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THÈSE
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Abstract

The ultimate aim of this thesis is to study the application of the nonoverlapping
and overlapping Waveform Relaxation (WR) and Optimized Waveform Relaxation
(OWR) methods to electric circuits, to be precise, RC circuits and RLCG transmis-
sion lines. We analyze for the first time the influence of overlap on the convergence
of both WR and OWR methods. The thesis is divided into four chapters.

Chapter 1 is devoted to the introduction of basic concepts. We start by giving a
background about various Domain Decomposition (DD) methods. We mention and
discuss the most popular DD methods and their applications. We also explain WR
methods in detail and give some convergence estimates. We then move toward electric
circuits and recall Kirchoff’s voltage law, Kirchoff’s current law and the Modified
Nodal Analysis (MNA) formulation.

In Chapter 2, we build a mathematical model of circuit equations for an infinitely
long RC circuit. This process is carried out using the well known MNA formulation.
We apply the classical WR method to this circuit and study its convergence in the
Laplace space. We further introduce OWR methods to overcome the problem of slow
convergence of the WR methods when large time windows are used. OWR methods
require us to solve a min-max problem to find the optimizing parameters involved
in the transmission conditions of the OWR methods. This min-max problem cannot
be solved using the available complex analysis tools and hence we use asymptotic
analysis with respect to two different parameters: one with respect to final time
going to infinity and the other with respect to the reaction terms going to zero. We
considered both nonoverlapping and overlapping WR and OWR methods, and found
the optimizing parameters for both of these cases. We proved that overlap increases
the convergence rate for both WR and OWR methods. We also proved that OWR
methods produce far more rapid convergence than the WR methods. Finally, we
performed numerical tests to support our theoretical results.

In Chapter 3, we considered a complicated electric circuit, the infinitely long RLCG
transmission line. We analyzed both nonoverlapping and overlapping decompositions
for WR and OWR methods. For this circuit, the unknowns are voltages at the nodes
and currents in the circuit branches, and thus for overlapping methods, the type of
partitioning of the circuit is interesting. We considered two types of partitioning for
the circuit: one at a voltage node and the other at a current node, and showed that the
convergence rate of the overlapping WR method is the same irrespective of the type
of partitioning, while for the overlapping OWR method, the one with partitioning
at a voltage node converges faster than that of a partitioning at a current node. We
further solved min-max problems to find optimized parameters for three cases: the
nonoverlapping OWR method, the overlapping OWR with splitting at a voltage node
and overlapping OWR with splitting at a current node.
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In Chapter 4, we developed a novel algorithm for the analysis of OWR methods
when applied to infinitely long electric circuits. We proposed first to reduce the
infinitely long circuit into a smaller equivalent circuit, and then to apply the WR
and OWR methods. The expression of the convergence factor for the OWR method
is thus simpler and hence the optimization problem to find optimized parameters
can be easily solved without using asymptotic analysis. Though we carried out this
algorithm only for the nonoverlapping OWR method applied to an infinitely long RC
circuit, this algorithm can be extended to other circuits and time dependent PDEs.
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Résumé

Le but ultime de cette thèse est d’étudier l’application des méthodes de relaxation
de forme d’onde (WR) et de relaxation de forme d’onde optimisée (OWR) à des
circuits électriques, pour être précis, un circuit RC infiniment long et une ligne
électrique RLCG infiniment longue. Nous analysons pour la première fois l’influence
des chevauchements sur la convergence des méthodes WR et OWR. La thèse est
divisée en quatre chapitres.

Le chapitre 1 est consacré à l’introduction des concepts de base. Nous commençons
par donner un aperçu des différentes méthodes de décomposition de domaine (DD).
Nous mentionnons et discutons des méthodes populaires de DD et de leurs appli-
cations. Nous expliquons ensuite en détail les méthodes WR et donnons quelques
estimations de convergence. Nous passons ensuite aux circuits électriques et rap-
pelons la loi de tension de Kirchoff, la loi de courant de Kirchoff et la formulation de
l’analyse nodale modifiée (MNA).

Dans le chapitre 2, nous construisons un modèle mathématique des équations d’un cir-
cuit RC infiniment long. Ce processus est réalisé à l’aide de la formulation MNA bien
connue. Nous appliquons la méthode WR classique à ce circuit et étudions sa conver-
gence dans l’espace de Laplace. Nous introduisons en outre des méthodes OWR pour
résoudre le problème de la lente convergence des méthodes WR lorsque de grandes
fenêtres temporelles sont utilisées. Cependant, les méthodes OWR nous obligent à
résoudre un problème min-max pour trouver les paramètres d’optimisation impliqués
dans les conditions de transmission des méthodes OWR. Ce problème min-max ne
peut pas être résolu en utilisant l’analyse complexe disponible et par conséquent,
nous utilisons l’analyse asymptotique en fonction de deux paramètres diffrents : l’un
avec par rapport au temps final allant à l’infini et l’autre par rapport aux termes de
réaction allant jusqu’à zéro. Nous avons examiné les méthodes WR et OWR qui se
chevauchent et qui ne se chevauchent pas, et nous avons constaté que l’optimisation
pour ces deux cas. Nous avons prouvé que le chevauchement augmente le taux de
convergence pour les méthodes WR et OWR. Nous avons également prouvé que les
méthodes OWR produisent une convergence beaucoup plus rapide que les méthodes
WR. Nous avons ensuite effectué des tests numériques pour étayer nos résultats
théoriques.

Dans le chapitre 3, nous avons considéré un circuit électrique compliqué, les lignes de
transmission RLCG infiniment longues. Nous avons analysé les deux cas : décomposition
sans chevauchement et décomposition avec chevauchement pour les méthodes WR et
OWR. Pour ce circuit, les inconnues étaient les tensions aux nœuds et les courants
dans les branches du circuit, et donc pour les méthodes de chevauchement, le type de
partitionnement du circuit est intéressant. Nous avons considéré deux types de par-
titionnement du circuit : l’un à un nœud de tension et l’autre un nœud de courant.
Nous avons observé que le taux de convergence de la méthode WR à chevauchement
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est le même quel que soit le type de partitionnement, alors que pour la méthode
OWR à chevauchement, celle avec à un nœud de tension converge plus rapidement
que celui d’un nœud de courant. Nous avons en outre résolué problèmes min-max
pour trouver des paramètres d’optimisation dans trois cas : méthode OWR sans
chevauchement, OWR chevauchant avec division au niveau d’un nœud de tension et
OWR chevauchant avec division au niveau d’un courant nœud.

Dans le chapitre 4, nous avons développé un nouvel algorithme pour l’analyse des
méthodes OWR appliquées aux circuits électriques infiniment longs. Nous proposons
d’abord de réduire le circuit infiniment long en un circuit équivalent plus petit, puis
d’appliquer les méthodes WR et OWR. L’expression du facteur de convergence pour
la méthode OWR est donc plus simple et donc le problème d’optimisation pour trou-
ver les paramètres d’optimisation peut être facilement résolué sans utiliser l’analyse
asymptotique. Bien que nous n’ayons effectué cet algorithme que pour la méthode
OWR non chevauchante appliquée à un circuit RC infiniment long, cet algorithme
peut être étendu à d’autres circuits et aux EDP dépendants du temps.
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Chapter 1

Introduction

Scientific computing deals with modeling a physical phenomena, and then solving
it using available numerical tools. These models are systems of Partial Differential
Equations (PDEs) such as the heat equation, the Laplace equation and so on. Over
the last century, numerous numerical methods have been developed to solve these
models. Most of these methods are sequential in nature and developed to be imple-
mented on a single processor. However the size of these systems can be of millions of
order and take a large amount of time due to their large computational cost. Since
2004, the CPU frequency is stagnating around 3 GHz and there is hardly any hope
that it will improve in the near future [18]. But one can make use of the availability
of a large number of processors.

Instead of solving a large system on a single processor, we can divide it into multiple
subsystems which then can be solved on multiple processors and an algorithm can be
developed to merge these solutions from different processors. Domain Decomposition
(DD) methods are one such classical method which is based on a divide and conquer
rule. Numerous DD methods have been introduced and well studied in the last
few decades. The main two types of DD methods are the nonoverlapping and the
overlapping DD methods. The classical overlapping DD methods like the alternating
Schwarz and parallel Schwarz methods converge, while the nonoverlapping versions of
these methods do not converge [18, 22]. Nonoverlapping DD methods like Dirichlet-
Neumann (DN), Neumann-Neumann (NN) methods and Finite Element Tearing and
Interconnecting (FETI) methods are also widely used. For a two subdomain case,
DN methods are based on solving a Dirichlet and a Neumann problem iteratively
[69]. NN methods were first introduced in 1988 [6] and their various versions were
analyzed for two and multiple subdomain cases by many researchers all over the
world [8, 10–12, 66]. FETI and Balancing DD method are similar to NN method
and have also been well studied [13, 19, 20, 50, 58, 59]. Nonoverlapping DD methods
are widely applied to heterogeneous problems, where the domain is divided into
nonoverlapping subdomains such that each subdomain solves one particular type

1



CHAPTER 1. INTRODUCTION 2

of PDE [40, 41, 47]. Further, for the class of overlapping methods, both classical
Schwarz and optimized Schwarz methods were analyzed for numerous types of PDEs
like Laplace, Helmholtz, advection-diffusion and so on by Gander et al [22, 42–44,
56]. The classical methods are not scalable and hence one needs to use two level or
multilevel methods to make them scalable. A recent paper deals with scalability of
these methods in one dimension [9, 14].

For time dependent PDEs, similar methods have also been introduced. One of the
well known and widely used parallel computing tool for time dependent PDEs or
time dependent systems of Ordinary Differential Equations (ODEs) is Waveform
Relaxation (WR). The history of WR methods goes back to 1982, where they were
proposed to solve very large systems of ODEs arising from electric circuits by Lelaras-
mee, Ruehli and Sangiovanni-Vincentelly in [53]. The rapidly increasing size of the
integrated circuits made them difficult to simulate. The availability of multiple pro-
cessors allows us to divide the huge circuits into smaller sub-circuits which are solved
on different processors and information is exchanged between them at the end of each
iteration. In [53], Ruehli and his team considered a MOS ring oscillator to explain
how this method works. Nonoverlapping WR methods have been studied for small
RC circuits in [2, 37], and for infinitely long RC circuits in [3, 70], while for their
overlapping version we refer to [32, 34]. These methods were also analyzed for RLCG
transmission lines by Gander et al [1, 25, 26, 33, 36].

Further, a similar algorithm was developed for solving time dependent PDEs. This
algorithm is called Schwarz Waveform Relaxation (SWR) [21]. Similar to WR meth-
ods, the space is divided into multiple subdomains and solved over the entire time
interval. SWR and OSWR methods are studied for the heat equation in [27, 38, 45],
for the wave equation in [30, 48], for advection diffusion equations in [28, 60], and
for Maxwell’s equations in [5, 16, 17]. Moreover for the nonoverlapping case, Neu-
mann Neumann Waveform Relaxation (NNWR) and Dirichlet Neumann Waveform
Relaxation (DNWR) were recently analyzed in [35, 51, 62, 65].

Recently, WR methods were also applied to the field circuit coupled problems, where
the computational domain is divided into two subdomains, and a time dependent
PDE is solved on one subdomain and the circuit equations on the other [4, 15,
46]. Note that in WR or SWR methods, the space domain is divided into multiple
subdomains, and not the time domain. Hence, once the space parallelism stagnates,
these methods can be combined with other time parallel methods like Parareal [31,
39, 54, 55, 67], Pipelining methods [52, 64] and others to achieve an extra speedup.

In this thesis, we will study the application of nonoverlapping and overlapping WR
methods to electric circuits, to be specific infinitely long RC circuits and infinitely long
RLCG transmission lines. But before moving towards it, we will give an overview of
WR methods and explain some basic concepts of electric circuits and their modeling.
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1.1 Time Parallel Methods

Time parallel integration methods are gaining a lot of importance and are currently
an active field of research for solving systems of time dependent ODEs and time de-
pendent PDEs, for example, the heat equation, wave equations, Maxwell’s equations
and transport equations. Solving these PDEs using any finite difference scheme or
finite element method is computationally costly and one needs to use parallel com-
puting. This will lead to a small computational cost for each processor. However the
communication cost between these processors needs to be considered which may be
large, and hence using too many processors will make the overall method ineffective.
We thus need to use an appropriate number of processors. Further, usually space
parallelism is analyzed and implemented, while time direction is not used for par-
allelism because the time evolution is considered as sequential process, that is, the
solution at a particular time depends on the solution at the earlier time. However,
when the space parallelization saturates, we are left with the only choice of using
parallelization methods for time direction.

Time parallel methods can be divided into four major classes:

• Methods based on multiple shooting,

• Methods based on domain decomposition,

• Methods based on multigrid,

• Direct time parallel methods.

We shall not explain all of these methods and let the reader refer to [23] and its
references for more details on these methods. In this section we shall explain WR
methods in detail and recall some important convergence theorems and their proofs.

1.1.1 Waveform Relaxation methods

As discussed earlier, WR methods are iterative methods to solve time dependent
problems. These methods belong to the group of time parallel methods based on
domain decomposition, where the space is divided into multiple subdomains as il-
lustrated in Figure 1.1. The basic idea of WR methods is simple. We first divide
the space domain Ωx into several subdomains, say Ωi, i = 1, 2, . . . , n. Then, on each
subdomain, we solve the given problem on the entire time window (0, T ], where T
is the final time. At the end of each iteration, we transfer the information between
the neighboring subdomains using some transmission conditions, and again solve the
problem. This process continues until the solution converges. Note that, this process
of finding the solution on each subdomain can be done in parallel, and the communi-
cation between the subdomains takes place at the start of each iteration. A notable
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time

x

T

Figure 1.1: Space-time domain decomposition for WR methods.

advantage of WR methods is that different time integration methods with different
time stepping can be used in different subdomains.

1.1.1.1 Convergence of WR

For the convergence analysis of WR methods, we refer to Gander’s lectures notes on
WR methods [24]. Note that the convergence of WR methods and SWR methods
depends solely on the types of equations being solved for. In this section, we shall
show the general estimate for the WR algorithm for systems of ODEs of the form

d
dtu(t) = f(t,u(t)), t ∈ (0, T ],
u(0) = u0.

(1.1)

We now use a partition function f̃(t,v,v) that satisfies

f̃(t,v,v) = f(t,v), ∀v ∈ R
d, t ∈ (0, T ].

We then define the WR iterations associated with the partition functions. For the
iteration index k = 0, 1, 2, . . . , we have

d

dt
uk+1(t) = f̃(t,uk+1(t),uk(t)), t ∈ (0, T ],

uk+1(0) = u0.
(1.2)

To study the convergence of these iterations, we need the following two lemmas.

Lemma 1.1.1. (Gronwall Lemma) Let u(t), α(t) and β(t) be continuous functions
on [0, T ]. If β(t) ≥ 0 and

u(t) ≤ α(t) +

∫ t

0
β(s)u(s)ds ∀t ∈ [0, T ],
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then

u(t) ≤ α(t) +

∫ t

0
α(s)β(s)e

∫ t
s β(τ)dτds ∀t ∈ [0, T ].

Lemma 1.1.2. Let I0(t) :=
∫ t
0 e

L1sds = 1
L1

(

eL1t−1
)

and

Ik(t) =
1

L1
eL1t (L2t)

k

k!
− L2

L1
Ik−1(t), k = 1, 2, . . . , (1.3)

where L1 and L2 are two positive constants. Then

L2Ik(t) + L1L2

∫ t

0
Ik(s)e

L1(t−s)ds =
(L2t)

k+1

(k + 1)!
eL1t. (1.4)

Proof. The proof follows by induction on k and can be found in [24].

Using these two lemmas, we prove a convergence estimate for the general WRmethod.

Theorem 1.1.1. If the partition function f̃(t,v,w) is Lipschitz continuous in both
arguments uniformly for all t ∈ [0, T ], that is,

‖f̃(t,v1,w)− f̃(t,v2,w)‖ ≤ L1‖v1 − v2‖,
‖f̃(t,v,w1)− f̃(t,v,w2)‖ ≤ L2‖w1 −w2‖,

(1.5)

then the waveform relaxation algorithm (1.2) satisfies the error estimate

‖u− uk‖T ≤ eL1T (L2T )
k

k!
‖u− u0‖T , (1.6)

where ‖ · ‖T denotes the maximum norm in [0, T ], that is, ‖u‖T := max0≤t≤T ‖u(t)‖.

Proof. This proof can be found in [24], but since it is an important proof we show
important steps. Subtracting the integral form of the WR iterations (1.2) from the
integral form of the WR system (1.1) leads to,

u(t)− uk(t) =

∫ t

0

[

f(s,u(s))− f̃(s,uk(s),uk−1(s))
]

ds.

The function f satisfies f(s,u(s)) = f̃(s,u(s),u(s)), and hence using the Lipschitz
continuity (1.5), we have

‖u(t)− uk(t)‖ =

∥

∥

∥

∥

∫ t

0

[

f̃(s,u(s),u(s))− f̃(s,uk(s),uk−1(s))
]

ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0

[

f̃(s,u(s),u(s))− f̃(s,uk(s),u(s))
]

ds

+

∫ t

0

[

f̃(s,uk(s),u(s))− f̃(s,uk(s),uk−1(s))
]

ds

∥

∥

∥

∥

≤ L1

∫ t

0
‖u(s)− uk(s)‖ds+ L2

∫ t

0
‖u(s)− uk−1(s)‖ds.
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We define β(t) := L2 and α(t) := L2

∫ t
0 ‖u(s) − uk−1(s)‖ds. Applying the Gronwall

Lemma 1.1.1, the above inequality reduces to

‖u(t)−uk(t)‖ ≤ L2

∫ t

0
‖u(s)−uk−1(s)‖ds+L1L2

∫ t

0

∫ s

0
‖u(τ)−uk−1(τ)‖dτeL1(t−s)ds.

(1.7)
For k = 1, we obtain

‖u(t)− u1(t)‖ ≤ L2

∫ t

0
‖u(s)− u0(s)‖ds+ L1L2

∫ t

0

∫ s

0
‖u(τ)− u0(τ)‖dτeL1(t−s)ds

≤ L2t‖u(t)− u0(t)‖t + L1L2

∫ t

0
s‖u(s)− u0(s)‖seL1(t−s)ds

≤
(

L2t+ L1L2e
L1t

∫ t

0
se−L1sds

)

‖u(t)− u0(t)‖t. (1.8)

Using integration part, the term in the parenthesis can be simplified to

L2t+ L1L2e
L1t

∫ t

0
se−L1sds =

L2

L1

(

eL1t − 1
)

=
L2

L1

(

1 + L1t+
(L1t)

2

2
+ . . .

)

≤ L2te
L1t.

We thus arrive for all t ∈ [0, T ] at

‖u(t)− u1(t)‖T ≤ L2Te
L1T ‖u(t)− u0(t)‖T .

We proved the required inequality (1.6) for k = 1. Assuming that the inequality (1.6)
holds for k − 1, we prove that it holds for k. From (1.7),

‖u(t)− uk(t)‖ ≤ L2

∫ t

0
eL1s (L2s)

k−1

(k − 1)!
‖u− u0‖sds

+ L1L2

∫ t

0

∫ s

0
eL1t (L2τ)

k−1

(k − 1)!
‖u− u0‖τdτeL1(t−s)ds.

(1.9)

Using integration by parts, the first term can be bounded by

∫ t

0
eL1s (L2s)

k−1

(k − 1)!
‖u− u0‖sds ≤

∫ t

0
eL1s (L2s)

k−1

(k − 1)!
ds‖u− u0‖t

=

(

1

L1
eL1t (L2t)

k−1

(k − 1)!
− 1

L1

∫ t

0
eL1s (L2s)

k−2

(k − 2)!
ds

)

‖u− u0‖t.

