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The dip coating of chemically heterogeneous surfaces is a useful technique for attaining selective
material deposition. For the case of vertical, wetting stripes surrounded by nonwetting regions,
experiments have demonstrated that the thickness of the entrained film on the stripes is significantly
different than on homogeneous surfaces because of the lateral confinement of the liquid. In the
present work, the asymptotic matching of equations based on lubrication theory is used to determine
the film thickness, and necessary restrictions on the capillary and Bond numbers are provided. The
predictions are in excellent agreement with the existing experimental data, and the classical Landau–
Levich formula for homogeneous surfaces is recovered from the analysis in the limit of very wide
stripes. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850751g

The dip coating of chemically homogeneous plates, rods,
and fibers has been extensively investigated both experimen-
tally and theoretically.1–9 More recently, as microfabrication
has become common and microfluidic applications have in-
creased, the dip coating technique has been used to achieve
selective material deposition on micropatterned surfaces.10–13

In particular, the experimental investigation of the dip coat-
ing of vertical, wetting stripes on a nonwetting planar surface
by Darhuberet al.12 has demonstrated that fluid confinement
by chemical surface patterning strongly affects the thickness
of the entrained liquid film. For the general restrictions of
small capillary and Bond numbers, scaling arguments were
used to predict that the entrained film thickness at the center

of the stripe,h`, scales ash`=bW̃Ca1/3, where W̃ is the
width of the stripe andCa is the capillary number defined
below. The numerical prefactorb was not determined. Aside
from the scaling arguments used by those authors, theoretical
treatments have been confined to homogeneous surfaces for
which the key step in the analysis, which has been presented
with varying formality and rigor, entails thesone-
dimensionald matching of the limiting curvature of the en-
trained liquid to that of a static meniscus of liquid on the
substrate near the liquid reservoir. For the withdrawal of a
homogeneous plate, the classical Landau–Levich result is1

h` = 0.946LcCa2/3, s1d

whereLc is the capillary length defined below. The scaling
behavior observed by Darhuberet al. is clearly quite differ-
ent, as the capillary lengthLc is replaced by the much

smaller stripe widthW̃, and the exponent of the capillary
number decreases from 2/3 to 1/3. The dip coating of such
micropatterned surfaces is reconsidered below, and
asymptotic matching is used to determine the prefactorb. A
simplified exposition is used in place of full mathematical
rigor for brevity.

Consider the dip coating of a wetting microstripe of

width W̃ on a nonwetting plate that is withdrawn at velocity
U from a bath containing liquid of densityr, viscositym, and
surface tensiong. The stripe is oriented vertically with the
plate withdrawn in the −x direction, as shown in Fig. 1, and
z is directed outwardly normal from the plate surface. The
component of the liquid velocity in thex direction isu, and
it is assumed that the entrained liquid is completely confined
to the wetting strip.sSuch confinement was attained experi-
mentally by Darhuberet al.12d

Far above the reservoir, asx→−`, the thickness of the
entrained liquid film is independent ofx and has centerline
thickness uhuy=0;ho=h`. In this region only viscous forces
sand possibly gravityd determine the upward flux of liquid.
At the reservoir the free surface profilesFig. 2d is a static
meniscus whose shape is governed by the balance of capil-
lary and possibly hydrostatic pressures. The lubrication film
transitions to the static meniscus through the dynamic menis-
cus, or overlap region, in which the viscous and capillary
forces balance. The film curvature in this region smoothly
matches the static meniscus curvature at the lower end, and
the centerline film thickness decays toh` as the lubrication
film is approached forx→−`.

The flow is described by the equations of lubrication
theory, which are

−
]p

]x
+ rg + m

]2u

]z2 = 0 s2d

and

− p = gk = − g=s ·n < gshxx + hyyd, s3d

wherep is the capillary pressure,k is the smeand curvature
of the free surface aty=h,n is the unit normal vector di-
rected outward from the liquid surface,=s is the surface
gradient operator, andh is the film thickness. This analysis is
restricted to small capillary numbers,Ca=mU /g!1, so that
the viscous contributions to the normal stress balance at the
free surface,14 which would enter atOsCa2/3d, may be ne-adElectronic mail: jmdavis@ecs.umass.edu
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glected in Eq.s3d. These equations are solved subject to the
boundary conditions of no slip at the solid-liquid interface,

u = − U at z= 0, s4d

and vanishing shear stress at the liquid-air interface,

m
]u

]z
= 0 at z= hsx,yd. s5d

The velocityu is found by integrating Eq.s2d and using
the boundary conditions given in Eqs.s4d and s5d. A further
integration with respect toz yields the fluxQ, which is set
equal to its asymptotic value asx→−` to give

h3]k

]x
= 3Cash − h̃`d +

rg

g
sh̃`

3 − h3d, s6d

where subscripts denote differentiation andh→ h̃` as
x→−`. In addition to the geometric length scaleW

;W̃/Î8, there are two natural length scales based on fluid
properties: d=smU /rgd1/2, an apparent scale of the film

thickness, andLc=sg /rgd1/2, which is the scale of a hydro-
static meniscus. Introducing the variablesH=h/d, X=x/Lc,
andY=y/W into Eq.s10d and substitutingk<hxx+hyy yields

