca(f/) exp(—%) dé’. (2.38)
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Puttingz= &’/2VT, we have

c,(T) = %T/OOOC}U1 (22\/17') e Zdz
2/ oc
VT dé
where we have used a Taylor series expansioCfaaboutz = 0. Now, on using (2.36) and recalling
equation (1.8), we note th& (0) = 1 and that

=Ca(0)+ (0)+0(T), (2.39)

6 2 oo(- o)

220 = -
d¢ VTDula erfc(—ﬁ)
So, we have, for smail,
_(a-Lg)®
c.(f)=1-{— th eXp(( 4D;“ta)) VT+o(F). (2.40)
wia erfc( —5—=
2y/Dw

However, to determin€ (O,T') for all T, we need to revert to (2.38) with= E’/2\/'T", which gives
2

()

a(1+22\/zlf) —Lg
2,/Duta '

C, (T

/(; “erfe(f (2 F)) e Pdz (2.41)

where

f(zT)=
Differentiating with respect td , we have

acy _ 2a /0 "2 (Z412(2T)) gz (2.42)

dar nerfc(—ﬁ) \/DataT

Rearranging the argument in the exponential in (2.42), we ha

(28.2\/:[:-1— a— Ld) ?

Z+

—o (1) {@+2(F)*+% (1)}

4Dwta
where
- a’T
[(a—Ld)a\/'T'}
- ~Dwta
B(T) ="+, (2.44)
2 (1+ %)
(a—Lq)? (a-Lgavi1?
@ (T) = ——Duta -l (2.45)

27\ =N\2'
(1r8%) (v L)
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it is now possible to write the integral in (2.42) in the form
/'°° ze*{‘”(f) [(z+2(7)) "+ (7)]} &z (2.46)
0
Next, with{ = z+ 2% (T) and later§ = «71/2(T) {, we have

/'°° Le (D|(zr2(1)+4(T)] 4,
JO

L e [e#M#D g d) o
— e %(T)ﬂ(T){ TE @ erfc (/%2 (T)%(T))}. (2.47)
Hence, we have the following first-order ODE for (T) :
i, ae/(1)(T) {ewwzm BB }
St = - —erfc( Y2 (T) 2 (T)) ¢,
dr nerfc(—ﬁ) VDulaV'T o (T) /%2 (T) erc( M #( ))
(2.48)
subject to
C,=1 atT=0. (2.49)

Checkinge (T), % (T),% (T) in the limit asT — 0, we have

(a—Lg)°
so that
dif | ae*<ade)2/4Dwta i (2.51)
dT nerfc(—ﬁ) VOula | VT
23 X<1

For this region, we require to solve (2.28)-(2.31). Notetttimm the solution forX > 1, we have
already found in (2.40) that, for smdll,

c, (T)-1~TV2 (2.52)

Moreover, afl =0, the region that we are solving in, i.e<0X < é('f') , has zero width, which suggests
that it may be appropriate to proceed in terms of similaritgimilarity-like variables. For this purpose,
we set

_1=TW2 = .
C-1=TY*F(n,T), n Siik (2.53)
so that equation (2.28) becomes
FF)F (= OF =« dS OF\ 0%
7 +<§(T)a—f—S(T)ﬁn%> an? (2.54)
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subject to
1+TY2F =C, (T) atn=0, (2.55)
F=0 atn=1, (2.56)
oF S(T)dS . o
_%_Wﬁ(l_g) atn = 1. (2.57)

Itis now required that (2.54)-(2.57) behave in a self-cstesit manner @ — 0; by this, we mean that
we should obtain an ODE, subject to the requisite number ohary conditions. This can be done by
taking .
S(T) dS
Fiz df
as suggested by (2.57). We obtzﬁl(ff) ~ T3/4 which ensures a sensible leading-order balance in

(2.54) and (2.57). Settin§(T) = AT¥/4+ .., whereA is a positive constant to be determined, equation
(2.54) becomes, in the limit &5 — 0,

(2.58)

d’Fy
anz - 0, (2.59)
where y
Fo(n):=limF(n,T). (2.60)
T—0
subject to
Fo=u atn=0, (2.61)
dRy 3., Co _
wherey is a constant given by
p=lim M. (2.64)
O

Note thatu can be determined, and we will do so shortly, from the sotufar X > 1. Thus, solving
(2.59) subject to (2.61)-(2.63) gives

Fo(n)=u(1-n), (2.65)
with 3, .
=A% a), (2.66)
ie. ” 12
A=+ <m> . (2.67)

Clearly, we need to take the positive sign to ensure$fiatreases, i.éSdecreases. Also, sincg > Cs,
it is clear that we will neegi < 0; we return to this point shortly.
Note also that it is possible to determipavithout solving (2.32)-(2.35). Neat = 1, we have

dCa

Ca=1+(X—1) (W)x—ﬁ"' (2.68)
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where, on using (2.14),

Li—a)2
e () ool B
. X=1

X _\/nDWtaerfc(—ﬁ).