Define Ik−1(t) :=
∫ t
0 e

L1s (L2s)k−1

(k−1)! ds. Then the above equation can be written as

Ik−1(t)‖u− u0‖t ≤
(

1

L1
eL1t (L2t)

k−1

(k − 1)!
− L2

L1
Ik−2(t)

)

‖u− u0‖t.
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Substituting this into (1.9) leads to

‖u(t)− uk(t)‖ ≤
(

L2Ik−1(t) + L1L2

∫ t

0
Ik−1(s)e

L1(t−s)ds

)

‖u(t)− u0(t)‖t,

which can be further bounded using the estimate of Lemma 1.1.2 to yield the required
error estimate (1.6). This completes the proof of this theorem.

Remark 1.1.1. Theorem 1.1.1 states that the WR algorithm converges superlinearly
for finite time intervals.

1.2 Electric Circuits

In this section we discuss electric circuits and their simulation. Most of the content
of this section has been summarized from the book [63], and one may refer to this
book for more details.

Circuit simulation is a process of constructing and checking the design of an electric
circuit before its manufacturing. In other words, it is a process of developing a
mathematical model to replicate the behavior of the real circuit, and then solve this
model numerically. Simulations help the circuit designers to test their ideas, and
optimize circuit parameters to achieve the desired output. They thus save a lot of
time and cost when designing circuits, and one can minimize the risk of unwanted
hazards. Further, the number of electronic devices is continuously increasing which
in turn increases the need for new design tools and techniques. Circuit solvers like
SPICE is no exception. Not only new approaches are desired but the tools need to
have an ever increasing capacity to solve larger problems.

The first step of circuit simulation is building a mathematical model using the well
known Kirchoff’s Current Law (KCL) and Kirchoff’s Voltage Law (KVL). We first
recall some basic definitions which will be required to build a model.

Definition 1.2.1. An element is a two-terminal electrical device. An electrical net-
work, or circuit is a system consisting of a set of elements and a set of nodes, where
every element terminal is identified with a unique node, and every node is identified
with at least one element terminal.

Using the above definition, we can represent an electrical network by a graph whose
vertices corresponds to circuit nodes and edges corresponds to circuit elements. We
now define two of the most fundamental Laws, KCL and KVL.

Definition 1.2.2. (KCL) The Kirchoff’s Current Law states that in an electric
circuit, the total amount of current flowing into any node is equal to the total amount
of current flowing out of it. In order words, the algebraic sum of currents in a circuit
meeting at a node is zero, that is,

∑n
k=1 ik = 0, where ik represents the current in

the kth edge.
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R
v+ v−

n+ n−
iR

=

v+

v−

v+ v−

1/R

1/R-1/R

-1/R v+

v−

Figure 1.2: Element stamp for a resistor R.

Definition 1.2.3. (KVL) The Kirchoff’s Voltage Law states that the algebraic sum
of all the voltages around any closed loop in a circuit is equal to zero. In other words,
the algebraic sum of all the potential differences (voltages) around the loop must be
equal to zero, that is,

∑n
k=1 Vk = 0.

The method used to build a mathematical model of any circuit is one of the important
factors which determines the circuit simulation time. The amount of time required
to build these circuit equations, computational cost, storage requirements and the
execution time of the computer programming affects the efficiency of the method used.
In most cases, the mathematical model is developed using one of the two popular
approaches: the Sparse Tableau Analysis (STA) formulation and the Modified Nodal
Analysis (MNA) formulation. In this chapter, we explain the MNA formulation in
detail and recommend the reader to refer to the book [63] to understand the STA
formulation.

1.2.1 Modified Nodal Analysis

We summarize the MNA formulation based on Section 2.4.4 of [63]. The MNA
formulation was originally described by Ho et al [49] in 1975. Depending on the
circuit elements, MNA leads to a system of differential equations in time or a system
of algebraic equations. To assemble the MNA system, we first define an element
stamp, and give some examples of stamps.

Definition 1.2.4. The contribution of every element to the matrix equation is de-
scribed by means of a template, which is called an element stamp.

For an example, consider a resistor with resistance R and whose terminals are denoted
by n+ and n−. Let iR be the current passing through it which has a standard
reference direction from n+ to n−. Further, let v+ and v− be the voltages at nodes
n+ and n− respectively. This is shown in Figure 1.2. By Ohm’s Law, the current
iR = v+−v−

R = v+
(

1
R

)

+ v−
(−1
R

)

, and hence the element stamp for this resistor is
given on the right of Figure 1.2. For a capacitor, the current iC through it takes

the form iC = C
(

dv+

dt − dv−

dt

)

, where C is its capacitance. The element stamp of
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C
v+ v−

=

v+

v−

v+ v−

v+

v−
+

v+ v−

dv+

dt

dv−

dt

+C

+C

-C

-C

Figure 1.3: Element stamp for a capacitor C.

n+ n−

is = I =

v+

v−

v+

v−

-I

+I

Figure 1.4: Element stamp for an independent current source is.

a capacitor thus contains one more matrix which is multiplied with the derivative
of voltages in time. This is illustrated in Figure 1.3. Further, the electric circuit is
driven by some independent current source which provides an external current is.
The element stamp for such a current source can be seen in Figure 1.4. For most of
the electrical circuits, the MNA formulation builds a system of differential equations
in time, and it has the form M v̇ = Kv+ f̃.

We explain now the assembling process of the MNA formulation for an RC circuit.
We start with a zero RHS vector f̃ ∈ R

N , and zero matrices M , K ∈ R
N×N , where

N is the number of nodes in the circuit. The vector v contains the unknown voltages
at the nodes and remains unchanged throughout this process. We then read every
element of the circuit one by one. As an element is read, its element stamp is added
to the matricesM and K. Since the element stamp of a capacitor contains derivative
terms, its element stamp is added to the matrix M , while the element stamp of a
resistor is added to the matrix K. The source terms are stamped into the vector f̃.
This process continues until all elements of the circuit are read and thus we obtain a
system of differential equations in time of the form v̇ = Av + f, where A := M−1K
and f :=M−1f̃.

Remark 1.2.1. This assembling process is similar to that of the well known Finite
Element Methods (FEM) described in [7]. In FEM, the domain is divided into smaller
triangles, which are popularly called elements. These elements can be of the shape
of other basic polygons. While assembling the mass and stiffness matrices, the basis
functions are evaluated on each individual elements separately, which are then added
in these matrices. This process is the same as that are followed by MNA.



Chapter 2

Waveform Relaxation Methods

Applied to RC circuits

In this chapter, we will study the application of both Waveform Relaxation (WR)
methods and Optimized Waveform Relaxation (OWR) methods to an infinitely long
RC circuit.

A Resistor-Capacitor (RC) circuit, which is also called an RC filter, is a simple
electric circuit whose components are only resistors and capacitors. Of course, this
circuit contains also of a voltage source and a load resistor. The simplest RC circuit is
shown in Figure ??. In this circuit, the energy stored in the capacitor C is discharged
through the resistor R.

I

C R

Figure 2.1: A simple RC circuit1

Often, RC circuits are used as filters, that is, they block signals of a certain range
of frequencies and allow the rest to pass. In this chapter, we will consider infinitely
long low pass RC filters (see Figure 2.2). As the name suggests, these circuits allow
only low frequency signals ranging from 0 Hz to a fixed cutoff frequency to pass, and
thus blocking other signals. Note that in Figure 2.2, an independent current source
with current Is supplies the required current to the circuit. Also the voltage v−∞
just denotes that the RC circuit is infinitely long.

1https://en.wikipedia.org/wiki/RC_circuit

10

https://en.wikipedia.org/wiki/RC_circuit
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Is Rs

v−∞

C−∞

R−∞ v−∞+1

C−∞+1

v−1

C−1

R−1 v0

C0

R0 v1

C1

R1

Figure 2.2: RC Circuit of infinite length.

Today, the tremendously increasing size and complexities of an integrated circuit
makes their simulation computationally very costly. As discussed in Section 1.1, WR
methods provides a quick and computationally cheap way for their simulations. In
order to implement WR methods, these integrated circuits need to be divided into
smaller circuits. Usually, RC circuits are part of these large integrated circuits, and
hence analyzing the application of WR methods to RC circuits will provide us with a
better understanding of transmission conditions at the RC circuit interface. One can
then opt to divide circuits at an RC circuit interface and then use the transmission
conditions developed in this chapter, which will ultimately lead to quick simulation
of large integrated circuits. Further, such RC circuit interfaces can also be found in
Field-circuit coupled problems as discussed in Chapter 1.

The structure of this chapter is as follows: first we develop the mathematical model
of the infinitely long RC circuit as shown in Figure 2.2. Then we will explain the
WR algorithm for this circuit and study its convergence. We will then introduce
OWR methods and show how these methods are faster than classical WR methods.
Next, we will find the optimized parameters involved in the transmission conditions
by considering asymptotic analysis with respect to the final time and the reaction
term. Finally, we support our theoretical results with numerical experiments.

2.1 Mathematical Model

We are interested in determining the voltages vi, i ∈ Z at the nodes of the circuit
shown in Figure 2.2. The Modified Nodal Analysis (MNA), originally described by
Ho, Ruehli and Brennan in 1975 [49], is used to build a mathematical model of such
electric circuits. MNA has been explained in detail in Section 1.2.1. MNA produces
a system of ODEs of the form v̇ = Av+ f , where the entries of the matrix A contain
the elements of the circuit, v is the unknown vector of voltages at the nodes, and f

contains the source terms. For the infinite RC circuit, this system looks like

dv

dt
=

















. . .
. . .

. . .

a−1 b0 c0
a0 b1 c1

a1 b2 c2
. . .

. . .
. . .

















v + f , (2.1)
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where

ai :=
1

RiCi+1
, bi := −

(

1

Ri−1
+

1

Ri

)

1

Ci
, ci :=

1

RiCi
, i ∈ Z,

and f := (Is(t)/C−∞, 0, 0, . . . , 0)⊤. Further, initial conditions v(0)=v0 need to be
supplied to solve the system of equations (2.1).

For a small vector v, one can solve the system of ODEs (2.1) by employing explicit
(for example, forward Euler ) or implicit (for example, backward Euler) time stepping
methods. However if the size of the vector v is in the millions, implicit methods are
computationally costly and requires a lot of time since large matrices need to be
inverted at each time step. For an explicit method, small time steps need to be used
which adds up the computational cost. One therefore needs to use parallel methods.
WR methods are parallel methods used to simulate time dependent and multi-scale
problems. These methods are explained in detail in Section 1.1.1.

2.1.1 Relation with the Heat equation

The heat equation is a partial differential equation in space and time that describes
the distribution of heat over an object and its evolution as time progresses. To give
a glimpse of this equation, we consider an one dimensional infinite bar, which is
denoted by Ωx := (−∞,∞), and a time interval (0, T ], where T is the final time. Let
v(x, t) denote the temperature on the bar at position x ∈ Ωx at time t ∈ (0, T ]. The
heat equation is then given by

∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
+ f(x, t), x ∈ Ωx, t ∈ (0, T ],

v(x, 0) = v0(x), x ∈ Ωx,

(2.2)

where v0(x) is the given initial temperature and f(x, t) denotes the external heat
source. We further include boundary conditions u(x, t) → 0 for all t as x→ ±∞.

We observe that the system of ODEs (2.1) can also be viewed as a semi-discretization
by the method of lines of the heat equation (2.2) in space-time: if we consider small
resistors and capacitors, Ri ≈ ∆x and Ci ≈ ∆x, then each equation of the system
(2.1) takes the form

dvi
dt

=
vi−1 − 2vi + vi+1

∆x2
+ fi, (2.3)

and as ∆x→ 0, we arrive at the heat equation (2.2). Hence we can consider the RC
circuit of infinite length as an approximation for the one dimensional heat equation
on the unbounded domain Ωx = (−∞,∞).

The application of WR and OWR methods to the heat equation have been studied by
Gander et al [27, 38, 45]. Further different types of WR methods namely Dirichlet-
Neumann and Neumann-Neumann methods were studied for the heat equation by
Mandal et al in [57].



CHAPTER 2. RC CIRCUITS 13

u−2

C−2

R−2 u−1

C−1

R−1 u0

C0

R0

−
+ u1

−
+

w0

R0 w1

C1

R1 w2

C2

R2 w3

C3

Figure 2.3: Classical nonoverlapping WR algorithm decomposition.

u−2

C−2

R−2 u−1

C−1

R−1 u0

C0

R0 u1

C1

R1 u2

C2

R2

−
+ u3

−
+

w0

R0 w1

C1

R1 w2

C2

R2 w3

C3

R3 w4

C4

Figure 2.4: Classical WR algorithm with 2 circuit nodes overlap.

2.2 Waveform Relaxation Algorithm

In this section, we will study the application of WR methods to this circuit and
analyze its convergence in the Laplace space.

For a general WR algorithm, one decomposes the system (2.1) into many subsystems,
but to understand the key features of WR, we consider a decomposition into two
subsystems only. We decompose the infinitely long RC circuit from Figure 2.2 at
node 0 into two equal sub-circuits. This corresponds to the nonoverlapping WR
decomposition. We then consider a overlapping WR decomposition where n nodes of
the circuit are overlapped. In this decomposition, we include an overlap of n nodes in
the first sub-circuit and keep the other sub-circuit unchanged. Let us denote the first
subsystem unknowns by u(t) and the second subsystem unknowns by w(t), where
u(t) := (. . . , u−1, u0, . . . , un)

⊤ = (. . . , v−1, v0, . . . , vn)
⊤ and w(t) := (w1, w2, . . . )

⊤ =
(v1, v2, . . . )

⊤. Figures 2.3 and 2.4 show the decomposition of the infinitely long
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RC circuit into nonoverlapping and overlapping circuits. We observe that when
we decompose the circuit, we need to add two voltage sources, one for the first sub-
circuit u and the other for the second sub-circuitw. At each iteration k, these voltage
sources are given by transmission conditions which transfer information between the
sub-circuits. The systems of differential equations for the decomposed overlapping
sub-circuits are

d
dtu

k+1(t) =







. . .
. . .

. . .

an−2 bn−1 cn−1

an−1 bn













...
un−1(t)
un(t)







k+1

+







...
0

un+1(t)







k+1

+







...
fn−1(t)
fn(t)






,

d
dtw

k+1(t) =







b1 c1
a1 b2 c2

. . .
. . .

. . .













w1(t)
w2(t)

...







k+1

+







a0w0(t)
0
...







k+1

+







f1(t)
f2(t)
...






,

(2.4)
where the unknowns uk+1

n+1(t) and w
k+1
0 (t) are determined by the transmission condi-

tions
uk+1
n+1(t) = wkn+1(t), and wk+1

0 (t) = uk0(t). (2.5)

Note that at the start of each iteration, these transmission conditions transfer volt-
ages at the interface. Comparing this with Schwarz Waveform Relaxation methods
applied to PDEs in [27, 38], these conditions can be interpreted as Dirichlet boundary
conditions.

To start the algorithm, we specify an initial guess for the solutions w0
n+1(t) and u

0
0(t),

and then solve the subsystems (2.1) for all time t ∈ (0, T ], where T is the final time of
simulation. These two subsystems can be solved in parallel, since in the transmission
conditions (2.5) both subsystems use data from the previous iteration, like in a block
Jacobi method from linear algebra. One could also do the solves sequentially, and use
the newest value available in the second transmission condition, wk+1

0 (t) = uk+1
0 (t),

which would be more like a block Gauss Seidel iteration from linear algebra. The
convergence analysis for both parallel and sequential methods is similar. Hence we
will focus only on the parallel version here and a similar analysis can be done also
for the sequential version.

2.2.1 Convergence Analysis of the classical WR Algorithm

The presence of different resistors Ri and capacitors Ci makes the convergence analy-
sis difficult, so to simplify, we assume that all resistors and capacitors have the same
value, that is, Ri := R and Ci := C for all i ∈ Z which leads to ai = a, bi = −2a and
ci = a for all i ∈ Z. We now define the Laplace transformation:

Definition 2.2.1. If f(t) is a real or complex valued function of the non negative
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real variable t, then the Laplace transformation is defined by the integral

L(s) = f̂(s) :=

∫ ∞

0
e−stf(t)dt, s ∈ C.

The Laplace transformation transforms a system of differential equations into a sys-
tem of algebraic equations which are relatively easy to analyze. We now study the
convergence of the WR algorithm (2.4) in the Laplace space using the transmission
conditions (2.5).

Since the systems (2.4) are linear, the error equations correspond to the homogeneous
problem, f = 0, with zero initial conditions, uk+1(0) = wk+1(0) = 0. For s ∈ C,
let û and ŵ denote the Laplace transformation of these two subsystems u and w

respectively. Note that we do the convergence analysis in the Laplace space. The
following lemma will prove that the convergence of WR in the Laplace domain implies
convergence in the time domain. For this, we define a weighted L2 norm: For σ ≥ 0,

‖x(t)‖σ := ‖e−σtx(t)‖L2 . (2.6)

Lemma 2.2.1. For any σ ≥ 0, where s = σ + iω, with σ, ω ∈ R, if x̂(s) = ρ(s)ŷ(s),
then

‖x(t)‖σ ≤
(

sup
ω∈R

|ρ(s)|
)

‖y(t)‖σ.

Proof. Let v(t) := e−σtx(t) and p(t) := e−σty(t). Then using the definition of the
weighted norm defined in (2.6), we have

‖x(t)‖2σ = ‖e−σtx(t)‖2L2 = ‖v(t)‖2L2 , and,

‖y(t)‖2σ = ‖e−σty(t)‖2L2 = ‖p(t)‖2L2 .
(2.7)

To avoid the ambiguity of symbols, we denote the Fourier transformation of the
function x(t) by ˆ̂x(ω), where the frequency ω ∈ R. The Parseval identity states that

∫ ∞

0
|v(t)|2 dt =

∫ ∞

−∞

∣

∣

∣

ˆ̂v(ω)
∣

∣

∣

2
dω,

where we have restricted the range of t to [0,∞). The definition of the Fourier
transformation and some basic calculus leads to
∫ ∞

0
|v(t)|2 dt =

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

0
e−iωtv(t)dt

∣

∣

∣

∣

2

dω =

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

0
e−iωte−σtx(t)dt

∣

∣

∣

∣

2

dω

=

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

0
e−stx(t)dt

∣

∣

∣

∣

2

dω,

and thus we arrive at

‖v(t)‖2L2 =

∫ ∞

−∞
|x̂(s)|2 dω. (2.8)
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Doing the same calculations one can also arrive at

‖p(t)‖2L2 =

∫ ∞

−∞
|ŷ(s)|2 dω.

Substituting x̂(s) = ρ(s)ŷ(s) into (2.8), and since σ ≥ 0 is fixed,

‖v(t)‖2L2 =

∫ ∞

−∞
|ρ(s)ŷ(s)|2 dω

≤
(

sup
ω∈R

|ρ(s)|
)2 ∫ ∞

−∞
|ŷ(s)|2 dω

=

(

sup
ω∈R

|ρ(s)|
)2

‖p(t)‖2L2 .

Finally, using the relation (2.7), the above equation leads to the required relation,

‖x(t)‖σ ≤
(

sup
ω∈R

|ρ(s)|
)

‖y(t)‖σ.

Remark 2.2.1. We infer from Lemma 2.2.1 that the convergence in the Laplace
space with the convergence factor |ρ(s)| < 1 implies convergence in the time domain
in the weighted norm ‖ · ‖σ, and for σ = 0, we obtain convergence in L2.

We now find a closed form for the convergence factor, which we denote by ρn,cla. The
Laplace transformation for s ∈ C of the WR algorithm (2.4) is given by

sûk+1 =







. . .
. . .

. . .

a b a
a b













...
ûn−1

ûn







k+1

+







...
0

aŵkn+1






,

sŵk+1 =







b a
a b a

. . .
. . .

. . .













ŵ1

ŵ2
...







k+1

+







aûk0
0
...






,

(2.9)

where we have already included the transmission conditions (2.5); this shows the
dependence of û on ŵ and vice-versa. In order to find the convergence factor of the
WR algorithm, we need the following lemma.

Lemma 2.2.2. Let a > 0, b < 0, i :=
√
−1, and s := σ + iω, with σ ≥ 0. For

−b ≥ 2a, the roots λ1,2(s) :=
s−b±

√
(b−s)2−4a2

2a of the characteristic equation ayj−1 +
(b− s)yj + ayj+1 = 0 of the subsystems in (2.9) satisfy |λ2(s)| ≤ 1 ≤ |λ1(s)|.