H3fHXXX+ Bo−1HYYXg = 3d−3sH − H`d + d−3sH`
3 − H3d,

s7d

where d2;sd/Lcd2/3=Ca1/3 is small and Bo;sW/Lcd2

=rgW2/g is the Bond number.
If Bo@1, then the stripe width is much larger than the

capillary length, and the flat-plate solution should be a rea-
sonable first approximation. TheH3HXXX term will balance
the viscous terms on the right-hand side if the new variables
x=d−2X andc=d−1H are used to transform Eq.s7d into

c3cxxx + Bo−1d4c3cYYx = 3sc − c`d + d2sc`
3 − c3d. s8d

These scales are identical to those used in analyses of the dip
coating of a homogeneous flat plate5 and a cylindrical rod of
radiusR@Lc.

15

Substitutingc=h`f andx=3−1/3h`z and neglecting the
small termssBo−1!1, d2!1d due to the change in trans-
verse curvature and drainage due to gravity converts Eq.s8d
sto leading orderd to the universal form

f3fzzz = f − 1, s9d

subject to the boundary conditionf→1 as z→−`. As z
→`, fzz→a, which is a constant that can be found by inte-
grating Eq.s9d numerically. Equating this constant, limiting
curvature of the lubrication film region with the limiting cur-
vature of the hydrostatic meniscus in a common set of scaled
variables completes the matching process in the overlap re-
gion and leads to Eq.s1d. The formal matching of rigorous
asymptotic expansions in the thin film and meniscus regions
has been presented up toOsd2d by Wilson.5 The related prob-
lem of films climbing a homogeneous plane wall under the
influence of surface tension gradients has also been
studied.16,17

Now consider the caseBo!1, which is the relevant
limit for the dip coating of chemically patterned surfaces
with arrays of vertical wetting microstripes. Because of the
restrictionCa!1, anx=const cross section of the free sur-
face of the liquid along the microstripe must be an arc of a
circle,18 which, within the lubrication approximation, simpli-
fies to a parabola. The substitutionhsx,yd=hosxdf1
−4sy/W̃d2g then reduces the analysis to a one-dimensional
matching problem to determineho, the film thickness along
the centerline of the stripe, which is governed by

ho
3shoxxx− W−2hoxd = 3Casho − h`d +

rg

g
sh`

3 − ho
3d. s10d

For these narrow stripes the transverse curvature of the liquid
ribbon is significant, and Eq.s10d must be scaled such that
both curvature terms are comparable to the viscous terms.
Introducing the new variables j=x/W and h
=ho/ fWs3Cad1/3g transforms Eq.s10d into

h3shjjj − hjd = h − h` + Bos3Cad−1/3sh`
3 − h3d. s11d

Neglecting the effects of drainage by gravity, which corre-
spond to the last term in Eq.s11d, therefore requires

FIG. 1. Sketch of the dip coating geometry for the chemically micropat-
terned surface. The image at left is a side view of the film profile. The

wetting microstripe of widthW̃ is indicated by the cross hatching in the
image at right. The plate surface surrounding the microstripe is nonwetting.

FIG. 2. Sketch of the free-surface profile of the static meniscus. The light

gray region of widthW̃ is the wetting microstripe, and the surrounding dark
gray region is nonwetting.
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Bos3Cad−1/3!1, which is more stringent than the constraint
rgh̀2 /g!1 sequivalent toBoCa2/3!1d given by Darhuber
et al.12

At leading order, the free surface shape is therefore gov-
erned by

h3shjjj − hjd = h − h`, s12d

subject to the boundary conditionh→h` as j→−`. As j
→`, hjj−h→CS, which is a constant that can be found by
numerically integrating Eq.s12d. The entrained film thick-
ness is thus given byh`=h`Ws3Cad1/3, where the numerical
value of the constanth` must be determined such thatCS is
equal to the limiting curvature of the meniscus when ex-
pressed in a common set of variables.

In the meniscus region,W is the appropriate scale forx,
y, andh, which is analogous to the use of the cylinder radius
to scale both coordinates in the inner region for the static
meniscus on a thin cylinder.19 Introducing the new variables

H̃=h/W, X̃=x/W, andỸ=y/W into Eq. s6d yields

H̃3]k̃

]X̃
= 3CasH̃ − H̃`d + BosH̃`

3 − H̃3d, s13d

where k̃=Wk. The shape of the meniscus is therefore not
influenced by the motion of the plate or by gravity at the
level of approximation made earlier. As noted in an analyti-
cal study of the shape of thesstaticd liquid meniscus near a
stripwise heterogeneous wall,20 for Bo!1 the interface
within several stripe widths from the wall is a minimal sur-
face with zero mean curvaturesk=0d. Because of the con-
straintBo! s3Cad1/3 required to neglect gravity in Eq.s11d,
terms ofOsBod are uniformly negligible, and corrections to
the shape of the meniscus due to inclusion of gravity are
insignificant. In order to match the thin film and meniscus
solutions in the overlap region, the constraintk=0, corre-
sponding to the equality of the two principal radii of curva-
ture, is therefore sufficient for negligible Bond number as
only the limiting value of the mean curvature of the free
surface at the top of the meniscus is needed.sIf corrections
for small but finite Bond number are desired, the exact me-
niscus profile must be determined numerically.d Evaluatingk
along the centerliney=0 and noting that the free surface
must be symmetricsand thathx→0 at the top of the menis-

cus to match the lubrication filmd reveals thatH̃X̃X̃+H̃ỸỸ

→CM =0 is the desired limiting behavior at the top of the
meniscus to which the solution in the microstripe should be
matched.