We consider the small and positiXe— 1 and smalll’ behaviour of (2.32)-(2.35) by settirfg= X — 1,
as in section 2.2, and

(2.69)

C=1+TY%G(¢,T), ¢=¢&/TY2 (2.70)

Equation (2.32) becomes
-0G G (dG_9%G

3T t2 297" ac (2.71)
Now, in the limit asT — 0, (2.71) becomes
Go (dGy d’Gy
where N
Go({):=1limG(Z,T). (2.73)
T—0
Equation (2.72) has the general solution
2
Go = K1Z +K> (nZ erf (g) + Zﬁexp(—%)) , (2.74)

whereK; andK5 are constants to be determined. Clearly, (2.72) must hawébtwaindary conditions.
One of these comes from (2.33), and is

dGo

e =0 at{=0. (2.75)
The other comes from matchit@p as{ — o« to C; and is
%—(?O —a as{ — . (2.76)
Since @G ¢
O —_— JE—
' K1+ Kzrrerf<2> , (2.77)
we quickly see that
a
Ki=0, Ko= pt (2.78)
whence )
_ ¢ 2 A\ .
Go=a (Z erf(2 + \/ﬁexp 7 ; (2.79)
ultimately, this leads to
2a

Finally, recall from the discussion after equation (2.6¥ttwe needegt < 0. Now, equation (2.80)
implies that we will needr < 0; from equation (2.69), we see that this will clearly be thee
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0.97r
-==t=ts+ tstop/2
0961 |...... t=1t,+ tstop
0.95 . . . .
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X

FIG. 2. C vs. X for four different values of for d = 0.2 , as obtained by solving (A.3) and (A.4), subject to (A8)8) and
(A.12). t5 andtsop are approximately 2350 and 3760 seconds, respectively.

3. Resaults

The main numerical task is to solve equation (2.54), sulijg¢PR.55)-(2.57); this constitutes a
moving boundary problem fd¢ andS. However, (2.55) containG, (T) , which must itself be solved
for numerically via the first-order ODE (2.48), subject to4@). To illustrate our ideas, we will vary
the value oDe, so as to see the effect 6f using the parameters given in Table 1; in particular, we take
a=0.2L4 andcy/cs = 50 throughout.

However, before presenting results for whiks very small, we will first consider the behaviour of
the solution wherd is not so small; we také = 0.2. For such a high value a¥, we would not expect
the asymptotic analysis developed above to be valid. Fer#ason, further analysis was developed in
order to be able to solve the full original governing equasiq2.9)-(2.16), numerically. This is given in
Appendix A, as are details of the numerical method used tegbe equations; we note in passing that
we use a similar method to solve the asymptotically reduge@tons (2.54)-(2.57) also. Fig. 2 shows
C as a function oK for four different values of . These correspond to=ta/2,ta,ta +tstop/ 2, ta+tstop,
wheretstop is the time taken for the front to move frofi=1to X =0, i.e. x=ato x = 0; thus, the
first two curves are simply the similarity solution from (},.6vhereas the second two are numerical
solutions. Evidentin Fig. 2 is the discontinuity in the sbopf C, once the moving boundary enters the
second layer, i.e. & = 1. Observe also that, even though the plot extends as f4dr-a4 0, the value
of Cis far short of its far-field value for all four curves; thisascounted for in Appendix A also.

Next, we note that we are ultimately interested in detemgjrihe time at which the front reaches
x = 0; this corresponds to the time at whisk= 1/8%2. Whilst this will, of course, depend on the value
of &, we observe thats— c(a,t), and hence + C (X =0,T), i.e. 1—C, (T), will be independent of
9; this is evident since there is r@in either equation (2.48) or (2.49). Thus, it makes sensedhk &t
1-C(0,T) vs. T, ahead of considering the solutions fdandC (X, T). Thus, Fig. 3 shows a log-log

plotfor 1—C(0,T) vs. T, as well 1+ uTY/2 vs. T; the second of these is the small-time approximation
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Fic. 3. 1-C(0,T) (solid line) and 1+ uT/2 (dashed line) vsT

forl1—-C (O,T') derived in Section 2.3 and makes use of the fornCfam (2.70) and (2.80). We see that
this approximation works quite well unfil ~ 10%, after which the two curves diverge.