CHAPTER 2. RC CIRCUITS 17

Proof. Solving the subsystems (2.9) requires solving a recurrence relation of the form
ayj−1 + (b− s)yj + ayj+1 = 0, where yj = ûk+1

j (s), ŵk+1
j (s) for j ∈ Z. This equation

has the characteristics equation aλ2 + (b− s)λ+ a = 0, where λ is a parameter. We
denote the roots of this equation by λ1(s) and λ2(s),

λ1,2(s) :=
s− b±

√

(b− s)2 − 4a2

2a
. (2.10)

Now, since a > 0, b < 0 and −b ≥ 2a, we can write b = −(2+ ǫ)a for some ǫ ≥ 0. Let
p+ iq :=

√

(b− s)2 − 4a2, where p, q ∈ R, with p > 0. We then obtain with σ ≥ 0

|λ1(s)| =

∣

∣

∣

∣

∣

s− b+
√

(b− s)2 − 4a2

2a

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

σ + iω + (2 + ǫ)a

2a
+
p+ iq

2a

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
ǫa+ σ + p

2a
+
i(ω + q)

2a

∣

∣

∣

∣

≥ 1.

Now by Vieta’s formulas, the product λ1(s)λ2(s) = 1, which implies |λ2(s)| ≤ 1 and
this completes the proof.

From now onward, we shall use simplified notations λ1 := λ1(s), λ2 := λ2(s), û
k+1
j :=

ûk+1
j (s) and ŵk+1

j := ŵk+1
j (s), and show their dependence on s only when necessary.

Remark 2.2.2. Under the conditions ω > 0 or ǫ > 0, where s = σ + iω, σ ≥ 0 and
b = −(2 + ǫ)a, the roots λ1 and λ2 defined in (2.10) satisfy |λ2| < 1 < |λ1|.

Theorem 2.2.1. The convergence factor ρn,cla(s) of the classical WR algorithm (2.9)
with n nodes overlap for an RC circuit of infinite length is given by

ρn,cla(s) =

(

1

λ21

)n+1

. (2.11)

Proof. The iterates ûk+1 and ŵk+1 for the subsystems in (2.9) satisfy the recurrence
relation

aûk+1
j−1 + (b− s)ûk+1

j + aûk+1
j+1 = 0 for j = . . . , n− 2, n− 1, n, (2.12)

aŵk+1
j−1 + (b− s)ŵk+1

j + aŵk+1
j+1 = 0 for j = N, (2.13)

whose solutions are ûk+1
j = Ak+1λj1 +Bk+1λj2 for j = . . . , n− 2, n− 1, n and ŵk+1

j =

Ck+1λj1 + Dk+1λj2 for j ∈ N. Observe that |λ2| < 1 < |λ1| and thus λj2 → ∞ as

j → −∞ and λj1 → ∞ as j → ∞. The solutions must remain bounded for all j,

which implies Bk+1 = 0 and Ck+1 = 0, and hence we obtain ûk+1
j = Ak+1λj1 and

ŵk+1
j = Dk+1λj2. Substituting j = n into (2.12), we get

aûk+1
n−1 + (b− s)ûk+1

n = −aŵkn+1 =⇒ Ak+1λn−1
1 +

(

b− s

a

)

Ak+1λn1 = −Dkλn+1
2 .
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From the definition of λ1,2 given in (2.10), we have λ1 + λ2 = −
(

b−s
a

)

and λ1λ2 = 1,
and these relations reduce the above equation to

Ak+1
(

λn−1
1 − λn+1

1 − λn−1
1

)

= −Dkλn+1
2 ,

and thus

Ak+1 = Dk

(

λn+1
2

λn+1
1

)

= Dk

(

1

λn+1
1

)2

. (2.14)

Similarly, substituting j = 1 in (2.13) leads to

aûk0 + (b− s)ŵk+1
1 + aŵk2 = 0 =⇒ Ak +

(

b− s

a

)

Dk+1λ2 +Dk+1λ22 = 0

=⇒ Ak +Dk+1λ2(−λ1 − λ2 + λ2) = 0

=⇒ Dk+1 = Ak. (2.15)

Combining (2.14) and (2.15) gives usAk+1 = ρn,cla(s)A
k−1 andDk+1 = ρn,cla(s)D

k−1,

where ρn,cla(s) is given in (2.11). Since the solutions are given by ûk+1
j = Ak+1λj1

and ŵk+1
j = Dk+1λj2, we conclude ûk+1

j = ρn,cla(s)û
k−1
j and ŵk+1

j = ρn,cla(s)ŵ
k−1
j .

This completes the proof.

We observe that the convergence factor ρn,cla(s) is the same for all nodes in both
subsystems. Remark 2.2.2 states that |λ1| > 1, when the frequency ω > 0 or ǫ > 0,
and hence the convergence factor |ρn,cla| < 1 under either of these two conditions.
The condition ω > 0 with ω → 0 corresponds to considering a large time interval
(0, T ] with T → ∞ and under this condition |ρn,cla| → 1. The second condition
ǫ > 0, where b = −(2 + ǫ)a corresponds to adding reaction term of the type −ǫû
and −ǫŵ in the first and second subsystems of (2.9). This corresponds to simulating
circuit for infinite time and considering the reaction terms ǫû and ǫŵ going to zero.
In the left plot of Figure 2.5, we observe that |ρ0,cla| → 1 when ω = 0 and ǫ → 0.
For circuits, the introduction of ǫ leads to the addition of a resistor R̃ = R/ǫ at
each node of the circuit (see Figure 2.6). We also add that the limit ǫ → 0 leads to
the limit R̃ → ∞, which means that no current passes through this resistor. Thus
considering b = −(2+ ǫ)a and taking the limit ǫ→ 0 states that the circuit in Figure
2.6 is a good approximation to the circuit in Figure 2.4. Note that the addition of
large resistors R̃ corresponds to small leakage of current in the dielectric medium.
This is typical condition observed in the real world. Theorem 2.2.1 also reveals the
effect of overlap on the convergence factor ρn,cla. Increasing the overlap decreases
the convergence factor ρn,cla and hence increases the convergence rate of the WR
method. Numerically, we show this effect in the right plot of Figure 2.5, where we
also observe that the effect is very small for ω close to zero when s = iω.

Further, large time corresponds to small frequency ω in s = σ + iω in the Laplace
space. From Theorem 2.2.1, we observe that as ω → 0, |λ1| → 1, and hence |ρn,cla| →
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Figure 2.5: Convergence factor for s = iω for different values of ǫ (left) and for
different overlaps with ǫ = 10−4 (right).
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Figure 2.6: WR algorithm with b = −(2 + ǫ)a and R̃ = R/ǫ.

1. This slow convergence especially for large time windows is the main drawback of
the classical WR methods. Moreover, when ǫ → 0 with b = −(2 + ǫ)a, we observe
that |ρn,cla(0)| → 1, which means as ǫ → 0, the convergence rate slows down for
small ω, and increasing the overlap does mostly improve the convergence of higher
frequencies ω, as one can see in Figure 2.5 on the right. The Dirichlet transmission
conditions (2.5) which exchange just voltages at the interfaces are the main reason for
this slow convergence. We thus search for better transmission conditions to exchange
information between the sub-circuits. This leads to the OWR algorithm, which we
shall discuss in the next section.

2.3 Optimized Waveform Relaxation Algorithm

Optimized transmission conditions were first introduced and analyzed in 1999 by
Gander et al [29] for Schwarz Waveform Relaxation (SWR) methods. In this paper,
optimal transmission conditions were derived, which were approximated by zeroth
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and second order approximations. The zeroth order approximations can be viewed
as Robin boundary conditions, and these new transmission conditions lead to tremen-
dous increase in the convergence rate. This idea was further applied for the nonover-
lapping decomposition of infinitely long RC circuit in [3, 37], and for small RC circuit
in [2]. Inspired by these articles, we define similar transmission conditions for the
overlapping case with n nodes overlap

(uk+1
n+1 − uk+1

n ) + αuk+1
n+1 = (wkn+1 − wkn) + αwkn+1,

(wk+1
1 − wk+1

0 ) + βwk+1
0 = (uk1 − uk0) + βuk0,

(2.16)

where α, β ∈ R and k is the iteration index. Note that the voltages ui and wi depend
on time t. These transmission conditions exchange both voltages and currents at the
interface, which can be seen by dividing the first equation by α and the second by

β. Considering α as a resistor, the term
uk+1

n+1
−uk+1

n

α can be viewed as a current and

uk+1
n+1 as a voltage. These transmission conditions are called optimized transmission

conditions since we need to find the best (optimized) values for α and β such that
the convergence factor is as small as possible. We now rearrange the optimized
transmission conditions (2.16) as

uk+1
n+1 =

uk+1
n
1+α + wkn+1 −

wk
n

1+α ,

wk+1
0 = −wk+1

1

β−1 + uk0 +
uk
1

β−1 .
(2.17)

Substituting these rearranged transmission conditions into (2.4) leads to

d
dtu

k+1(t) =







. . .
. . .

. . .

a b a
a b+ a

α+1













...
un−1(t)
un(t)







k+1

+







...
0

awkn+1(t)− a
α+1w

k
n(t)






+







...
fn−1(t)
fn(t)







d
dtw

k+1(t) =







b− a
β−1 a

a b a
. . .

. . .
. . .













w1(t)
w2(t)

...







k+1

+







auk0+
a

β−1u
k
1

0
...






+







f1(t)
0
...






.

(2.18)
Initial conditions u(0) = u0 and w(0) = w0 are again supplied to solve these systems
of differential equations.

For circuits, the introduction of the new transmission conditions (2.16) means two
voltage sources need to be added at the interface of each sub-circuit. From Figure
2.7, we see that the resistors Rα := R(1 + α) and Rβ := R(1− β), which depend on
the parameters α and β, are added. Similar to the WR algorithm, at each iteration
the voltage sources wn+1, wn, u0, u1 are transferred between the sub-circuits.

We can also interpret these new transmission conditions (2.16) as Robin transmission
conditions for the discretized heat equation (2.3) if we divide the first equation of
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Figure 2.7: OWR algorithm with 1 circuit node overlap.

(2.16) by ᾱ := α
p for some p > 0 and the second equation by β̄ := −β

p , to obtain

uk+1
n+1 − uk+1

n

ᾱ
+ puk+1

n+1 =
wkn+1 − wkn

ᾱ
+ pwkn+1,

wk+1
1 − wk+1

0

β̄
− pwk+1

0 =
uk1 − uk0

β̄
− puk0.

If we now consider ᾱ ≈ ∆x and β̄ ≈ ∆x, then the fractions inside the above equations
represent discretizations for the derivatives ∂u

∂x and ∂w
∂x , and we thus obtain in the

limit Robin transmission conditions,

(

∂

∂x
+ p

)

uk+1
n+1 =

(

∂

∂x
+ p

)

wkn+1,

(

∂

∂x
− p

)

wk+1
0 =

(

∂

∂x
− p

)

uk0.

2.3.1 Convergence Analysis of OWR

In this subsection, we derive an expression for the convergence factor ρn of the OWR
method defined above. Again, for the derivation and analysis of ρn, we consider the
error equations, and hence f = 0, u0 = 0, and w0 = 0. We transform the systems of
equations (2.18) into the Laplace space using the Laplace transformation defined in
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2.2.1 to arrive at

sûk+1 =







. . .
. . .

. . .

a b a
a b+ a

α+1













...
ûn−1

ûn







k+1

+







...
0

aŵkn+1 − a
α+1 ŵ

k
n






,

sŵk+1 =







b− a
β−1 a

a b a
. . .

. . .
. . .













ŵ1

ŵ2
...







k+1

+







aûk0 +
a

β−1 û
k
1

0
...






.

(2.19)

The above systems of equations clearly show their dependence on each other. Further,
we need to give initial guesses ŵ0

n+1, ŵ
0
n, û

0
0 and û01 to start this algorithm.

Theorem 2.3.1. The convergence factor ρn(s, α, β) of the OWR algorithm (2.19)
for an RC circuit of infinite length is given by

ρn(s, α, β) :=

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)(

1

λ21

)n

. (2.20)

Proof. To find the convergence factor, we proceed as in the proof of Theorem 2.2.1
to arrive at ûk+1

j = Ak+1λj1 for j = . . . , n − 1, n, and ŵk+1
j = Dk+1λj2 for j ∈

N. To determine the constants Ak+1 and Dk+1, we use the optimized transmission
conditions (2.17) and equations (2.12)-(2.13). Substituting j = n in (2.12) and then
using the rearranged transmission conditions (2.17) gives

aûk+1
n−1 + (b− s)ûk+1

n = −aûk+1
n+1 = −aû

k+1
n

1 + α
− aŵkn+1 +

aŵkn
1 + α

=⇒ ûk+1
n−1 +

(

b− s

a
+

1

1 + α

)

ûk+1
n = −ŵkn+1 +

ŵkn
1 + α

.

Using the properties of λ1 and λ2 defined in (2.10), namely λ1 + λ2 = − b−s
a and

λ1λ2 = 1, we have

Ak+1λn−1
1 +

(

−λ1 − λ2 +
1

1 + α

)

Ak+1λn1 = −Dkλn+1
2 +

Dkλn2
1 + α

=⇒ Ak+1λn1

(

1

λ1
− λ1 − λ2 +

1

1 + α

)

= Dkλn2

(

1

1 + α
− λ2

)

=⇒ Ak+1λn1

(

1− λ1(1 + α)

1 + α

)

= Dkλn2

(

1− λ2(1 + α)

1 + α

)

=⇒ Ak+1 = Dk

(

λ2(1 + α)− 1

λ1(1 + α)− 1

)(

λ2
λ1

)n

.

(2.21)
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Similarly substituting j = 1 in (2.13) results in

(b− s)ŵk+1
1 + aŵk+1

2 = −aŵk+1
0 =

aŵk+1
1

β − 1
− aûk0 −

aûk1
β − 1

=⇒
(

b− s

a
− 1

β − 1

)

ŵk+1
1 + ŵk+1

2 = −ûk0 −
ûk1
β − 1

=⇒
(

−λ1 − λ2 −
1

β − 1

)

Dk+1λ2 +Dk+1λ22 = −Ak − Akλ1
β − 1

=⇒ Dk+1λ2

(

−λ1 − λ2 −
1

β − 1
+ λ2

)

= −Ak
(

1 +
λ1

β − 1

)

=⇒ −Dk+1

(

β − 1 + λ2
β − 1

)

= −Ak
(

β − 1 + λ1
β − 1

)

=⇒ Dk+1 = Ak
(

β − 1 + λ1
β − 1 + λ2

)

. (2.22)

Using λ1λ2 = 1 and equations (2.21)-(2.22), we arrive for j = . . . ,−2,−1, 0, . . . , n at

ûk+1
j = Ak+1λj1

=

(

λ2(1 + α)− 1

λ1(1 + α)− 1

)(

λ1 + β − 1

λ2 + β − 1

)(

λ2
λ1

)n

Ak−1λj1

=

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)(

1

λ21

)n

ûk−1
j

=: ρn(s, α, β)û
k−1
j ,

where the convergence factor ρn(s, α, β) is given by (2.20). Similarly, we can also
show that ŵk+1

j = ρn(s, α, β)ŵ
k−1
j , for j ∈ N, and this completes the proof.

In Section 2.2, we proved that the convergence factor of the classical WR method is
less than 1, that is, |ρn,cla| < 1 under two conditions: first, when the frequency ω > 0
and second, when ǫ > 0, where b = −(2 + ǫ)a. We shall find similar conditions for
the convergence factor ρn(s, α, β).

Lemma 2.3.1. For α > 0, β < 0, and either ω > 0 or ǫ > 0, where b = −(2 + ǫ)a,
the modulus of the convergence factor ρn(s, α, β) of the OWR algorithm is less than
1, that is, |ρn(s, α, β)| < 1 for all n ≥ 0.

Proof. Since λ1 ∈ C, we assume λ1 = x + iy, where x,y ∈ R. Remark 2.2.2 states
that under the condition, either ω > 0 or ǫ > 0, where b = −(2+ǫ)a, we have |λ1| > 1
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and hence x2 + y2 > 1. Further for α > 0, (α+ 1)2 − 1 > 0 and hence,

(α+ 1)2 − 1 < [(α+ 1)2 − 1](x2 + y2)

⇐⇒ (α+ 1)2 + x2 + y2 < (α+ 1)2x2 + (α+ 1)2y2 + 1

⇐⇒ (α+ 1)2 + x2 + y2 − 2x(α+ 1) < (α+ 1)2x2 + (α+ 1)2y2 + 1− 2x(α+ 1)

⇐⇒ (α+ 1− x)2 + y2 < ((α+ 1)x− 1)2 + (α+ 1)2y2

⇐⇒ |α+ 1− x− iy|2 < |(α+ 1)(x+ iy)− 1|2.

Taking the square root on both sides leads to |α+1−λ1| < |(α+1)λ1−1|. Similarly,
for β < 0, we can show |λ1+β−1| < |1+(β−1)λ1| and this completes the proof.

We observe from (2.11) and (2.20) that the effect of overlap on the convergence factor

which is given by
(

1
λ2
1

)n
is the same for both the WR and the OWR algorithm.

This means increasing the overlap increases the rate of convergence also for OWR.
Further, the convergence factor is the same for all the circuit nodes irrespective of
which sub-circuit they belong to. Finally, for fast convergence, we would like to have
the convergence factor |ρn(s, α, β)| as small as possible.

Lemma 2.3.2. If α → ∞ and β → −∞, then the convergence factor (2.20) of the
OWR method is equal to the convergence factor (2.11) of the classical WR method,
that is, ρn(s,∞,−∞) = ρn,cla(s).

Proof. This is a straightforward result and can be proved by taking the limits α→ ∞
and β → −∞ of the expression (2.20):

ρn(s,∞,−∞) = lim
α→∞

lim
β→−∞

ρn(s, α, β)

= lim
α→∞

lim
β→−∞

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)(

1

λ21

)n

= lim
α→∞

lim
β→−∞

(

1 + 1−λ1
α

λ1 +
λ1−1
α

)(

λ1−1
β + 1

λ1 +
1−λ1
β

)

(

1

λ21

)n

=

(

1

λ21

)(

1

λ21

)n

=

(

1

λ21

)n+1

= ρn,cla(s).

Remark 2.3.1. For the circuit interpretation of Lemma 2.3.2, we refer to the circuit
shown in Figure 2.7. For α → ∞ and β → −∞, the resistances R(1 + α) → ∞ and
R(1 − β) → ∞, which means that no current flows through these resistors. We can
remove these resistors and attached voltage sources w1 and u1. These sub-circuits
then reduce to the WR sub-circuits with one node overlap similar to the one shown
in Figure 2.4.
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The parameters a, b represent circuit elements and cannot be changed, but we can
choose α and β such that |ρn(s, α, β)| becomes as small as possible. So what is the
best possible choice for the parameters α and β?

Theorem 2.3.2. The OWR method for the two subdomain case converges in two
iterations, independently of the initial guess and the overlap, if

αopt := λ1 − 1, and βopt := 1− λ1. (2.23)

Proof. Setting the convergence factor ρn(s, α, β) = 0, we find α = λ1 − 1 and β =
1 − λ1. Since, ûk+1

j = ρn(s, α, β)û
k−1
j and ŵk+1

j = ρn(s, α, β)ŵ
k−1
j , we have û2j and

ŵ2
j identically zero and hence the OWR has converged in two iterations.

One can see that this is the best choice, since the solution in each subsystem depends
on all the source terms fj and during the first iteration, each subsystem uses only
the local fj to compute the approximation. It is only for the second iteration that
information is transferred. Therefore, convergence cannot be achieved in less than 2
iterations.

Since λ1 is a complicated function of s ∈ C, its inverse Laplace transformation leads
to non-local operators in time for αopt and βopt. These non-local operators are ex-
pensive to use since they require convolution operations. It is therefore of interest
to approximate αopt and βopt by a polynomial in s. In this thesis, we will focus on
approximation of αopt and βopt by a constant.