A standard shooting method can be used to determine
the appropriate value of the constanth`. Linearizing about
h=h`, which is valid forj→−`, provides the initial condi-
tions required to integrate Eq.s12d numerically. The match-
ing condition thatCS=CM requires thathjj−h→0 as j
→`, which occurs forh`=0.699 11. The final result for the
thickness of the entrained liquid ribbon is then

h` = h`Ws3Cad1/3 = 0.24717W̃s3Cad1/3. s14d

This matching procedure can be extended to include cor-
rections for small values of the Bond numbersi.e., Ca
!Bo!Ca1/3d and generalized to theBo=Os1d regime for

which the effects of both gravity and the transverse curvature
of the liquid profile must be taken into account. BecauseW
influences the shape of the static meniscus and the dynamics
of the liquid in the overlap region, a general scaling law
cannot be found, but the thickness of the entrained liquid
film transitions from Eq.s14d to Eq. s1d as the stripe width
increases. As indicated in Eq.s13d, the sstaticd meniscus
shape is determined by the balance of Laplace and hydro-

static pressure, and the limiting curvatureC̃M at the top of
the meniscus can be calculated numerically. The entrained
film thickness is then specified by asymptotically matching

the curvature in the dynamic meniscus toC̃M for given val-
ues ofBo andCa.

For microstripes ranging from 40 to 110mm, Darhuber
et al. reported experimental results for the entrained film
thickness as a function of the stripe width and the velocity
with which the micropatterned plate was withdrawn from a
bath of glycerol.12 The experimental data are plotted with the
predictions of Eq.s14d in Fig. 3. Extremely good agreement
between the theoretical predictions and experimental results
is attained. For the 23 published experimental measurements,

h` / fs3Cad1/3W̃g=0.247±0.010, which is in exact agreement
with the theoretical prediction of Eq.s14d. The experiments
encompassed the ranges 2.5310−4øBoø2.6310−3 and
3.1310−4øCaø4.9310−3, with Bos3Cad−1/3ø0.023, for
which Eq.s14d is expected to be extremely accurate.

The dip coating of a thin, cylindrical fiber is similar to

FIG. 3. Comparison of the prediction of Eq.s14d to the experimental data of
Darhuberet al. sRef. 12d for entrained film thicknessh` vs sad stripe width

W̃ and sbd withdrawal velocityU for 4 mm long stripes from a bath of

glycerol. Insad, U=30 mm/s. Insbd, W̃=49 mm. The symbols represent the
experimental data, while the line is the theoretical prediction.
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that of a microstripe in that the fiber radius is a geometrically
imposed length scale that enters the result for the film thick-
ness because the curvature induced by the fiber radius is
important in the meniscus region. In the thin film region,
however, the term corresponding to the pressure induced by
the curvature of the free surface in the direction transverse to
flow is a constant untilOsd4d.15 To the first orders of ap-
proximation its derivative is zero, and there is no resulting
dynamical effect. With an appropriate change of variables,
the governing equation for a cylinder in the overlap region
thus reduces to the universal form given in Eq.s9d for a flat
plate. The matching of limz→`fzz to the streamwise curva-
ture of the meniscus proceeds as for the flat plate, and the
sameCa2/3 dependence results. The only difference is that
the streamwise curvature of the meniscus is controlled by the
transverse curvature due to the cylindrical geometrysand not
by the capillary lengthd. For a microstripe, by contrast, the
transverse curvature is important throughout the film, as the
streamwise change in the transverse curvature, as represented
by the W−2hox term in Eq. s10d, balances the change in
streamwise curvatureshoxxxd. Unlike the withdrawal of a cyl-
inder, hoxx does not approach a constant asx→`. Instead,
the total curvaturesrepresented byhoxx−W−2hoxd matches the
full curvature of the meniscus. The importance of the change
in transverse curvature with distance from the meniscus re-
sults in the novelCa1/3 dependence of the entrained film
thickness.

Finally, in the equivalent limit of negligible gravity for
the withdrawal of a cylindersBo;rgR2/g!1d, the require-
ment of zero mean curvature is analogously sufficient to de-
termineh`, and the matching condition is that the stream-
wise curvature in the overlap region asymptotes to the
inverse of the fiber radius. Because of the assumptionBo
@Ca made in the analysis of Wilson15 sin contrast to the
requirementBo!Ca1/3 in the present analysisd, modifica-
tions of the meniscus shape due to gravity are considered,
and a numerical solution for thesnonzerod meniscus curva-
ture is needed.
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