In similar vein, Fig. 4 showSvs. T, as well asA T3/4 vs. T; the latter of these is also from the
small-time approximation, as indicated between equa(2/&8) and (2.59). Whilst this result does not
depend o either, we have stopped the computation wgreache© (104), with a view to exploring
the results whed > 10~8; this covers the range id considered in Vo et al. (2018). Here also, we see
that the two curves follow each other unfil~ 104, at which pointS~ 10°. This would mean that, for
10* < 8 < 1, a preliminary estimate fof of whenS= 1/5/2, which we denote bistop, Would be
given by

=34 1
/\Tsu/)p'fz 12’ (3.1)
giving Tstop~ (A 6%2) ~*3 In actual time, this amounts to

tstop= azéfstop/De (: az-|:stop/Dw) . (3.2)

It is also instructive to see the relative errors betweerstiations for 1- C (O,'f) andSgiven in
Figs. 3 and 4, respectively; these can be defined as

1-C(0,T)— (14 uTY2
rec := ©1) ~( ~HT) (3.3)
1+ T2
and
S—AT¥4
es .= W s (34)
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FiG. 4. S(solid line, computed) and T%* (dashed line) vsT. Note that the computation has been stoppeil at10%; at this
stageS ~ 2004 which implies thad ~ 10~7. In more detail, with§= 1/5/2, we haved = 1/2004 = 2.49x10".
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rec
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FiG. 5. The relative errors foE andS, rec andreg, respectively, vsT.
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Fig. 4 Vo et al. (2018)
5x 107 ~46.4 ~46.5
10°° ~23.8 ~23
5x10°° ~4.97 ~5
10° ~2.6 ~2.5

Table 2.tstop, as calculated in two different ways for four valueséof

150f21

1
full numerical — full numerical
0.8t - - —asymptotic 0.8} - - —asymptotic
0.61 06"
S R S
N
0.4r S 0.4r N
N D
h ~ S ™
~ >
N >
0.2r AN 0.2} N
N >
~ N N D

05 1 15 2

(b)

FIG. 6. Comparison oS as a function off , as obtained numerically and via asymptotics, for:Ja) 10-3; (b) 5 = 106

respectively. These are plotted as functiond of Fig. 5. As might have been expected from Figs. 3
and 4, the relative errors are quite small uftit 10%.

However, the values fod used in Vo et al. (2018) lie outside of the aforementionedeanthey
are smaller - and any attempt to use equation (3.1) can thexgexted to underestimate the value of
tstop- INStead, in Table 2, we compare the valuets@f as given by the solid line in Fig. 4, which were
obtained from the solution of (2.54)-(2.57), and as estudétom Fig. 3 in Vo et al. (2018), for different
values ofd. As can be seen, the qualitative and quantitative agreeisieaty good.

A further indication of the correctness of the asymptot&uleis a comparison with the numerical
solution of the full original equations asdecreases. This is shown in Fig. 6, where the profileSfor
are compared fod = 102 andd = 10 °. As can be seen, the profiles in Fig. 6(b) for the lower value of
0 agree very well, although this cannot be said to be the cagbdmrofiles in Fig. 6(a) for the higher
value.

An interesting observation now arises:Oify, Ly/a andcy/cs are fixed, only one computation, i.e.
the one that was already carried out already to determingrhile for S and which generated the
results for Fig. 4, is required to find the solution tb(X,'f), which comes from the solution fd¥
via equation (2.53), for any value &t This is as opposed to having to carry out a new computation on
each occasion th&le, and hence, is changed, as was done in Vo et al. (2018). To see this, we show
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in Figs. 7 and & as a function oX for §(f) < X < 1 for four different values of for = 10~° and
5x107, respectively; note that, in these figures, the concentratiofile atT = 0, corresponding to

t =t,, consists of a point that is located@t= 1 andX = 1 but which then become a curve - a line, as
it turns out - that moves down and to the left with time. In bfigures,X is related to the independent
variables of the domain in which the computations were edroiut, andT, by

X =1-35Y2n§(T),

as can be seen by tracking back through the substitutiorguiations (2.8), (2.22) and (2.53).

4. Discussion

This paper has considered the asymptotic analysis of atrewaatel by Vo et al. (2018) for drug release
from polymer-free coronary stents with microporous swfacthis was originally treated as a one-
dimensional, transient, one-phase, diffusion-contebiteoving boundary problem occuring over two
layers having widely differing diffusivities, with the ming front passing with time from the layer with
higher diffusivity to the layer with lower. Although there & similarity solution whilst the front is in
the first layer, this is not the case when the front is in thesdc With the ratio of the diffusivities,
d, as an asymptotically small parameter, the analysis inelicabw the solutions in the two layers can
be decoupled, leading to a numerical formulation that is tesmanding to solve computationally; the
results are found to agree well with the numerical solutmthe full problem a® — 0, as would be
hoped. Nevertheless, there are at least two notable findihgrh were either not commented on, or not
obvious, in the original work by Vo et al. (2018):

¢ as that work was carried out in dimensional variables, th@®no indication as to how the time
taken for the front to reach the stent surface depended omdukel parameters - this becomes
much clearer with the current approach;

e it now turns out that, regardless of the value of the lowefuditity in the second layer, it is
possible to determine the above-mentioned time to reas®maaburacy with just one computa-
tion, rather than having to do multiple computations fofatiént values, as explained in the last
paragraph of section 3.