2.4 Optimization

In this section, we shall find asymptotic expressions for the optimized α and β. We
shall consider asymptotic analysis in two different cases: first, when ω → 0 with
ǫ = 0, and second, when ǫ → 0 with fixed minimum frequency ω = 0. Recall that
the first case corresponds to simulation on large time intervals (0, T ] with final time
T → ∞, while the second case corresponds to the simulation on infinitely large time
intervals and letting the reaction terms ǫaû, ǫaŵ → 0. Before considering these two
cases, we first build and simplify the optimization problem.

In order to have rapid convergence of the OWR method discussed in Section 2.3, we
want |ρn(s, α, β)| ≪ 1, which leads to solving the min-max problem

min
α,β

(

max
ℜ(s)≥0

|ρn(s, α, β)|
)

, (2.24)

where ℜ(s) denotes the real part of s. Since s ∈ C with s = σ + iω and σ ≥ 0, the
above optimization problem is in four variables and hence already very difficult to
solve. We simplify the problem using some assumptions and the following lemmas.
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Lemma 2.4.1. For α > 0, β < 0, the maximum of |ρn(s, α, β)| lies on the imaginary
axis of the complex plane.

Proof. The idea is to show that the convergence factor ρn(s, α, β) is analytic in the
right half of the complex plane and then use the maximum modulus principle for
analytic functions [68].

We first show by contradiction that the denominator of ρn(s, α, β) does not have any
zeros in the right half of the complex plane. Assume there is a zero. Then λ1 = 0,
or (1 + α)λ1 − 1 = 0, or 1 + (β − 1)λ1 = 0. The first case is not possible since from
Lemma 2.2.2, we have |λ1| ≥ 1. Considering the second case we have λ1 = 1

1+α .

Since α > 0, |λ1| =
∣

∣

∣

1
1+α

∣

∣

∣
< 1 which is again a contradiction. Similarly, the third

case can not hold since β < 0. Thus ρn(s, α, β) is analytic in the right half of the
complex plane, that is, for s = σ + iω, with σ ≥ 0, and hence by the maximum
modulus principle for analytic functions, its maximum in modulus is attained on the
boundary.

Further, any complex number in the right half of the complex plane can be expressed
in polar coordinates as s = reiθ, where r ∈ [0,∞) and θ ∈ [−π/2, π/2]. From the
definition of λ1 given in Lemma 2.2.2, we observe that limr→∞ |λ1| = ∞ and hence

lim
r→∞

|ρn(s, α, β)| = lim
|λ1|→∞

∣

∣

∣

∣

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)(

1

λ21

)n∣
∣

∣

∣

= lim
|λ1|→∞

∣

∣

∣

∣

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)∣

∣

∣

∣

lim
|λ1|→∞

∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

= lim
|λ1|→∞

∣

∣

∣

∣

∣

(

α+1
λ1

− 1

1 + α− 1
λ1

)(

1 + β−1
λ1

1
λ1

+ β − 1

)∣

∣

∣

∣

∣

lim
|λ1|→∞

∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

=

∣

∣

∣

∣

( −1

1 + α

)(

1

β − 1

)∣

∣

∣

∣

lim
|λ1|→∞

∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

= 0.

Thus the maximum lies on the boundary when θ = ±π/2 and r < ∞, that is, when
σ = 0. This boundary corresponds to the imaginary axis of the complex plane.

Lemma 2.4.2. For σ = 0, |ρn(ω, α, β)| is an even function of ω.

Proof. At the boundary, σ = 0, from the definition of λ1 and the assumption b =
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−(2 + ǫ)a, with ǫ ≥ 0, we obtain

λ1(ω) =
iω − b+

√

(iω − b)2 − 4a2

2a

=
iω + (2 + ǫ)a+

√

ǫ2a2 − ω2 + 4ǫa2 + i2(2 + ǫ)ωa

2a

=
iω + (2 + ǫ)a+

√
r1 + ir2

2a
,

where r1 := ǫ2a2 −ω2 +4ǫa2 and r2 := 2(2+ ǫ)ωa. Further, let z1 + iz2 :=
√
r1 + ir2

with z1,z2 ∈ R and hence λ1(ω) =
(2+ǫ)a+z1

2a + iω+z22a . Similarly, we show λ1(−ω) =
−iω+(2+ǫ)a+

√
r1−ir2

2a . Using some techniques of complex analysis one can show that if√
r1 + ir2 = z1+iz2 then

√
r1 − ir2 = z1−iz2. Therefore, λ1(−ω) = (2+ǫ)a+z1

2a −iω+z22a

which shows that λ1(−ω) = λ1(ω). Now,

|ρn(−ω, α, β)| =

∣

∣

∣

∣

(

1

(λ1(−ω))2
)n( α+ 1− λ1(−ω)

(λ1(−ω)) (1 + α)− 1

)(

λ1(−ω) + β − 1

1 + (β − 1) (λ1(−ω))

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣







1
(

λ1(ω)
)2







n∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





α+ 1− λ1(ω)
(

λ1(ω)
)

(1 + α)− 1





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





λ1(ω) + β − 1

1 + (β − 1)
(

λ1(ω)
)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣







1
(

λ1(ω)
)2







n∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

α+ 1− λ1(ω)

(λ1(ω)) (1 + α)− 1

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

λ1(ω) + β − 1

1 + (β − 1) (λ1(ω))

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1

(λ1(ω))
2

)n∣
∣

∣

∣

∣

∣

∣

∣

(

α+ 1− λ1(ω)

(λ1(ω)) (1 + α)− 1

)∣

∣

∣

∣

∣

∣

∣

∣

(

λ1(ω) + β − 1

1 + (β − 1) (λ1(ω))

)∣

∣

∣

∣

= |ρn(ω, α, β)| ,

that is, |ρn(ω, α, β)| is an even function in ω.

From Theorem 2.3.2, we observe that αopt and βopt are related to each other via the
relation βopt = −αopt, which suggests the natural assumption β = −α. In our RC
circuit of infinite length, this would mean that at the interface (where the circuit
is split into two), the current flowing in both sub-circuits is equal but into opposite
direction. This interpretation is easy to see for the nonoverlapping case n = 0 (see

Figure 2.3). Recall that the terms
uk+1

n+1
−uk+1

n

α and
wk+1

1
−wk+1

0

β are viewed as currents.
Thus for n = 0 with β = −α, their values are same but their sign is opposite.

Lemma 2.4.1 and Lemma 2.4.2 state that the min-max problem (2.24) needs to be
solved for s = iω, ω ≥ 0. However, for numerical simulation, we consider a time
t ∈ (0, T ], and its discretization with ∆t as the discretization parameter. Hence
ωmin ≤ ω ≤ ωmax, where we can estimate ωmin = π

T and ωmax = π
∆t . Therefore, our
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Figure 2.8: Equioscillation for different values of final time T for n = 0 (left) and for
n = 2 (right).

min-max problem (2.24) reduces to

min
α>0

(

max
ωmin≤ω≤ωmax

|ρn(ω, α,−α)|
)

. (2.25)

Note that the min-max problem is already too complicated to be solved analytically
using available complex analysis tools and optimization techniques. We therefore
employ asymptotic analysis. We had already observed in Sections 2.2 and 2.3 that
under the conditions ω = 0 and ǫ = 0, we have |λ1| = 1 and hence the convergence
factors |ρn,cla(0)| = 1 and |ρn(0, α, β)| = 1, for any values of α and β. We therefore
consider two asymptotics, ωmin → 0 with ǫ = 0, and ǫ→ 0 with ωmin = 0.

2.4.1 Asymptotic analysis with respect to time.

In this section, we assume b = −2a, that is, ǫ = 0. Further, we consider the minimum
frequency ωmin → 0. This corresponds to considering large time intervals (0, T ] with
T → ∞. We shall study two different types of overlapping: the nonoverlapping OWR
and overlapping OWR with n nodes overlap.

Numerically, we observe from both the plots of Figure 2.8, that a solution for the min-
max problem (2.25) is given by equioscillation. However the behavior of equioscilla-
tion is different for the nonoverlapping and the overlapping case. We first analyze
the nonoverlapping case, that is, n = 0, where the equioscillation occurs for ω = ωmin

and ω = ωmax (see the left plot of Figure 2.8). This means the optimized α denoted
by α∗

T,0 satisfies
|ρ0(ωmin, α

∗
T,0)| = |ρ0(ωmax, α

∗
T,0)|,

where we have dropped the parameter −α for simplicity, ρn(ω, α) ≡ ρn(ω, α,−α).
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Figure 2.9: Dependence of α∗
T,0 on ωmin with C0 :=

(

2
a

)1/4
for n = 0 (left) and with

C2 :=
(

1
2an

)1/3
for n = 2 (right).

To start with, we find an explicit expression for |ρ0(ω, α)|. In the proof of Lemma

2.4.2, we set λ1 = x+ iy, where x = (2+ǫ)a+z1
2a = 1 + z1

2a and y = ω+z2
2a , and hence

|ρ0(ω, α)| =
|α+ 1− λ1|2

|(1 + α)λ1 − 1|2 =:
A(ω, α)

B(ω, α)
, (2.26)

where

A(ω, α) := |α+ 1− λ1|2 = |(α+ 1− x)− iy|2 = (α+ 1− x)2 + y2

= α2 + x2 + 1− 2x− 2xα+ 2α+ y2,

B(ω, α) := |(1 + α)λ1 − 1|2 = |(1 + α)x− 1 + iy(1 + α)|2

= ((1 + α)x− 1)2 + y2(1 + α)2

= x2 + x2α2 + 2αx2 + 1− 2x− 2xα+ y2 + y2α2 + 2αy2.

(2.27)

A(ω, α) and B(ω, α) are complicated functions of ω and α which makes the analysis
difficult. To simplify, we use asymptotic analysis to find an explicit expression for
α∗
T,0. Let us denote the asymptotic parameter by ξ = ωmin such that ξ → 0. We first

express |ρ0(ωmin, α)| and |ρ0(ωmax, α)| as polynomials in ξ using the ansatz α = C0ξ
δ,

where C0, δ > 0. The dependence of α∗
T,0 on ωmin for n = 0 is illustrated numerically

in the left plot of Figure 2.9.

Lemma 2.4.3. For the nonoverlapping OWR method, that is, with n = 0 node
overlap and with the assumption ωmax > 4a, the modulus of the convergence factors
|ρ0(ωmin, α)| and |ρ0(ωmax, α)| are given by

|ρ0(ωmin, α)| = 1− 2
√
2

C0
√
a
ω
1/2−δ
min +O(ω

1/2
min), (2.28)

and
|ρ0(ωmax, α)| = 1− 2C0ω

δ
min +O(ω2δ

min). (2.29)
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Proof. To start with, we first derive asymptotic expressions for λ1(ωmin) and hence
for their corresponding x1 and y1, where λ1(ξ) = x1+ iy1 = 1+ z1

2a + i
ξ+z2
2a . Note that

from Lemma 2.4.2, we have z1 + iz2 =
√

−ξ2 + 4ξai and hence squaring both sides
and comparing real and imaginary terms leads to z21 − z22 = −ξ2 and z1z2 = 2aξ.
The second equation simplifies to z2 =

2aξ
z1

which on substituting in the first equation

produces z41 + ξ2z21 − 4a2ξ2 = 0. The positive root of this equation is given by

z21 =
−ξ2 +

√

ξ4 + 16a2ξ2

2
=

−ξ2 + 4aξ
√

ξ2

16a2
+ 1

2

=
−ξ2 + 4aξ

(

1 + ξ2

32a2
− ξ4

2048a4
+O(ξ5)

)

2

= 2aξ − ξ2

2
+

ξ3

16a
+O(ξ5).

Taking a square root using the asymptotic relation
√
1 + z = 1 + z

2 − z2

8 + O(z3),
leads to

z1 =
√

z21 =

√

2aξ − ξ2

2
+

ξ3

16a
+O(ξ5) =

√

2aξ

√

1− ξ

4a
+

ξ2

32a2
+O(ξ4)

=
√

2aξ

(

1− ξ

8a
+

ξ2

128a2
+O(ξ3)

)

=
√

2aξ −
√
2ξ3/2

8
√
a

+

√
2ξ5/2

128a3/2
+O(ξ7/2).

Since z2 =
2aξ
z1

, we have

z2 =
2aξ

√
2aξ

(

1− ξ
8a +

ξ2

128a2
+O(ξ3)

) =
√

2aξ

(

1 +
ξ

8a
+O(ξ3)

)

=
√

2aξ +

√
2ξ3/2

8
√
a

+O(ξ5/2).

Substituting z1 and z2 into the expressions of x1 and y1 gives x1 = 1+ z1
2a = 1+

√
2ξ

2
√
a
−

√
2ξ3/2

16a3/2
+O(ξ5/2) and y1 =

ξ+z2
2a =

√
2ξ

2
√
a
+ ξ

2a +
√
2ξ3/2

16a3/2
+O(ξ5/2). Further, substituting

these expressions of x1, y1 and the asymptotic ansatz of α, that is, α = C0ξ
δ into

A(ω, α) and B(ω, α) given by (2.27) leads to

A(ωmin, α) = C2
0ξ

2δ −
√
2C0ξ

1/2+δ

√
a

+O(ξ),

and

B(ωmin, α) = C2
0ξ

2δ +

√
2C0ξ

1/2+δ

√
a

+

√
2C2

0ξ
1/2+2δ

√
a

+O(ξ).
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Since ξ → 0, the dominating term in both these expressions is C2
0ξ

2δ, and hence the

asymptotic formula 1
1+z = 1− z + z2

2 +O(z3), for |z| < 1 leads to

|ρ0(ωmin, α)| =
A(ωmin, α)

B(ωmin, α)
=

1−
√
2ξ1/2−δ

C0

√
a

+O(ξ1−2δ)

1 +
√
2ξ1/2−δ

C0

√
a

+
√
2ξ1/2√
a

+O(ξ1−2δ)

=

(

1−
√
2ξ1/2−δ

C0
√
a

+O(ξ1−2δ)

)(

1−
√
2ξ1/2−δ

C0
√
a

−
√
2ξ1/2√
a

+O(ξ1−2δ)

)

= 1− 2
√
2ξ1/2−δ

C0
√
a

+O(ξ1/2).

We now perform a similar analysis to find an expression for |ρ0(ωmax, α)|. We go
to the expression of λ1(ωmax) = x̃ + iỹ = 1 + z̃1

2a + i
(

ωmax+z̃2
2a

)

, where z̃1 + z̃2 =
√

−ω2
max + 4aωmaxi. Squaring both sides and comparing the real and imaginary

parts leads to z̃2 = 2aωmax

z̃1
which on substituting in z̃21 − z̃22 = −ω2

max produces

z̃41 + z̃
2
1ω

2
max−4a2ω2

max = 0. Using the asymptotic expressions for
√
1 + z, for |z| < 1,

and assuming ωmax > 4a, we find

z̃1 =
√

z̃21 =

√

−ω2
max +

√

ω4
max + 16a2ω2

max

2

=

√

√

√

√

−ω2
max + ω2

max

√

1 + 16a2

ω2
max

2

=

√

√

√

√

−ω2
max + ω2

max

(

1 + 8a2

ω2
max

− 32a4

ω4
max

+O(ω−6
max)

)

2

=

√

4a2 − 16a4

ω2
max

+O(ω−4
max) = 2a

√

1− 4a2

ω2
max

+O(ω−4
max)

= 2a

(

1− 2a2

ω2
max

+O(ω−4
max)

)

= 2a− 4a3

ω2
max

+O(ω−4
max).

Substituting into the expression of z̃2, we get

z̃2 =
2aωmax

z̃1
=

2aωmax

2a− 4a3

ω2
max

+O(ω−4
max)

=
2aωmax

2a
(

1− 2a2

ω2
max

+O(ω−4
max)

)

= ωmax

(

1 +
2a2

ω2
max

+O(ω−4
max)

)

= ωmax +
2a2

ωmax
+O(ω−3

max).

These give the expressions for x̃ and ỹ:

x̃ = 1 +
z̃1
2a

= 2− 2a2

ω2
max

+O(ω−4
max),

ỹ =
ωmax + z̃2

2a
=
ωmax

a
+

a

ωmax
+O(ω−3

max).
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Substituting the expressions of x̃, ỹ and α into equation (2.27), we obtain

A(ωmax, α) = 3 +
ω2
max

a2
− 2C0ξ

δ + C2
0ξ

2δ +O(ω−2
max),

and

B(ωmax, α) = 3 +
ω2
max

a2
+

2C0ξ
δω2

max

a2
+
C2
0ξ

2δω2
max

a2
+ 8C0ξ

δ + 6C2
0ξ

2δ +O(ω−2
max).

Since we have assumed ωmax > 4a, the dominating term in both expressions of

A(ωmax, α) and B(ωmax, α) is
ω2
max

a2
, and hence

|ρ0(ωmax, α)| =
A(ωmax, α)

B(ωmax, α)

=
3 + ω2

max

a2
− 2C0ξ

δ + C2
0ξ

2δ +O(ω−2
max)

3 + ω2
max

a2
+ 2C0ξδω2

max

a2
+

C2
0
ξ2δω2

max

a2
+ 8C0ξδ + 6C2

0ξ
2δ +O(ω−2

max)

=

ω2
max

a2

(

1 + 3a2

ω2
max

− 2C0a2ξδ

ω2
max

+
C2

0
a2ξ2δ

ω2
max

+O(ω−4
max)

)

ω2
max

a2

(

1 + 2C0ξδ + C2
0ξ

2δ + 3a2

ω2
max

+ 8C0a2ξδ

ω2
max

+
6C2

0
a2ξ2δ

ω2
max

+O(ω−4
max)

)

=

(

1 +
3a2

ω2
max

− 2C0a
2ξδ

ω2
max

+
C2
0a

2ξ2δ

ω2
max

+O(ω−4
max)

)

(

1− 2C0ξ
δ + 2C2

0ξ
2δ +O(ω−2

max

)

= 1− 2C0ξ
δ +O(ω−2

max),

which completes the proof.

Theorem 2.4.1. For the nonoverlapping OWR algorithm, that is, with n = 0 node

overlap, and large time intervals (0, T ) with T → ∞, if α∗
T,0 =

(

2
a

)1/4
ω
1/4
min, then the

convergence factor ρ0 satisfies

|ρ0(ω, α)| ≤ |ρ0(ωmin, α
∗
T,0)| = 1− 2

(

2

a

)1/4

ω
1/4
min +O(ω

1/2
min). (2.30)

Proof. For the nonoverlapping case n = 0, we observe from the left plot of Figure
2.8, that a solution of the min-max problem (2.25) is given by the equioscillation at
ωmin and ωmax. Comparing the dominating terms in expressions (2.28) and (2.29),

we obtain 2C0ξ
δ = 2

√
2

C0

√
a
ξ1/2−δ. Equating the exponents of these terms leads to

δ = 1/2 − δ, that is, δ = 1/4. Similarly, equating their coefficients simplifies to

C2
0

√
a =

√
2, and hence C0 =

(

2
a

)1/4
. Substituting these expressions into (2.29)

results in

|ρ0(ωmin, α
∗
T,0)| = 1− 2

(

2

a

)1/4

ω
1/4
min +O(ω

1/2
min),

and this completes the proof.
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We now consider the overlapping case, with n nodes overlap. The right plot of
Figure 2.8 depicts that a solution of the min max problem (2.25) is given by the
equioscillation between ωmin and ω̄, where ωmin < ω̄ < ωmax with ω̄ → 0 as ωmin → 0.
We therefore use the ansatz α = Cnξ

δ and ω̄ := kξη, where the constants Cn, δ, k, η >
0 and ξ = ωmin. Further, solving the min-max problem (2.25) is equivalent to solving
the coupled equations:

|ρn(ωmin, α
∗
T,n)| = |ρn(ω̄, α∗

T,n)|, and
∂

∂ω
|ρn(ω̄, α∗

T,n)| = 0, (2.31)

where α∗
T,n denotes the optimized α for an overlap of size n. We first find the relation

between δ and η, and Cn and k in the following lemma.

Lemma 2.4.4. For the overlapping OWR method with n > 0 nodes overlap, solving
the equation ∂

∂ω |ρn(ω̄, α∗
T,n)| = 0 produces the relations

η = δ, and k =
2aCn
n

. (2.32)

Proof. We first find the expression for |ρn(ω, α)| using the asymptotic relations and
ansatz for α, then derive it with respect to ω and finally substitute the ansatz for ω̄.
Recall that from Lemma 2.4.2, λ1(ω) = x + iy = 1 + z1

2a + iω+z22a , where z1 + iz2 =√
−ω2 + 4aωi. Simplification of this equation by squaring leads to z2 = 2aω

z1
and

z41 + z21ω
2 − 4a2ω2 = 0. Solving for z21 and using the asymptotic expressions for√

1 + z and 1
1+z , where |z| < 1 gives

z1 =
√

z21 =

√

−ω2 +
√
ω4 + 16a2ω2

2

=

√

√

√

√
−ω2 + 4aω

√

ω2

16a2
+ 1

2
since 16a2 > ω2

=

√

√

√

√

−ω2 + 4aω
(

1 + ω2

32a2
+O(ω4)

)

2

=

√

2aω − ω2

2
+

ω3

16a
+O(ω5) =

√
2aω

√

1− ω

4a
+

ω2

32a2
+O(ω4)

=
√
2aω

(

1− ω

8a
+

ω2

128a2
+O(ω3)

)

=
√
2aω −

√
2ω3/2

8
√
a

+

√
2ω5/2

128a3/2
+O(ω7/2),
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and thus z2 =
√
2aω+

√
2ω3/2

8
√
a

+
√
2ω5/2

128a3/2
+O(ω7/2). Substituting these expressions into

x and y yields

x = 1 +
z1
2a

= 1 +

√
2
√
ω

2
√
a

−
√
2ω3/2

16a3/2
+

√
2ω5/2

256a5/2
+O(ω7/2), (2.33)

y =
ω + z2
2a

=

√
2
√
ω

2
√
a

+
ω

2a
+

√
2ω3/2

16a3/2
+

√
2ω5/2

256a5/2
+O(ω7/2). (2.34)

Recall that the convergence factor for n nodes overlap (2.20) is

|ρn(ω, α)| =

∣

∣

∣

∣

(

α+ 1− λ1
λ1(1 + α)− 1

)(

λ1 + β − 1

1 + (β − 1)λ1

)(

1

λ21

)n∣
∣

∣

∣

= |ρ0(ω, α)|
∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

=
A(ω, α)

B(ω, α)
L(ω, α), (2.35)

where λ1(ω) = x+ iy and hence

A(ω, α) = |α+ 1− λ1|2 = |(α+ 1− x) + iy|2

= α2 + x2 + 1 + y2 − 2x− 2xα+ 2α, (2.36)

B(ω, α) = |(1 + α)λ1 − 1|2 = |(1 + α)x− 1 + iy(1 + α)|2

= x2 + x2α2 + 2αx2 + 1− 2x− 2xα+ y2 + y2α2 + 2αy2, (2.37)

L(ω, α) =

∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

=
1

(x2 + y2)n
. (2.38)

A simple substitution of the ansatz α = Cnξ
δ and expressions for x and y derived in

(2.33) and (2.34) into the above equations (2.36)-(2.37):

A(ω, α) = ω
a − Cnξδ

√
2
√
ω√

a
+

√
2ω3/2

2a3/2
+O(ω2),

B(ω, α) = ω
a + Cnξδ

√
2
√
ω√

a
+

√
2ω3/2

2a3/2
+O(ω2).

(2.39)

Further, the effect of overlap is given by L(ω, α) =
∣

∣

∣

(

1
λ2
1

)n∣
∣

∣
. Using equations (2.33)-

(2.34) and the asymptotic formula, (1 + z)−n = 1 − nz + n2z2

2 + O(z3), for |z| < 1,
we arrive at

L(ω, α) = =
1

(x2 + y2)n
=

1
(

1 +
√
2
√
ω√
a

+ ω
a + 3

√
2ω3/2

8a3/2
+O(ω2)

)n

= 1− n
√
2
√
ω√

a
− nω

a
+
n2ω

a
+O(ω3/2). (2.40)

Finally, we derive |ρn(ω, α)| with respect to ω and obtain

∂

∂ω
|ρn(ω, α)| =

∂

∂ω

(

A(ω, α)

B(ω, α)
L(ω, α)

)

=
B(ω, α) [A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α)]−A(ω, α)L(ω, α)Bω(ω, α)

B2(ω, α)
,
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where Zω(ω, α) denotes the derivative of Z(ω, α) with respect to ω. Equating ∂
∂ω |ρn(ω, α)|

to zero results in solving F1(ω, α)− F2(ω, α) = 0, where

F1(ω, α) := B(ω, α) [A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α)] ,
F2(ω, α) := A(ω, α)L(ω, α)Bω(ω, α).

(2.41)

Since A(ω, α), B(ω, α) and L(ω, α) are polynomial expressions in ω (see (2.39) and
(2.40)), differentiating them is not complicated and we obtain

Aω(ω, α) =
1
a −

Cnξδ
√
2

2
√
a
√
ω
+O(ω1/2),

Bω(ω, α) =
1
a +

Cnξδ
√
2

2
√
a
√
ω
+O(ω1/2),

Lω(ω, α) = − n
√
2

2
√
ω
√
a
− n

a + n2

a +O(ω1/2).

Substituting these expressions into (2.41), leads to

F1(ω, α) =

(

ω

a
+
Cnξ

δ
√
2
√
ω√

a
+O(ω3/2)

)

(A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α))

=

(

ω

a
+
Cnξ

δ
√
2
√
ω√

a
+O(ω3/2)

)(

2Cnξ
δn

a
+

1

a
− Cnξ

δ
√
2

2
√
a
√
ω

− 3n
√
2
√
ω

2a3/2
+O(ω)

)

=
Cnξ

δ
√
2
√
ω

2a3/2
+
ω

a2
− 3n

√
2ω3/2

2a5/2
+O(ω2).

Similarly,

F2(ω, α) = (A(ω, α)L(ω, α))

(

1

a
+
Cnξ

δ
√
2

2
√
a
√
ω

+O(ω1/2)

)

=

(

ω

a
− ω2n

a2
+
ω2n2

a2
− Cnξ

δ
√
2
√
ω√

a
+O(ω3/2)

)(

1

a
+
Cnξ

δ
√
2

2
√
a
√
ω

+O(ω1/2)

)

= −Cnξ
δ
√
2
√
ω

2a3/2
+
ω

a2
− n

√
2ω3/2

2a5/2
+O(ω2),

and therefore, F1(ω, α) = F2(ω, α) results in
Cnξδ

√
2
√
ω

2a3/2
= n

√
2ω3/2

2a5/2
. Now we substitute

the ansatz ω̄ = kξη into the above equation. First comparing the exponent of ξ and
then the coefficients gives us the required relations (2.32), and this completes the
proof.

The solution of the first equation of (2.31), along with Lemma 2.4.4 will give us the
values of constants δ, η, Cn, and k and hence, explicit asymptotic expressions for ω̄
and α∗

T,n.
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Lemma 2.4.5. For the overlapping OWR, with n > 0 nodes overlap, the modulus of
the convergence factor ρn(ωmin, α) and ρn(ω̄, α) are given by

|ρn(ωmin, α)| = 1− 2
√
2

Cn
√
a
ω
1/2−δ
min +O(ω

1/2
min), (2.42)

and

|ρn(ω̄, α)| = 1− n
√
2
√
k√

a
ω
δ/2
min −

2
√
2
√
aCn√
k

ω
δ/2
min +O(ω

1/2
min), (2.43)

Proof. Note that the modulus of the convergence factor for the overlapping case is
related to the modulus of the convergence factor for the nonoverlapping case by

|ρn(ω, α)| = |ρ0(ω, α)|
∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

,

and hence we will use some expressions derived in the proof of Lemma 2.4.3. The
polynomial expression for |ρ0(ωmin, α)| is given by (2.28). Further, in Lemma 2.4.3

we have also expressed λ1(ωmin) as x1 + iy1, where x1 = 1 +
√
2ξ

2
√
a
−

√
2ξ3/2

16a3/2
+ O(ξ2)

and y1 =
√
2ξ

2
√
a
+ ξ

2a +
√
2ξ3/2

16a3/2
+O(ξ2), and the modulus of the effect of the overlap at

ωmin = ξ has the polynomial expression

L(ωmin, α) :=

∣

∣

∣

∣

(

1

λ21(ωmin)

)n∣
∣

∣

∣

=

(

1

x21 + y21

)n

=





1

1 +
√
2
√
ξ√

a
+ ξ

a +
3
√
2ξ3/2

8a3/2
+O(ξ2)





n

= 1− n
√
2
√
ξ√

a
− nξ

a
+
n2ξ

a
+O(ξ3/2).

Multiplying the above polynomial with (2.28) gives

|ρn(ωmin, α)| =

(

1− 2
√
2

Cn
√
a
ξ1/2−δ +O(ξ1/2)

)(

1− n
√
2
√
ξ√

a
− nξ

a
+
n2ξ

a
+O(ξ3/2)

)

= 1− 2
√
2ξ1/2−δ

Cn
√
a

+O(ξ1/2).

We now derive the polynomial expression for |ρn(ω̄, α)|. In Lemma 2.4.4, we derived
a simplified expression for the modulus of ρn(ω̄, α), namely

|ρn(ω, α)| =
A(ω, α)

B(ω, α)
L(ω, α),
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where A(ω, α), B(ω, α) and L(ω, α) are expressed in polynomials of ξ in equations
(2.39) and (2.40). Substituting the ansatz ω̄ = kξδ into these equations yields

A(ω̄, α) =
k

a
ξδ − Cn

√
2
√
k√

a
ξ3δ/2 +

√
2k3/2

2a3/2
ξ3δ/2 +O(ξ2δ),

B(ω̄, α) =
k

a
ξδ +

Cn
√
2
√
k√

a
ξ3δ/2 +

√
2k3/2

2a3/2
ξ3δ/2 +O(ξ2δ),

L(ω̄, α) = 1− n
√
2
√
k√

a
ξδ/2 − nk

a
ξδ +

n2k

a
ξδ +O(ξ3δ/2).

Since ξ → 0, the dominating term in A(ω̄, α) and B(ω̄, α) is k
aξ
δ. Collecting the

dominating terms and using asymptotic formulas, we obtain

|ρn(ω̄, α)| =
A(ω̄, α)

B(ω̄, α)
L(ω̄, α)

=





k
aξ
δ − Cn

√
2
√
k√

a
ξ3δ/2 +

√
2k3/2

2a3/2
ξ3δ/2 +O(ξ2δ)

k
aξ
δ + Cn

√
2
√
k√

a
ξ3δ/2 +

√
2k3/2

2a3/2
ξ3δ/2 +O(ξ2δ)





(

1− n
√
2
√
k√

a
ξδ/2 +O(ξδ)

)

=





1− Cn

√
2
√
a√

k
ξδ/2 +

√
2
√
k

2
√
a
ξδ/2 +O(ξδ)

1 + Cn

√
2
√
a√

k
ξδ/2 +

√
2
√
k

2
√
a
ξδ/2 +O(ξδ)





(

1− n
√
2
√
k√

a
ξδ/2 +O(ξδ)

)

=

(

1− Cn
√
2
√
a√

k
ξδ/2 +

√
2
√
k

2
√
a
ξδ/2 +O(ξδ)

)(

1− n
√
2
√
k√

a
ξδ/2 +O(ξδ)

)

(

1− Cn
√
2
√
a√

k
ξδ/2 −

√
2
√
k

2
√
a
ξδ/2 +O(ξδ)

)

=

(

1− 2Cn
√
2
√
a√

k
ξδ/2 +O(ξδ)

)(

1− n
√
2
√
k√

a
ξδ/2 +O(ξδ)

)

= 1− 2Cn
√
2
√
a√

k
ξδ/2 − n

√
2
√
k√

a
ξδ/2 +O(ξδ).

This completes the proof.

Theorem 2.4.2. For the overlapping OWR algorithm with n ≥ 1 nodes overlap and

large time interval (0, T ) with T → ∞, if α∗
T,n =

(

1
2an

)1/3
ω
1/3
min, then the convergence

factor ρn satisfies

|ρn(ω, α)| ≤ |ρn(ωmin, α
∗
T,n)| ∼ 1− 211/6

(

n2

a

)1/6

ω
1/6
min +O(ω

1/3
min). (2.44)

Proof. The right plot of Figure 2.8 shows that a solution of the min-max problem
(2.25) is given by equioscillation between the two frequencies ωmin and ω̄, where
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ωmin < ω̄ < ωmax with ω̄ → 0 as ωmin → 0. Hence a solution of the min-max
problem (2.25) can be found by solving equations (2.31). Lemmas 2.4.4 and 2.4.5
provide us with relations between ω̄ and the optimized α∗

T,n, and with the polynomial
expressions for |ρn(ωmin, α)| and |ρn(ω̄, α)| respectively. Thus equating the exponents
of the dominating terms of these polynomials (2.42) and (2.43) leads to δ/2 = 1/2−δ,
that is, δ = 1/3, while equating their coefficients gives 2Cn

√
2
√
a√

k
+ n

√
2
√
k√

a
= 2

√
2

Cn
√
a
.

Substituting k = 2aCn
n obtained from Lemma 2.4.4 produces

2
√
2

Cn
√
a
=

2Cn
√
2
√
a√

k
+
n
√
2
√
k√

a

=⇒ 2

Cn
√
a
=

2Cna+ nk√
k
√
a

=⇒ 2
√
2
√
a
√
Cn

Cn
√
n

= 2Cna+ 2Cna

=⇒
√
2
√
a√

n
= 2C3/2

n a

=⇒ C3/2
n =

1√
2
√
a
√
n
,

which on squaring both sides leads to Cn =
(

1
2an

)1/3
.

Finally, substituting δ = 1/3 and Cn =
(

1
2an

)1/3
into equation (2.42) results in

|ρmin(ωmin, α
∗
T,n)| = 1− 23/2√

a
(2an)1/3ω

1/6
min +O(ω

1/3
min)

= 1− 211/6
(

n2

a

)1/6

ω
1/6
min +O(ω

1/3
min).

This completes the proof.

2.4.2 Asymptotic analysis with respect to the reaction term

In this section, we assume that ǫ → 0, where b = −(2 + ǫ)a. The main task to
be accomplished in this section is to find a solution of the min-max problem (2.25)
using asymptotic analysis with respect to ǫ → 0. As explained earlier, this analysis
corresponds to the case when the reaction terms ǫaû and ǫaŵ tends to zero. Note that
the minimum frequency ωmin is ωmin = π/T , but to further simplify our analysis, we
consider a wider range for ω, that is, ω ∈ [0, ωmax]. Therefore, our min-max problem
(2.25) further changes to

min
α>0

(

max
0≤ω≤ωmax

|ρn(ω, α)|
)

. (2.45)
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Figure 2.10: Equioscillation for different values of ǫ for n = 0 (left) and for n = 2
(right).

Note that the frequency range 0 ≤ ω ≤ ωmax corresponds to an infinite time interval
and hence the results for this asymptotic analysis will hold for infinitely large time
intervals. Under the asymtotic ǫ → 0, we observe numerically, see Figure 2.10, that
a solution for the min-max problem (2.45) is given by equioscillation. Moreover, the
behavior of equioscillation is different for the nonoverlapping and the overlapping
case. We first analyze the nonoverlapping case, that is, n = 0, where the equioscil-
lation occurs for ω = 0 and ω = ωmax (see the left plot of Figure 2.10). This means
the optimized α denoted by α∗

R,0 satisfies

|ρ0(0, α∗
R,0)| = |ρ0(ωmax, α

∗
R,0)|, (2.46)

To start with, we find the explicit expression for |ρ0(ω, α)|. Next, similar to the
analysis in Section 2.4.1, we use the ansatz α = P0ǫ

γ , where ǫ = − b
a−2 and P0, γ > 0.

The dependence of α∗
R,0 on ǫ for n = 0 is illustrated numerically in the left plot of

Figure 2.11.

Lemma 2.4.6. For the nonoverlapping OWR method, that is, with n = 0 node
overlap and for small ǫ > 0, the modulus of the convergence factor ρ0(ω, α) for ω = 0
and large ωmax is given by

|ρ0(0, α)| = 1− 4

P0
ǫ
1

2
−γ +O(ǫ1−2γ) (2.47)

and
|ρ0(ωmax, α)| = 1− 2P0ǫ

γ +O(ǫ2γ). (2.48)

Proof. We first find the asymptotic expression for λ1(0) = x + iy, where x and y
are functions of ǫ. From the expression of λ1(ω) given in (2.10), and using a Taylor
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Figure 2.11: Dependence of α∗ on ǫ with P0 =
√
2 for n = 0 (left) and with P2 =

(

1
n

)1/3
for n = 2 (right).

expansion for (1 + ǫ)1/2 = 1 + ǫ
2 − ǫ2

8 +O(ǫ3) leads to

λ1(0) =
2 + ǫ

2
+

√
4ǫ+ ǫ2

2
= 1 +

ǫ

2
+ ǫ1/2

√

1 +
ǫ

4
= 1 +

ǫ

2
+ ǫ1/2

(

1 +
ǫ

8
+O(ǫ2)

)

= 1 + ǫ1/2 +
ǫ

2
+O(ǫ3/2).

Thus we have x = 1 + ǫ1/2 + ǫ
2 +O(ǫ3/2) and y = 0. Recall from (2.26),

|ρ0(ω, α)| =
|α+ 1− λ1|2

|(1 + α)λ1 − 1|2 =:
A(ω, α)

B(ω, α)
.

Substituting the ansatz α = P0ǫ
γ , we arrive at

A(0, α) = α2 + x2 + 1 + y2 − 2x− 2xα+ 2α = P 2
0 ǫ

2γ − 2P0ǫ
γ+1/2 +O(ǫ),

and

B(0, α) = x2 + x2α2 + 2αx2 + 1− 2x− 2xα+ y2 + y2α2 + 2αy2

= P 2
0 ǫ

2γ + 2P0ǫ
γ+1/2 + 2P 2

0 ǫ
2γ+1/2 +O(ǫ).

Since ǫ→ 0, the term with lowest power of ǫ is the dominating term in these asymp-
totic expressions, and hence P 2

0 ǫ
2γ is the dominating term in A(0, α) and B(0, α).

The convergence factor at ω = 0 simplifies to

|ρ0(0, α)| =
A(0, α)

B(0, α)
=

P 2
0 ǫ

2γ
(

1− 2
P0
ǫ1/2−γ +O(ǫ1−2γ)

)

P 2
0 ǫ

2γ
(

1 + 2
P0
ǫ1/2−γ + 2ǫ1/2 +O(ǫ1−2γ)

)

=

(

1− 2

P0
ǫ1/2−γ +O(ǫ1−γ)

)(

1− 2

P0
ǫ1/2−γ +O(ǫ1/2)

)

= 1− 4

P0
ǫ1/2−γ +O(ǫ1/2).



CHAPTER 2. RC CIRCUITS 41

For large ω, we have large |λ(ω)|, and hence it is easier to find an expression for
|ρ0(ωmax, α)| with the assumption ωmax → ∞,

|ρ0(ωmax, α)| = lim
ω→∞

A(ω, α)

B(ω, α)
= lim

ω→∞

∣

∣

∣

∣

∣

α+1
λ1(ω)

− 1

1 + α− 1
λ1(ω)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

1 + α

∣

∣

∣

∣

2

=
1

1 + 2P0ǫγ + P 2
0 ǫ

2γ

= 1− 2P0ǫ
γ +O(ǫ2γ),

which concludes the proof.

Theorem 2.4.3. For the nonoverlapping OWR, that is, for n = 0 and small ǫ > 0,
if α∗

R,0 =
√
2ǫ1/4, then the convergence factor ρ0 satisfies

|ρ0(ω, α)| ≤ |ρ0(0, α∗
R,0)| ∼ 1− 2

√
2ǫ1/4 +O(ǫ1/2). (2.49)

Proof. For the nonoverlapping case, the solution of the min-max problem (2.45) is
given by equioscillation for ω = 0 and ω = ωmax, see the left plot of Figure 2.10.
Further, in Lemma 2.4.6 we have derived the asymptotic polynomial expressions for
|ρ0(0, α)| and |ρ0(ωmax, α)| which are equal for α∗

R,0. Thus, comparing the powers of

the dominating terms of these expressions results in 1
2 − γ = γ which implies γ = 1

4 .