In a wider context, the significance of the work is to suggest la complex problem having a
small diffusivity ratio may be simplified asymptoticallyjtiwout any loss of the original physics, to give
a formulation that is mathematically more transparent amehper to compute. In the drug-delivery
context, this idea may be useful for prototyping, since ita$ knowna priori what a suitable value of
0 should be, other than that it is most likely to be small. Meapalthough the analysis here has been
carried out in just one spatial dimension, the principlelbaexpected to be of use in higher dimensions
also.
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Appendix A: numerical solution of the full equations

We require to solve (2.9)-(2.16). Although a numerical olufor the problem was given by Vo et al. (2018)
using a finite-difference method, here we apply an altevaapproach that employs recent develop-
ments in the solution of Stefan problems for which the donudimterest initially has zero thickness
(Mitchell & Vynnycky (2009, 2014, 2016)). For this, we useupolary immobilization foS(T) < X <

1 by setting

_X=S(T)
The governing equations are then
oC 9°C
3T~ ax2’ 1<X <o, T>0, (A.2)
JoCc . oC 9°C
— 2 _ — — —_
(1-9 0T+S(1 S (n 1)00 anZ’ O<n<1 T>0, (A.3)
subject to the boundary conditions
oc ds Co
C=1, —%_(1—8)5(1—g), atn =0, (A.4)
C—0, asX— oo, (A.5)
[Clt=0 atxXx=1, (A.6)
0 [oC oc
(), (500 A
and the initial conditions
S(0)=1, C(X,00=C4(X), X>1 (A.8)
In the limit asT — 0 asS— 1, (A.3) gives
d’c
W_O, 0<n<1, (A.9)
subject to
dc
Cc=1, %_0, atn =1, (A.10)
C=GC(1), 3—(;:0, atn =0. (A.11)

Although this system appears to be overspecified, since #rerfour boundary conditions for a second-
order ordinary differential equation, the fact tiiat(1) = 1 means that

c=1 (A.12)

satisfies (A.9)-(A.11), and can therefore constitute thtgalrcondition for 0O< n < 1.
This reformulated problem, consisting of (A.2) and (A.3bfct to the boundary conditions (A.4)
and (A.7) and initial conditions (A.8) and (A.12), was saluesing the finite-element software, Comsol



19 0of 21

Multiphysics, which has recently been employed for a nunafether Stefan-like problems; see, for
example, Vynnycky (2016), Vynnycky & Saleem (2017) and VWreky et al. (2018). For the numeri-
cal solution, the 1D transient mode of Comsol Multiphysi@swsed, in tandem with 20000 uniform
Lagrangian quadratic elements in space, correspondingtmd 40000 degrees of freedom. The con-
vergence criterion at each time step was taken as

1
1 Ngof |E|| 2\ 2
(E 2, (rvmoy) ) < (A13)

where (U;) is the solution vector corresponding to the solution at déok step,A; is the absolute
tolerance for thé" degree of freedonR is the relative tolerance aridy,f is the number of degrees of
freedom; for the computationR,= 10" A; =10~ fori = 1, .., Ngof.

We can also note that although the number of elements usedppgar to be excessive, it proves
to be necessary in order that the numerical scheme acouemiebunts for the asymptotic decay©f
asX — oo; in turn, this is linked to the value of that is used as the outer edge of the computational
domain. A guide for what this value should be comes from thnftor C;(X), i.e. equation (2.14):
with the parameter values in Table 1, we find that we néed 10° to ensure thaC,(X) ~ 10°°. For
this reason, we set the outer edge of the computational aoaigi= 10%; thus, the size of each element
in the spatial variable was 0.05.

Lastly, we point out that these considerations are not reduior the numerical solution of the
asymptotically reduced equations, since there is no nesdlt®@ numerically foiX > 1; as a conse-
quence, far fewer mesh elements are required and, morebese only need to be deployed in the
region whereX < 1. For reference, we note that, for those computations, #8fents were used, cor-
responding tdNgo; = 960; the same values BfandA; were used as indicated in the previous paragraph.
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