Now, equating the coefficients of these dominating terms gives P0 =
√
2 and this

completes the proof.

Similar to the analysis in Section 2.4.1, the analysis is different for the overlapping
case n > 0. Numerically, we observe that the solution of the min-max problem (2.45)
is also given by equioscillation, see the right plot of Figure 2.10. But in this case,
equioscillation for |ρn(ω, α)| occurs for ω = 0 and ω = ω̄, where ωmin < ω̄ < ωmax

with ω̄ → 0 as ǫ → 0. The dependence of the optimized α∗ and ω̄ on ǫ for n = 2
can be seen in the right plot of Figure 2.11 and in Figure 2.12. We therefore use the
ansatz α = Pnǫ

δ and ω̄ = dnǫ
η, for some constants Pn, δ, dn, η > 0. The constants Pn

and dn depends on number of overlapping circuit elements n. Solving the min-max
problem (2.45) by equioscillation is equivalent to solving the system of equations

|ρn(0, α∗
R,n)| = |ρn(ω̄, α∗

R,n)| and
∂

∂ω
|ρ(ω̄, α∗

R,n)| = 0, (2.50)

where α∗
R,n is the optimized α for an overlap of size n. The approach of solving these

coupled equations is similar to that used in Section 2.4.1. However, one needs to be
careful since the dominating terms will change.

We first solve the equation ∂
∂ω |ρ(ω̄, α∗

n)| = 0 and find a relation between ω̄ and α∗
R,n.

Lemma 2.4.7. For the overlapping case, n > 0, solving ∂
∂ω |ρ(ω̄, α∗

R,n)| = 0 gives us
the relation

η = γ and dn =
2a

n
Pn, (2.51)

where ω̄ = dnǫ
η and α∗

R,n = Pnǫ
γ.
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Figure 2.12: Dependence of ω̄ on ǫ with d1 = 2a for n = 1.

Proof. We recall the expression for the convergence factor (2.35) for the OWR algo-
rithm with n overlap,

|ρn(ω, α)| =
∣

∣

∣

∣

∣

(

α+ 1− λ1
(1 + α)λ1 − 1

)2( 1

λ21

)n
∣

∣

∣

∣

∣

= |ρ0(ω, α)|
∣

∣

∣

∣

(

1

λ21

)n∣
∣

∣

∣

=
A(ω, α)

B(ω, α)
L(ω, α),

where λ1 = x + iy and the expressions of A(ω, α), B(ω, α) and L(ω, α) are given
by equations (2.36)-(2.38). We now derive polynomial expressions for x and y in

terms of ǫ. Recall from the proof of Lemma 2.4.2, we defined x = (2+ǫ)a+z1
2a and

y = ω+z2
2a , where z1+ iz2 =

√

(ǫ2a2 − ω2 + 4ǫa2) + i[2(2 + ǫ)ωa]. Squaring both sides
and comparing the real and imaginary parts yields

z21 − z22 = r1 and 2z1z2 = r2,

where r1 := ǫ2a2−ω2+4ǫa2 and r2 := 2(2+ ǫ)ωa. The second equation simplifies to
z2 =

r2
2z1

, which on substitution into the first equation results in 4z41 −4z21r1− r22 = 0.

The positive root of this equation is given by z21 =
r1+

√
r2
1
+r2

2

2 . A Taylor expansion

for (1 + y)1/2, with |y| < 1, leads to

√

r21 + r22 =
√

(−ω2 + 4a2ǫ+ a2ǫ2)2 + 4ω2a2(2 + ǫ)2

=
√

16a2ω2 + ω4 + 8ω2a2ǫ+O(ǫ2) = 4ωa

√

1 +

(

ω2

16a2
+
ǫ

2
+O(ǫ2ω−2)

)

= 4ωa

(

1 +
ω2

32a2
+
ǫ

4
+O(ω4)

)

= 4ωa+
ω3

8a
+ ωaǫ+O(ω5).
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Similarly, we obtain expressions for z1 and z2,

z1 =

√

r1 +
√

r21 + r22
2

=

√

a2ǫ2 + 4a2ǫ− ω2 + 4ωa+ ω3

8a + aωǫ+O(ω5)

2

=

√

2ωa− ω2

2
+

ω3

16a
+ 2a2ǫ+

aωǫ

2
+O(ω5)

=
√
2aω

√

1− ω

4a
+

ω2

32a2
+
aǫ

ω
+
ǫ

4
+O(ω4)

=
√
2aω

(

1− ω

8a
+

ω2

128a2
+O(ω3)

)

=
√
2aω −

√
2ω3/2

8
√
a

+

√
2ω5/2

128a3/2
+O(ω7/2),

and

z2 =
r2
2z1

=
2(2 + ǫ)ωa

2
√
2aω

(

1− ω
8a +

ω2

128a2
+O(ω3)

)

= (
√
2
√
ω
√
a+

ǫ
√
ω
√
a√

2
)
(

1 +
ω

8a
+O(ω3)

)

=
√
2aω +

√
2ω3/2

8
√
a

+
ǫ
√
ω
√
a√

2
+O(ω7/2).

Substituting these into the expressions for x and y leads to

x = 1 +
ǫ

2
+
z1
2a

= 1 +

√
2
√
ω

2
√
a

−
√
2ω3/2

16a3/2
+O(ω5/2),

y =
ω + z2
2a

=

√
2
√
ω

2
√
a

+
ω

2a
+

√
2ω3/2

16a3/2
+O(ω5/2).

We substitute these expressions for x, y and the ansatz α = Pnǫ
γ into equations

(2.36)-(2.38),

A(ω, α) = ω
a −

√
2Pnǫγ

√
ω√

a
+

√
2ω3/2

2a3/2
+O(ω2),

B(ω, α) = ω
a +

√
2Pnǫγ

√
ω√

a
+

√
2ω3/2

2a3/2
+O(ω2),

(2.52)

and

L(ω, α) =

(

1

x2 + y2

)n

=





1

1 +
√
2
√
ω√
a

+ ω
a + 3

√
2ω3/2

8a3/2
+O(ω2)





n

= 1− n
√
2
√
ω√

a
− nω

a
+
n2ω

a
+O(ω3/2). (2.53)
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Further, differentiating |ρn(ω, α)| = A(ω,α)
B(ω,α)L(ω, α) with respect to ω gives

∂

∂ω
|ρn(ω, α)| =

B(ω, α)[A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α)]−A(ω, α)L(ω, α)Bω(ω, α)

B2(ω, α)
,

where Zω(ω, α) denotes the partial derivative of Z(ω, α) with respect to ω. Let

F1(ω, α) := B(ω, α)[A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α)]

and
F2(ω, α) := A(ω, α)L(ω, α)Bω(ω, α).

Differentiating these terms given in equations (2.52)-(2.53) with respect to ω gives

Aω(ω, α) =
1
a −

√
2Pnǫγ

2
√
a
√
ω
+O(ω1/2),

Bω(ω, α) =
1
a +

√
2Pnǫγ

2
√
a
√
ω
+O(ω1/2),

Lω(ω, α) = 1− n
√
2

2
√
a
√
ω
− n

a + n2

a +O(ω1/2).

(2.54)

Substituting these expressions into F1(ω, α) and F2(ω, α), we arrive at

F1(ω, α) =

(

ω

a
+

√
2Pnǫ

γ√ω√
a

+O(ω3/2)

)

(A(ω, α)Lω(ω, α) +Aω(ω, α)L(ω, α))

=

(

ω

a
+

√
2Pnǫ

γ√ω√
a

+O(ω3/2)

)(

1

a
− 3n

√
2
√
ω

2a3/2
− Pnǫ

γ
√
2

2
√
a
√
ω

+O(ω)

)

=
Pnǫ

γ
√
2
√
ω

2a3/2
+
ω

a2
− 3n

√
2ω3/2

2a5/2
+O(ω2),

and

F2(ω, α) = (A(ω, α)L(ω, α)

(

1

a
+

√
2Pnǫ

γ

2
√
a
√
ω

+O(ω1/2)

)

=

(

−Pnǫ
γ
√
2
√
aω

a
+
ω

a
− n

√
2ω3/2

a3/2
+O(ω2)

)(

1

a
+

√
2Pnǫ

γ

2
√
a
√
ω

+O(ω1/2)

)

= −Pnǫ
γ
√
2
√
ω

a3/2
+
ω

a2
− n

√
2ω3/2

a5/2
+O(ω2).

Finally, we equate F1(ω̄, α) = F2(ω̄, α) to obtain Pnǫγ
√
2ω̄1/2

a3/2
= n

√
2ω̄3/2

2a5/2
. Since we

use the ansatz ω̄ = dnǫ
η, comparing the exponents of the above terms simplifies to

γ + η/2 = 3γ/2, that is, γ = η. Similarly, a comparison of their coefficients leads to

Pn
√
2d

1/2
n

a3/2
=
n
√
2d

3/2
n

2a5/2
,

which results in dn = 2a
n Pn. This completes the proof.
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Now we need to solve the first equation of (2.50), |ρn(0, α∗
R,n)| = |ρn(ω̄, α∗

R,n)|. We do
this in a similar way as for the nonoverlapping case, n = 0. We express |ρn(0, α∗

R,n)|
and |ρn(ω̄, α∗

R,n)| as asymptotic expansions in ǫ.

Lemma 2.4.8. For the overlapping case, n > 0, the modulus of the convergence
factor |ρn(ω, α)| for the OWR algorithm for ω = 0 and ω = ω̄ is for small ǫ given by

|ρn(0, α)| = 1− 4

Pn
ǫ
1

2
−γ +O(ǫ1−2γ), (2.55)

and

|ρn(ω̄, α)| = 1− 2
√
2Pn

√
aǫγ/2√

dn
− n

√
2
√
dnǫ

γ/2

√
a

+O(ǫγ). (2.56)

Proof. From the polynomial expansion of L(ω, α) given in (2.53), we observe that

L(0, α) =
∣

∣

∣

(

1
λ2
1
(0)

)n∣
∣

∣
= 1. Substituting this into the formula for the convergence

factor (2.35) for OWR with n overlap leads to |ρn(0, α)| = |ρ0(0, α)|
∣

∣

∣

(

1
λ2
1
(0)

)n∣
∣

∣ =

|ρ0(0, α)| and equation (2.47) results in

|ρn(0, α)| = 1− 4

Pn
ǫ
1

2
−γ +O(ǫ1−2γ).

The analysis to find the expression for |ρn(ω̄, α)| is similar. Substituting ω̄ = dnǫ
γ

into the expressions for A(ω, α) and B(ω, α) given in (2.52) leads to

A(ω̄, α) =
ω̄

a
−

√
2Pnǫ

γ
√
ω̄√

a
+

√
2ω̄3/2

2a3/2
+O(ω̄2)

=
dnǫ

γ

a
−

√
2Pn

√
dnǫ

3γ/2

√
a

+
d
3/2
n ǫ3γ/2√
2a3/2

+O(ǫ2γ)

=
dnǫ

γ

a

(

1−
√
2Pn

√
aǫγ/2√

dn
+

√
dnǫ

γ/2

√
2
√
a

+O(ǫγ)

)

,

B(ω̄, α) =
ω̄

a
+

√
2Pnǫ

γ
√
ω̄√

a
+

√
2ω̄3/2

2a3/2
+O(ω̄2)

=
dnǫ

γ

a
+

√
2Pn

√
dnǫ

3γ/2

√
a

+
d
3/2
n ǫ3γ/2√
2a3/2

+O(ǫ5γ/2)

=
dnǫ

γ

a

(

1 +

√
2Pn

√
aǫγ/2√

dn
+

√
dnǫ

γ/2

√
2
√
a

+O(ǫγ)

)

.
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Dividing A(ω̄, α) by B(ω̄, α) and using the Taylor expansion 1
1+z = 1−z+ z2

2 +O(z3)
gives us

A(ω̄, α)

B(ω̄, α)
=

(

1−
√
2Pn

√
aǫγ/2√

dn
+

√
dnǫ

γ/2

√
2
√
a

++O(ǫγ)

)

(

1−
√
2Pn

√
aǫγ/2√

dn
−

√
dnǫ

γ/2

√
2
√
a

++O(ǫγ)

)

= 1− 2
√
2Pn

√
aǫγ/2√

dn
+O(ǫγ).

Similarly, from the equation (2.53) we obtain the expression for L(ω̄, α); namely

L(ω̄, α) = 1− n
√
2ω̄1/2

√
a

− nω̄

a
+
n2ω̄

a
+O(ω̄3/2) = 1− n

√
2
√
dnǫ

γ/2

√
a

+O(ǫγ).

Multiplying the above expression by the expansion for A(ω̄,α)
B(ω̄,α) , we find

|ρn(ω̄, α)| =

(

1− 2
√
2Pn

√
aǫγ/2√

dn
+O(ǫγ)

)(

1− n
√
2
√
dnǫ

γ/2

√
a

+O(ǫγ)

)

= 1− 2
√
2Pn

√
aǫγ/2√

dn
− n

√
2
√
dnǫ

γ/2

√
a

+O(ǫγ),

which completes the proof.

We are now ready to prove a remarkably simple formula for the optimized parameter
depending on the overlap n > 0 which is quite different from the nonoverlapping
case:

Theorem 2.4.4. For the OWR algorithm in the overlapping case, n > 0, and for

small ǫ > 0, if α∗
R,n =

(

ǫ
n

)1/3
, then the convergence factor ρn satisfies

|ρn(ω, α)| ≤ |ρn(0, α∗
R,n)| ∼ 1− 4n1/3ǫ1/6 +O(ǫ1/3). (2.57)

Proof. Since the solution of our min-max problem (2.45) is obtained numerically by
equioscillation for ω = 0 and ω = ω̄, we equate the expansions for |ρn(0, α)| and
|ρn(ω̄, α)| given by (2.55) and (2.56). Comparing the exponents and coefficients of
their dominating terms, we obtain

γ

2
=

1

2
− γ and

4

Pn
=

2
√
2Pn

√
a√

dn
+
n
√
2
√
dn√

a
.
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The first equation implies that γ = 1/3, and substituting the expression for dn given
by (2.51) results in

4

Pn
=

2
√
2Pna+ n

√
2dn√

a
√
dn

=
2
√
2Pna+ 2

√
2Pna√

2
√
Pna

√
n

= 4
√
n
√

Pn,

that is, Pn =
(

1
n

)1/3
. Substituting Pn =

(

1
n

)1/3
and γ = 1/3 in (2.55) gives us (2.57)

and this completes the proof.

2.5 Multiple Sub-circuits

We studied so far only the decomposition of the system of equations (2.1) into only
two sub-systems. However, for the practical use on parallel computers, we need to
split the system into many subsystems and apply the WR or OWR algorithm to
them. We thus split the RC circuit of infinite length in Figure 2.2 into Ns subcircuits
which are denoted by vr, r = 1, 2, . . . , Ns. Assume that each sub-circuit vr contains
Mr nodes. Applying the OWR algorithm (with α, β as the optimization parameters)
with n nodes overlap leads to

d
dtv

k+1
1 (t) =







. . .
. . .

. . .

a b a
a b+ a

α+1






vk+1
1 (t) +







...
0

avk2,n+1(t)− a
α+1v

k
2,n(t)






,

d
dtv

k+1
r (t) =











b− a
β−1 a

a b a
. . .

. . .
. . .

a b+ a
α+1











vk+1
r (t) +















avkr−1,Mr
(t) + a

β−1v
k
r−1,Mr+1(t)

0
...
0

avkr+1,n+1(t)− a
α+1v

k
r+1,n(t)















,

d
dtv

k+1
Ns

(t) =







b− a
β−1 a

a b a
. . .

. . .
. . .






vk+1
Ns

(t) +







avkNs−1,Mr
(t) + a

β−1v
k
Ns−1,Mr+1(t)

0
...






,

(2.58)
where r = 2, 3, . . . , Ns−1 and we have considered the source term f = 0 for simplicity.
For α = ∞, β = −∞, we obtain the classical WR algorithm. Note that one can use
different sets of αi and βi at different interfaces, but this will make the analysis
complicated and hence we stick to the same α and β.

In the case of OWR for two subdomains, we saw that with the optimal transmission
conditions (2.23), convergence is achieved in 2 iterations and the parameters α, β
represent non-local operators in time. In the case of Ns sub-circuits, with the use
of optimal transmission conditions, one can show that convergence can be achieved
in Ns iterations [37], and this result still holds in the overlapping case. Again these
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Figure 2.13: Effect of overlap for time T = 2000 with ωmin → 0 and ǫ = 0 (left) and
with ǫ = 10−4 (right)

parameters α, β are non-local operators in time and the analysis becomes very com-
plicated. Depending on the choice of asymptotic analysis, we will either use α∗

T,0 and
α∗
T,n given in Theorem 2.4.1 and Theorem 2.4.2 respectively or α∗

R,0 and α∗
R,n given

in Theorem 2.4.3 and Theorem 2.4.4 respectively, from our two sub-circuit analysis
and test their performance numerically for the multiple sub-circuit case.

2.6 Numerical Results

We support now our theoretical and asymptotic results with numerical experiments.
Throughout these experiments, we shall consider R = 0.5kΩ, C = 0.63pF and
a = 1

RC . Note that our analysis is for infinitely long RC circuits, but due to the
computational cost and processor memory limitations, we consider the length of the
circuit N = 100 or N = 200, depending on the numerical test to be performed.
Further, in all these numerical experiments, we consider homogeneous source terms,
zero initial conditions and random initial guess for both WR and OWR algorithms,
and thus simulate directly for the error equations. We consider both WR and OWR
algorithms for the two subdomain case, that is, the circuit is split into only two sub-
circuits. For time integration, we consider the backward Euler scheme with ∆t = 0.1
and final time T = 2000. In both plots of Figure 2.13 we clearly observe the effect of
optimized transmission conditions (2.16) on the WR algorithm. The thick lines de-
pict the error plots of the OWR algorithm for different overlaps, n = 0, 2, 4, while the
other lines depict the error for the classical WR algorithm. For the OWR algorithm,
we use the optimized α∗ derived by both asymptotic analyses, that is, ωmin → 0 and
ǫ → 0. We observe numerically that the OWR algorithm is faster than the classical
WR algorithm. These plots also show that increasing the number of overlapping
circuit elements increases the rate of convergence.

We next compare the numerically and asymptotically optimized values of α∗
n. The

numerically optimized α∗
n is found by two different approaches: for n = 0, we fix the
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Figure 2.14: Comparison of optimized α∗
T,n with T = 1000 for n = 0 (left) and n = 1

(right)
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Figure 2.15: Convergence factor in the Laplace space for optimal α∗
T,n for n = 0 (left)

and n = 1 (right) for asymptotic analysis with respect to ωmin → 0.

number of iterations to 50 and find the error of the OWR algorithm for different values
of α at the end of 50 iterations. The left plot of Figure 2.14 illustrates this approach,
while the right plot depicts the other approach for n = 1. In this second approach,
for each value of α, we note down the number of iterations required to reach the error
to 10−4. In this approach, since the number of iterations is discrete, we observe that
the plot has step functions, while it is continuous in the case of the first approach.
The asymptotic values of α∗ are found by using the asymptotic expressions for α∗

T,n

derived in Theorem 2.4.1 and 2.4.2 respectively, which are derived for asymptotic
analysis with respect to ωmin → 0 with ǫ = 0. Next, we plot the modulus of the
convergence factor |ρn(ω, α∗

T,n)| in the Laplace space. Both plots of Figure 2.15
show the improvement in the convergence factor by using the optimized transmission
conditions. They also show that the convergence plots are very close to each other
when the optimized α∗

T,n is found numerically or by asymptotic expressions. In the
left plot of Figure 2.16, we compare the number of iterations by OWR to reach



CHAPTER 2. RC CIRCUITS 50

10 20 30 40 50 60 70

Iteration

10
-6

10
-4

10
-2

10
0

E
rr

o
r

WR0

OWR0
asym

OWR0
num

WR2

OWR2
asym

OWR2
num

10 20 30 40 50 60 70

Iteration

10
-6

10
-4

10
-2

10
0

E
rr

o
r

WR0

OWR0
asym

OWR0
num

WR2

OWR2
asym

OWR2
num

Figure 2.16: Convergence for T = 2000 for numerically and asymptotically optimized
α∗
n using asymptotes ωmin → 0 with ǫ = 0 (left) and ǫ→ 0 with ǫ = 10−4 (right)
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Figure 2.17: Comparison of optimized α∗
R,n for T = 1000 with ǫ = 10−4 and n = 0

(left) and for n = 1 (right)

an error of 10−6 using the values of the optimized α∗
T,n found numerically and by

asymptotic expressions given in Theorem 2.4.1 and 2.4.2 respectively. We observe
that almost the same number of iterations are required in both cases. From Figures
2.14, 2.15 and 2.16, we conclude that the optimized α∗

T,n found asymptotically with
respect to ωmin → 0 are very close to that found numerically.

Similar numerical experiments have also been performed to support the results for the
asymptotic analysis with respect to ǫ→ 0. The left plot of Figure 2.17 shows that our
asymptotic formula for α∗

R,0 from Theorem 2.4.3 underestimates the optimal choice a
bit, while for n = 1, these values are close (see the right plot of Figure 2.17). However,
when we plot the convergence factor in the Laplace space using these different values
of α∗

R,n, they are very close to each other. This behavior is clearly visible in both
plots of Figure 2.18. In both plots of Figure 2.17, the small difference in the values
of optimized α∗ for OWR using the numerically and asymptotically optimized α∗

R,n
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Figure 2.18: Convergence factor in the Laplace space for optimal α∗
R,n for n = 0 on

(left) and n = 1 on (right) for asymptotic analysis with respect to ǫ→ 0.
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Figure 2.19: Convergence for the heat equation for T = 2000 for numerically and
asymptotically optimized α∗

n using asymptotes ωmin → 0 (left) and ǫ→ 0 (right)

is due to the fact that the asymptotic analysis has been done for ωmin = 0, that is,
for an infinite time interval, while for the numerical experiments we use a finite time
t ∈ (0, 1000].

In Section 2.1.1, we have seen that for ǫ → 0, the RC circuit of infinite length is
an approximation of the one dimensional heat equation. We now apply the WR
and OWR algorithm for different overlaps n = 0 and n = 2 to the heat equation
(2.2). For the OWR algorithm, we have used the values of the optimized α∗ found by
solving the min-max problem numerically and by using the asymptotic expressions
for α∗

T,n and α∗
R,n. The left plot of Figure 2.19 shows the convergence for the non-

overlapping case using α∗
T,0 and α

∗
R,0 from Theorem 2.4.1 and 2.4.3 respectively. Note

that “OWR2time” and “OWR2reac” denotes the convergence for OWR using α∗
T,n

and α∗
R,n respectively. The convergence for the overlapping case n = 2 is illustrated

in the right plot of Figure 2.19. From these plots, we conclude that the optimized
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Figure 2.20: Convergence for T = 1000 for multiple sub-circuits Ns = 5 (left) and
for Ns = 50 (right) using our asymptotic analysis with respect to ǫ→ 0.

α∗ found by asymptotic analysis with respect to ωmin → 0 and ǫ = 0 can be used for
the simulation of the heat equation.

Finally, we consider the case when we split our RC circuit with size Ns = 1000
into multiple sub-circuits. We choose ǫ = 10−5 and T = 1000, with zero initial
condition, homogeneous source and random initial guesses. We use our optimized
α in Theorem 2.4.3 and 2.4.4 from the two sub-circuit analysis. We first consider
Ns = 5 and then Ns = 50 sub-circuits. We see in Figure 2.20 that our asymptotically
optimized parameters from the two sub-circuits work extremely well for the many
sub-circuit case, and make the OWR solver into a rather effective method for solving
many sub-circuit problems.

2.7 Conclusion

We presented a first analysis for the influence of overlap on the convergence factor
for both the WR and OWR methods applied to infinitely long RC circuits. We
found that increasing the overlap increases the convergence rate for both WR and
OWR, but the impact of optimized transmission conditions is far more important
than the impact of overlap. An important task of finding the explicit expressions for
the optimizing parameters in the transmission conditions has been achieved.

The asymptotic analysis has been performed in two ways: first by letting ǫ = 0 and
ωmin → 0 and the other by letting ωmin = 0 and ǫ→ 0, where b = −(2+ ǫ)a and ωmin

denotes the minimum frequency in the numerical simulation. Both cases are quite
interesting and physically relevant. The first case, ωmin → 0 with ǫ = 0 corresponds
to the simulation of the given infinite RC circuit for very large time intervals, since
ωmin = π/T and hence ωmin → 0 implies T → ∞. Since ǫ = 0, it means that there
is no leakage of current in the dielectric. The second case; ǫ → 0 with ωmin = 0
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corresponds to the simulation on the infinitely large time interval. This analysis can
be used when there is small leakage of current in the dielectric.

From both analyses, we conclude that the overlap changes the optimized parame-
ters, and we provided closed form asymptotic formulas for them. Using OWR with
these parameters leads to much lower iteration counts, also when OWR is used for
many sub-circuits. We also showed that our optimized parameters can be used when
solving heat equations with waveform relaxation techniques. A final important con-
tribution is our interpretation of these optimized transmission conditions as circuit
elements, which should help circuit designers to better understand and embrace this
new technology.



Chapter 3

Waveform Relaxation Methods

Applied to infinitely long RLCG

Transmission Lines

In this chapter, we study the application of both WR and OWR methods to infinitely
long RLCG transmission lines. RLCG Transmission Lines are conductors designed
to carry electricity or an electrical signal over large distances with minimum losses
and distortion (see the left image of Figure 3.1). These lines are used for purposes
such as connecting radio transmitters and receivers with their antennas, distributing
cable television signals, computer network connections, etc.

Transmission lines have four different structures namely coaxial cable, parallel wire,
micro strip line and strip line (see the image on the right of Figure 3.1). The common

Figure 3.1: Transmission lines carrying electricity (left) and types of transmission
lines (right).

54
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Figure 3.2: Two conductor system of transmission line.
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Figure 3.3: Infinite RLCG transmission line.

feature among all of them is that they are two conductor systems across which time
varying voltage is applied at one end and load resistance at the other end (as shown
in Figure 3.2).

For an ideal conductor, since its resistance is zero, the potential difference across its
ends is zero, that is, the voltage at points A and B is the same. However when we
apply a time varying voltage or current source, then at high frequency a potential
difference is created between the points A and B. This results in development of
magnetic fields around both the conductors, and the electric field between them.
Further, the linkage of the magnetic field with the current gives us an inductance
(L) while the separation of these two conductors by the dielectric material gives us
a capacitance (C). Thus, the inductance is created along the conductors and the
capacitance between them. As the frequency increases, the presence of inductance
and capacitance creates a resistance (R) along the conductors. Also, the conductors
may have small resistance since they are not ideal. The conductance (G) appears
because of the small leakage of current in the dielectric. This conductance is in parallel
to the capacitance. However these parameters are not located at any particular point
but are equally distributed, that is, the elements R, L, C, and G represent resistance,
inductance, capacitance, and conductance per unit length respectively. Therefore, the
two conductor transmission line (depicted in Figure 3.2) can be viewed as an RLCG
circuit as shown in Figure 3.3.

The ultimate aim of this chapter is to find optimized parameters involved in trans-
mission conditions when the OWR method is applied to this infinitely long RLCG
transmission line. In Section 3.1, we use the MNA formulation to develop a math-
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ematical model of this circuit and then define WR and OWR methods in Sections
3.2-3.3. We consider both nonoverlapping and overlapping WR methods and study
their convergence. Further, we explore different types of splittings for both WR and
OWR methods. Finally, we support our theoretical results with numerical experi-
ments.

3.1 Mathematical Model

For the infinitely long RLCG transmission line shown in Figure 3.3, we are inter-
ested in determining both the voltages vj at the nodes and currents ij in the circuit
branches. Using the MNA formulation explained in Section 1.2, we develop a math-
ematical model of this circuit, which is an infinite system of differential equations in
time,

dx

dt
=





















. . .
. . .

. . .

a b −a
−c b̃ c

a b −a
−c b̃ c

. . .
. . .

. . .





















x+ f , (3.1)

where

a :=
1

L
, b := −R

L
, c := − 1

C
, b̃ := −G

C
, (3.2)

and f = (Is/C, 0, 0, . . . , 0)
⊤. The unknown vector x contains the voltages v(t) and

currents i(t) which are arranged in a systematic manner: x(t) := (. . . , x−1(t), x0(t), x1(t), . . . )
⊤,

such that x2j(t) = ij(t) and x2j−1(t) = vj(t) for all j ∈ Z. The odd index rows, which
have c and b̃ elements correspond to voltage unknowns while the even rows correspond
to current unknowns.

Assumption 3.1.1. We assume that all R, L, C, and G are bounded in order to
have a well posed problem.

Before applying and analyzing WR methods to this circuit, we show its relation with
the well known Maxwell’s equations in 1D.

3.1.1 Relation with Maxwell’s equations

Electromagnetism is the study of electromagnetic forces present in nature, which
are carried by electromagnetic fields. The electromagnetic field is composed of the
electric field E and the magnetic field H which are dependent on each other. These
coupled fields are mathematically expressed by the well-known Maxwell’s equations
[61], and are represented as

∇×E = −∂B
∂t
, ∇×H = −∂D

∂t
+ J, ∇ ·D = ρ, ∇ ·B = 0, (3.3)



CHAPTER 3. RLCG 57

where B and D are the electric and the magnetic flux density, ρ is the electric charge
density and J is the electric current density. All these physical quantities depend
on the space variable r ∈ Ω and the time t ∈ (t0, T ], for some initial time t0 and
final time T . Further, these equations (3.3) are related to each other via additional
constitutive relations,

D = ǫE, B = µH, J = σE+ Js,

where the permittivity ǫ, the permeability µ, and the conductivity σ depend on r

and Js is the electric source density. Substituting these relations into (3.3) leads to

∇×E = −µ∂H
∂t

, and ∇×H = −ǫ∂E
∂t

+ σE+ Js, (3.4)

where we have not considered the last two equations ∇ ·D = ρ and ∇ ·B = 0 since
one can show that if these conditions are satisfied at initial time t = t0, that is,
∇ · (ǫE0) = ρ(0) and ∇ · (µH0) = 0, then they remain satisfied for all time t. Here,
E0 and H0 denote the electric field and magnetic field intensity at initial time t0.
The Maxwell’s equations (3.4) in 1D take the form

∂H

∂t
+

1

µ

∂E

∂x
= 0, and

∂E

∂t
+

1

ǫ

∂H

∂x
= −σ

ǫ
E, (3.5)

where we have considered the electric source density Js = 0.

The coupled differential equations of system (3.1) for the RLCG circuit can be ex-
plicitly written as

∂x2j
∂t

= ax2j−1+bx2j−ax2j+1, and
∂x2j+1

∂t
= −cx2j+b̃x2j+1+cx2j+2, for j ∈ Z.

The odd index rows correspond to voltage unknowns and the even index rows corre-
spond to current unknowns and hence the above equations reduces for j ∈ Z to,

∂ij
∂t

=
1

L
vj −

R

L
ij −

1

L
vj+1,

∂vj+1

∂t
=

1

C
ij −

G

C
vj+1 −

1

C
ij+1.

The parameters R, L, C, G are defined per unit length, that is, R = RT∆x, L =
LT∆x, C = CT∆x and G = GT∆x; where RT , LT , CT and GT represent the total
quantities in the circuit. Interpreting these differences as derivatives, we arrive at

∂i

∂t
+

1

LT

∂v

∂x
= −RT

LT
i, and

∂v

∂t
+

1

CT

∂i

∂x
= −GT

CT
v. (3.6)

Under the condition GT = 0, which means that there is no leakage of current in the
dielectic, equation (3.6) can be compared with the Maxwell’s equations in 1D (3.5)
and we arrive at i ∼ E, v ∼ H, LT ∼ ǫ, CT ∼ µ and RT ∼ σ. We can also consider
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the other case, RT = 0, which means that that the conductors of the transmission
lines are ideal and have no reactance. Comparing again (3.6) with Maxwell’s equation
in 1D, we see i ∼ H, v ∼ E, LT ∼ µ, CT ∼ ǫ and GT ∼ σ. Therefore, both RLC and
LCG transmission lines can be viewed as approximations of Maxwell’s equations in
1D.

3.2 Waveform Relaxation Methods

In this section, we analyze the application of the classical WR methods to the RLCG
transmission line presented in Figure 3.3.

We consider two main cases: nonoverlapping and overlapping nodes. In the overlap-
ping case, since the infinite system (3.1) consists of two different equations, one for
current and the other for voltage, the type of partitioning is interesting and we will
study whether the type of partitioning effects the convergence. In general, WR meth-
ods decompose the system (3.1) into multiple subsystems, but then the convergence
analysis becomes complicated, and to understand the key features of this method,
we decompose the system (3.1) into two subsystems with unknowns x(s1) and x(s2),
where both unknowns depend on time t but for simplicity, we have removed t from
the notation.

3.2.1 Nonoverlapping WR

We first study the nonoverlapping WR method. To start with this method, we divide
system (3.1) at node x0 into two subsystems with unknowns x(s1) := (. . . , x−2(t), x−1(t), x0(t))

⊤

and x(s2) := (x1(t), x2(t), . . . )
⊤. Both subsystems have equal length and their dif-

ferential equations are

d
dtx

k+1(s1) =







. . .
. . .

. . .

−c b̃ c
a b






xk+1(s1) +







...
0

−axk+1
1 (s1)






+







...
f−1

f0






,

d
dtx

k+1(s2) =







b̃ c
a b −a

. . .
. . .

. . .






xk+1(s2) +







−cxk+1
0 (s2)
0
...






+







f1
f2
...






,

(3.7)

where k is the iteration index and the unknowns xk+1
1 (s1) and x

k+1
0 (s2) are given by

transmission conditions,

xk+1
1 (s1) = xk1(s2), and xk+1

0 (s2) = xk0(s1). (3.8)

These transmission conditions exchange either current or voltage at the interface. For
the convergence study, we consider the homogeneous problem f = 0 and zero initial
conditions x(0) = 0. The analysis of these two subsystems in the time domain is very
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difficult and hence using the Laplace transformation defined in (2.2.1), we transform
these systems of differential equations into an algebraic system of equations. The
Laplace transformation with s ∈ C

+ for the subsystems (3.7) yields

sx̂k+1(s1) =







. . .
. . .

. . .

−c b̃ c
a b













...

x̂k+1
−1 (s1)

x̂k+1
0 (s1)






+







...
0

−ax̂k1(s2)






,

sx̂k+1(s2) =







b̃ c
a b −a

. . .
. . .

. . .













x̂k+1
1 (s2)

x̂k+1
2 (s2)

...






+







−cx̂k0(s1)
0
...






,

(3.9)

where we have already included the transmission conditions (3.8).

Note that the circuit elements R, L, C, and G are fixed and hence we denote the
convergence factor ρcla(s) ≡ ρcla(s, a, b, b̃, c).

Theorem 3.2.1. The convergence factor of the classical nonoverlapping WR algo-
rithm for an RLCG transmission line of infinite length is

ρcla(s) :=

{

−λ1 , |λ1| < 1,

−λ2 , |λ1| > 1,
(3.10)

where λ1,2 :=
2ac−(s−b̃)(s−b)±

√
(2ac−(s−b̃)(s−b))2−4a2c2

2ac with the property λ1λ2 = 1.

Proof. Solving the first subsystem of (3.9) corresponds to solving coupled recurrence
equations, for j = . . . ,−2,−1, 0,

−ax̂k+1
2j−1(s1) + (s− b)x̂k+1

2j (s1) + ax̂k+1
2j+1(s1) = 0,

cx̂k+1
2j−2(s1) + (s− b̃)x̂k+1

2j−1(s1)− cx̂k+1
2j (s1) = 0.

To simplify, we introduce the new notation p̂k+1
j := x̂k+1

2j (s1) and q̂
k+1
j := x̂k+1

2j−1(s1)
for j = . . . ,−2,−1, 0 to get

− aq̂k+1
j + (s− b)p̂k+1

j + aq̂k+1
j+1 = 0, and cp̂k+1

j−1 + (s− b̃)q̂k+1
j − cp̂k+1

j = 0. (3.11)

Solving the first equation for p̂k+1
j and substituting it into the second equation yields

acq̂k+1
j−1 +

(

(s− b̃)(s− b)− 2ac
)

q̂k+1
j + acq̂k+1

j+1 = 0. The general solution of this

recurrence equation is
q̂k+1
j = Ak+1λj1 +Bk+1λj2,

where λ1,2 :=
2ac−(s−b̃)(s−b)±

√
(2ac−(s−b̃)(s−b))2−4a2c2

2ac are the roots of the characteristic
equation and the constants Ak+1, Bk+1 need to be determined. We first consider the
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case |λ1| < 1. Since
∣

∣

∣λ
2j−1
1

∣

∣

∣ → ∞ as j → −∞ and q̂k+1
j are bounded, we have

Ak+1 = 0. The coupled equations (3.11) give

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj2 − λj+1
2

)

. (3.12)

Similarly, from the second subsystem of (3.9), for j ∈ N we define ûk+1
j := x̂k+1

2j (s2)

and ŵk+1
j := x̂k+1

2j−1(s2) to arrive at

ŵk+1
j = Dk+1λj1, and ûk+1

j =
aDk+1

s− b

(

λj1 − λj+1
1

)

. (3.13)

Finally, to determine the constants Bk+1 and Dk+1, we use the transmission condi-
tions (3.8) and the relations between λ1 and λ2. Since λ1 and λ2 are roots of the

characteristic equation ac+
(

(s− b̃)(s− b)− 2ac
)

λ+acλ2 = 0, they satisfy λ1λ2 = 1

and λ1+λ2 = 2− (s−b̃)(s−b)
ac . Further, the last equation of the first subsystem of (3.9)

gives −aq̂k+1
0 + (s− b)p̂k+1

0 = −aŵk1 which simplifies to

−aBk+1 + (s− b)
a

(s− b)
Bk+1 (1− λ2) = −aDkλ1

=⇒ Bk+1(−1 + 1− λ2) = −Dkλ1

=⇒ Bk+1 = Dkλ1
λ2

= Dkλ21.

Similarly, the first equation of the second subsystem of (3.9) gives (s− b̃)x̂k+1
1 (s2)−

cx̂k+1
2 (s2) = −cx̂k0(s1) which simplifies to

(s− b̃)wk+1
1 − cûk+1

1 = −cpk0

=⇒ (s− b̃)Dk+1λ1 −
acDk+1

s− b

(

λ1 − λ21
)

= −acB
k

s− b
(1− λ2)

=⇒ Dk+1λ1

(

(s− b)(s− b̃)

ac
− (1− λ1)

)

= −Bk(1− λ2)

=⇒ Dk+1λ1 (2− λ1 − λ2 − 1 + λ1) = −Bk(1− λ2)

=⇒ Dk+1λ1(1− λ2) = −Bk(1− λ2)

=⇒ Dk+1 = −Bkλ2.

Therefore, we have Bk+1 = −λ21λ2Bk−1 = −λ1Bk−1 and Dk+1 = −λ1Dk−1 which
implies x̂k+1

j (s1) = ρcla(s)x̂
k−1
j (s1), and x̂

k+1
j (s2) = ρcla(s)x̂

k−1
j (s2), where ρcla(s) is

defined in (3.10). Similarly, we derive the convergence factor when |λ1| > 1.

Remark 3.2.1. We observe that the convergence factor ρcla is the same for all the
nodes irrespective of which subsystem they belong to. Further, we observe that
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|λ1| → 1 as s → 0, which implies |ρcla(s)| → 1. This means that the convergence of
this WR method slows down when we consider large time intervals since large time
intervals correspond to small frequency ω in s, where s = σ + iω.

To overcome this issue of slow convergence, we consider the overlapping case, where
some nodes of both subsystems of (3.7) are overlapped.

3.2.2 Overlapping WR

We have analyzed the effect of overlapping nodes on the convergence rate of the
classical WR methods when applied to infinitely long RC circuits in Section 2.2 of
Chapter 2, and proved that overlapping nodes increases the rate of convergence.
In this section, we will study the effect of convergence for WR methods applied to
RLCG transmission lines which are infinitely long. However now since the system
(3.1) contains two different types of equations, one for the current unknown and
the other for the voltage unknowns, analyzing the type of partitioning of the RLCG
circuit and then overlapping nodes will be interesting.

We first consider splitting the circuit at a voltage node unknown and add overlap.
To start with this algorithm, we divide system (3.1) at an odd row, say at x−1(t)
into two subsystems with unknowns x(s1) and x(s2), and overlap n nodes of the
circuit (which corresponds to an overlap of 2n nodes of the two subsystems in (3.14)
below). Thus, initially, both the subsystems have equal length and then we increase
the size of x(s1) by 2n − 1 to include the overlap while the size of x(s2) remains
unchanged. This leads to two new subsystems of differential equations: for x(s1) :=
(. . . , x−1, x0, . . . , x2n−3)

⊤ and x(s2) := (x−1, x0, . . . )
⊤,

d
dtx

k+1(s1) =







. . .
. . .

. . .

a b −a
−c b̃






xk+1(s1) +







...
0

cxk+1
2n−2(s1)






+







...
f2n−4

f2n−3






,

d
dtx

k+1(s2) =







b̃ c
a b −a

. . .
. . .

. . .






xk+1(s2) +







−cxk+1
−2 (s2)
0
...






+







f−1

f0
...






,

(3.14)

where k is the iteration index and the unknowns xk+1
2n−2(s1) and xk+1

−2 (s2) are given
by the transmission conditions,

xk+1
2n−2(s1) = xk2n−2(s2), and xk+1

−2 (s2) = xk−2(s1), (3.15)

which now exchange only current at the interfaces. For the convergence study, we
consider the homogeneous problem f = 0 and zero initial conditions x(0) = 0. The
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Laplace transformation with s ∈ C
+ for the subsystems (3.14) yields

sx̂k+1(s1) =







. . .
. . .

. . .

a b −a
−c b̃













...

x̂k+1
2n−4(s1)

x̂k+1
2n−3(s1)






+







...
0

cx̂k2n−2(s2)






,

sx̂k+1(s2) =







b̃ c
a b −a

. . .
. . .

. . .













x̂k+1
−1 (s2)

x̂k+1
0 (s2)

...






+







−cx̂k−2(s1)
0
...






.

(3.16)

Theorem 3.2.2. The convergence factor of the classical overlapping WR algorithm
for an RLCG transmission line of infinite length with splitting at a voltage node and
with n ≥ 1 circuit nodes overlap is given by

ρvn,cla(s) =

{

(λ1)
2n , |λ1| < 1,

(λ2)
2n , |λ1| > 1,

where λ1 and λ2 are defined in Theorem 3.2.1.

Proof. The proof of this theorem is similar to the proof of Theorem 3.2.1. Let
us assume |λ1| < 1, and define p̂k+1

j := x̂k+1
2j (s1) and q̂k+1

j := x̂k+1
2j+1(s1), for j =

−∞, . . . ,−1, 0, . . . , n− 1. With these new notations, the system of equations (3.16)
reduces to

−aq̂k+1
j−1 + (s− b)p̂k+1

j + aq̂k+1
j = 0, and cp̂k+1

j + (s− b̃)q̂k+1
j − cp̂k+1

j+1 = 0,

which results in

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj−1
2 − λj2

)

.

Similarly, for the second subsystem of (3.16), we define ûk+1
j := x̂k+1

2j (s2) and ŵ
k+1
j :=

x̂k+1
2j−1(s2) for for j = 0, 1, 2, . . . to arrive at

ŵk+1
j = Dk+1λj1 and ûk+1

j =
aDk+1

s− b

(

λj1 − λj+1
1

)

.

The constants Bk+1 and Dk+1 are determined using the transmission conditions
defined in (3.15). The last equation of the first subsystem of (3.16) simplifies to
Bk+1 = −Dk(λ21)

n−1, while the the first equation of the second subsystem gives
Dk+1 = −Bkλ21. Combining these two equations results in x̂k+1

j (s1) = (λ1)
2nx̂k−1

j (s1)

and x̂k+1
j (s2) = (λ1)

2nx̂k−1
j (s2). Similarly, we derive the convergence factor when

|λ1| > 1.
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We now consider the other splitting, that is, at a current node, and study whether
it produces better convergence for the overlapping WR method. This is done in a
similar way as discussed above. We split the system (3.1) at an even row, say at x0(t)
into two subsystems and then add overlap. Let x(s1) := (. . . , x2n−3, x2n−2)

⊤ and
x(s2) := (x0, x1, . . . )

⊤ be the two subsystems. We then transform these subsystems
into the Laplace space to arrive for s ∈ C

+ at,

sx̂k+1(s1) =







. . .
. . .

. . .

−c b̃ c
a b













...

x̂k+1
2n−3(s1)

x̂k+1
2n−2(s1)






+







...
0

−ax̂k+1
2n−1(s1)






,

sx̂k+1(s2) =







b −a
−c b̃ c

. . .
. . .

. . .













x̂k+1
0 (s2)

x̂k+1
1 (s2)

...






+







ax̂k+1
−1 (s2)
0
...






,

(3.17)

where the unknowns x̂k+1
2n−1(s1) and x̂

k+1
−1 (s2) are given by the classical transmission

conditions
xk+1
2n−1(s1) = xk2n−1(s2), and xk+1

−1 (s2) = xk−1(s1), (3.18)

with k as the iteration number. Note that in this splitting, only voltages at the
interface nodes are transferred via the transmission conditions.

Theorem 3.2.3. The convergence factor of the classical overlapping WR algorithm
for an RLCG transmission line of infinite length with splitting at a current node and
with n ≥ 1 circuit nodes overlap is given by

ρcn,cla(s) =

{

(λ1)
2n , |λ1| < 1,

(λ2)
2n , |λ1| ≥ 1,

where λ1 and λ2 are defined in Theorem 3.2.1.

Proof. The proof is almost the same as the proof of Theorems 3.2.1 and 3.2.2. Hence
we will mention only the important steps. We first assume |λ1| < 1, and define
p̂k+1
j := x̂k+1

2j (s1) and q̂k+1
j := x̂k+1

2j−1(s1) for j = −∞, . . . , n − 1. With these new
notations, the first subsystem of equation (3.17) results in

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj2 − λj+1
2

)

.

Similarly, for the second subsystem, we define ûk+1
j = x̂k+1

2j (s2) and ŵ
k+1
j = x̂k+1

2j+1(s2)
for j = 0, 1, 2, . . . . The second subsystem of (3.17) reduces to

ŵk+1
j = Dk+1λj1, and ûk+1

j =
aDk+1

s− b

(

λj−1
1 − λj1

)

.
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The transmission conditions (3.18) along with the last and first equations of the first
and second subsystems of (3.17) produces

Bk+1 = λ2n1 λ2D
k, and Dk+1 = λ1B

k.

Combining these two equations results in x̂k+1
j (s1) = (λ1)

2nx̂k−1
j (s1) and x̂

k+1
j (s2) =

(λ1)
2nx̂k−1

j (s2). This completes the proof.

Remark 3.2.2. We observe that the convergence factor for the WR method is the
same for all the nodes irrespective of which subsystem they belong to. The conver-
gence becomes faster by increasing the number of nodes in the overlap. Further, the
convergence factor of the overlapping WR method does not depend on the type of
partitioning employed.

Remark 3.2.3. Note that λ1, λ2 satisfy the relation λ1 = λ2 = 1 under the condition
s = b or s = b̃, and hence the convergence factors ρcla(s), ρ

v
n,cla(s), and ρcn,cla(s),

defined in Theorems 3.2.1, 3.2.2 and 3.2.3 satisfy ρcla(s) = ρvn,cla(s) = ρcn,cla(s) = 1.

Substituting the expressions for b and b̃ given in (3.2) states that these WR algorithms
do not converge if s lies on the negative real axis of the complex plane.

Moreover the expressions of λ1 and λ2 defined in Theorem 3.2.1 state that |λ1|,|λ2| →
1 as s→ 0. Let s = σ+iω, with σ ≥ 0. Then large time T → ∞ corresponds to small
frequency ω → 0 in s. This shows the typical behavior of the classical WR method,
that is, its slow convergence when large time windows are used. We observed and
proved in Chapter 2, that the slow convergence of WR method can be overcome by
using better transmission conditions. In next section, we define new transmission
conditions for RLCG transmission lines and analyze its effect on convergence.

3.3 Optimized Waveform Relaxation Method

Motivated by the previous work on RLCG transmission lines by M. D. Khaleel and
el [1, 25], we introduce new transmission conditions for all three cases: nonover-
lapping OWR, overlapping OWR with splitting at a voltage node, and overlapping
OWR with splitting at a current node. The effect of new transmission conditions on
the convergence of the WR algorithm will be studied in this section. We start by
considering the nonoverlapping case.

3.3.1 Nonoverlapping OWR

In the classical WR algorithm, either voltage or current at the interface was trans-
ferred from one subcircuit to the other. However, this leads to slow convergence.
Hence we introduce new transmission conditions which are a particular combination
of voltage and current at the interface. This leads to a new algorithm, which we call
Optimized Waveform Relaxation (OWR). The optimized transmission conditions for



CHAPTER 3. RLCG 65

the nonoverlapping splitting are

xk+1
1 (s1) + αxk+1

0 (s1) = xk1(s2) + αxk0(s2),

xk+1
3 (s2) + βxk+1

0 (s2) = xk−1(s1) + βxk0(s1),
(3.19)

where α, β ∈ R are the optimizing parameters, and xj(s1) and xj(s2) denotes the
unknowns in the first and second subsystems of (3.7).

Remark 3.3.1. Under the conditions α = 0 and β = 0, the optimized transmission
conditions (3.19) reduce to the classical transmission conditions (3.8).

For the analysis of the convergence of OWR methods, we move to the Laplace space.
For this, we reorient the transmission conditions (3.19) and take their Laplace trans-
formation to arrive for β 6= 0 at,

x̂k+1
1 (s1) = −αx̂k+1

0 (s1) + x̂k1(s2) + αx̂k0(s2),

x̂k+1
0 (s2) = − x̂

k+1
3 (s2)

β
+
x̂k−1(s1)

β
+ x̂k0(s1).

Substituting these optimized transmission conditions changes both subsystems in
(3.9) leads to

sx̂k+1(s1) =







. . .
. . .

. . .

−c b̃ c
a (b+ aα)













...

x̂k+1
−1 (s1)

x̂k+1
0 (s1)






+







...
0

−ax̂k1(s2)− aαx̂k0(s2)






,

sx̂k+1(s2) =







b̃ c c
β

a b −a
. . .

. . .
. . .













x̂k+1
1 (s2)

x̂k+1
2 (s2)

...






+







−cx̂k0(s1)− c
β x̂

k
−1(s1)

0
...






.

(3.20)
We now find an expression for the convergence factor of this nonoverlapping OWR
method.

Theorem 3.3.1. The convergence factor of the nonoverlapping optimized waveform
relaxation algorithm for an RLCG transmission line of infinite length is

ρ(s, α, β) :=







(

(s−b)+aα(λ2−1)
(s−b)λ2+aα(1−λ2)

)(

(s−b)+aβ(1−λ2)
(s−b)λ1−aβ(1−λ2)

)

, |λ1| < 1,
(

(s−b)+aα(λ1−1)
(s−b)λ1+aα(1−λ1)

)(

(s−b)+aβ(1−λ1)
(s−b)λ2−aβ(1−λ1)

)

, |λ1| > 1.
(3.21)

Proof. The proof of this theorem is very similar to the proof of Theorem 3.2.1. Due
to the presence of the optimized transmission conditions (3.19), the constants Bk+1

and Dk+1 change. For the case |λ1| < 1, referring back to equations (3.12) and (3.13),
we have for the subsystem x(s1),

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj2 − λj+1
2

)

,
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and for the subsystem x(s2),

ŵk+1
j = Dk+1λj1, and ûk+1

j =
aDk+1

s− b

(

λj1 − λj+1
1

)

,

where q̂k+1
j := x̂k+1

2j−1(s1), p̂j := x̂k+1
2j (s1), ûj := x̂k+1

2j (s2) and ŵk+1
j := x̂k+1

2j−1(s2).

The last equation of the first subsystem of (3.20) leads to −ax̂k+1
−1 (s1) + (s − b −

aα)x̂k+1
0 (s1) = −aαx̂k0(s2)− ax̂k1(s2), which simplifies to

−aq̂k+1
0 + (s− b− aα)p̂k+1

0 = −aαûk0 − aŵk1

=⇒ −Bk+1 +
(s− b− aα)

s− b
Bk+1(1− λ2) = − aα

s− b
Dk(1− λ1)−Dkλ1

=⇒ Bk+1

(

−1 +

(

1− aα

s− b

)

(1− λ2)

)

= Dk

(

− aα

s− b
(1− λ1)− λ1

)

=⇒ Bk+1 (−(s− b)λ2 − aα(1− λ2)) = Dk (−(s− b)λ1 − aα(1− λ1))

=⇒ Bk+1 = Dk

(

(s− b)λ1 + aα(1− λ1)

(s− b)λ2 + aα(1− λ2)

)

. (3.22)

Similarly the first equation of the second subsystem of (3.20) produces

(s− b̃)x̂k+1
1 (s2)− cx̂k+1

2 (s2)−
c

β
x̂k+1
3 (s2) =

−c
β
x̂k−1(s1)− cx̂k0(s1)

=⇒ (s− b̃)ŵk+1
1 − cûk+1

1 − c

β
ŵk+1
2 = − c

β
q̂k0 − cp̂k0

=⇒ (s− b̃)Dk+1λ1 −
ac

s− b
Dk+1λ1(1− λ1)−

c

β
Dk+1λ21 = − c

β
Bk − ac

s− b
Bk(1− λ2)

=⇒ λ1D
k+1

(

(s− b̃)− ac(1− λ1)

s− b
− cλ1

β

)

= Bk

(

− c

β
− ac(1− λ2)

s− b

)

=⇒ Dk+1λ1

(

1− λ2 + λ1

(

−s− b

aβ

))

= Bk

(

−s− b

aβ
− (1− λ2)

)

,

which reduces to

Dk+1 = Bk

(

s− b+ aβ(1− λ2)

(s− b)λ1 − aβ(1− λ2)

)(

1

λ1

)

. (3.23)

The combination of (3.22) and (3.23) leads to

Bk+1 = Dk

(

(s− b)λ1 + aα(1− λ1)

(s− b)λ2 + aα(1− λ2)

)

=

(

(s− b)λ1 + aα(1− λ1)

(s− b)λ2 + aα(1− λ2)

)(

s− b+ aβ(1− λ2)

(s− b)λ1 − aβ(1− λ2)

)(

1

λ1

)

=

(

(s− b) + aα(λ2 − 1)

(s− b)λ2 + aα(1− λ2)

)(

(s− b) + aβ(1− λ2)

(s− b)λ1 − aβ(1− λ2)

)

Bk−1

=: ρ(s, α, β)Bk−1,
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and similarly, we get Dk+1 = ρ(s, α, β)Dk−1, where ρ(s, α, β) is defined by (3.21).
We do similar calculations for the other case |λ1| > 1.

Corollary 1. The optimal α and β for the nonoverlapping OWR applied to RLCG
transmission lines are given by

{

αopt :=
s−b

a(1−λ2) , and βopt := − s−b
a(1−λ2) , |λ1| < 1,

αopt :=
s−b

a(1−λ1) , and βopt := − s−b
a(1−λ1) , |λ1| > 1,

and hence satisfy the relation βopt = −αopt.

Proof. Equating the numerator of the convergence factor ρ(s, α, β) to zero results in
these expressions for αopt and βopt.

Remark 3.3.2. For the special choice of α = αopt and β = βopt, we have ρ(s, αopt, βopt) =
0, which states that the nonoverlapping OWR algorithm converges in two iterations
independently of the choice of initial guess required to start this algorithm. However,
αopt and βopt are functions of s. Their inverse Laplace transformation leads to non-
local operators in time which are expensive to calculate, and hence we approximate
them by constants and find their expressions. This optimization will be performed
in Section 3.4.

3.3.2 Overlapping OWR

In this section, we consider the overlapping OWR method. In Section 3.2.2, we con-
sidered the splitting of the infinite system (3.1) representing an infinitely long RLCG
transmission line in two ways: one with splitting at a voltage node and the other
with splitting at a current node, and proved that different splittings do not effect the
convergence of the classical overlapping WR algorithm. We will define new transmis-
sion conditions for both splittings and study how they affect the convergence rate of
the OWR algorithm. We further analyze the effect of splitting on the convergence.
We start with splitting at a voltage node.

We refer to Section 3.2.2 for the detailed description of the process of splitting the
system of equations (3.1), and adding n node overlap. For the splitting at a voltage
node, say at x−1, the new transmission conditions are defined as

xk+1
2n−2(s1) + αvxk+1

2n−3(s1) = xk2n−2(s2) + αvxk2n−3(s2),

xk+1
−1 (s2) + βvxk+1

−2 (s2) = xk−1(s1) + βvxk−2(s1),
(3.24)

where αv, βv ∈ R are optimizing parameters. These transmission conditions are
rewritten for βv 6= 0 as,

xk+1
2n−2(s1) = −αvxk+1

2n−3(s1) + xk2n−2(s2) + αvxk2n−3(s2),

xk+1
−2 (s2) = −

xk+1
−1 (s2)

βv
+
xk−1(s1)

βv
+ xk−2(s1).
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Substituting the Laplace transformation of the above equations into system (3.16)
leads to

sx̂k+1(s1) =







. . .
. . .

. . .

a b −a
−c (b̃− cαv)













...

x̂k+1
2n−4(s1)

x̂k+1
2n−3(s1)






+







...
0

cx̂k2n−2(s2) + cαvx̂k2n−3(s2)






,

sx̂k+1(s2) =









(

b̃+ c
βv

)

c

a b −a
. . .

. . .
. . .















x̂k+1
−1 (s2)

x̂k+1
0 (s2)

...






+







−cx̂k−2(s1)− c
βv x̂k−1(s1)

0
...






.

(3.25)

Theorem 3.3.2. The convergence factor of the overlapping OWR algorithm with
n nodes overlap and for a splitting at a voltage node for an infinitely long RLCG
transmission line is

ρvn(s, α
v, βv) :=







(

(s−b)αv+a(1−λ1)
(s−b)αvλ1+a(λ1−1)

)(

(s−b)−aβv(1−λ1)
(s−b)λ1−aβv(λ1−1)

)

(

λ21
)n

, |λ1| < 1,
(

(s−b)αv+a(1−λ2)
(s−b)αvλ2+a(λ2−1)

)(

(s−b)−aβv(1−λ2)
(s−b)λ2−aβv(λ2−1)

)

(

λ22
)n

, |λ1| > 1.
(3.26)

Proof. The proof is similar to the proof of Theorem 3.2.2, but the constants Bk+1

and Dk+1 change due to the presence of the optimized transmission conditions (3.24).
Under the condition |λ1| < 1, tracing back to the proof of Theorem 3.2.2, we have

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj−1
2 − λj2

)

,

ŵk+1
j = Dk+1λj1, and ûk+1

j =
aDk+1

s− b

(

λj1 − λj+1
1

)

.

Substituting these equations into the last equation of first subsystem of (3.25) results
in

(s− b̃+ cαv)x̂k+1
2n−3(s1) + cx̂k+1

2n−4(s1) = cx̂k2n−2(s2) + cαvx̂k2n−3(s2)

=⇒ (s− b̃+ cαv)q̂k+1
n−2 + cp̂k+1

n−2 = cûkn−1 + cαvŵkn−1

=⇒ Bk+1λn−2
2

(

(s− b̃+ cαv) +
ac

s− b

(

λ−1
2 − 1

)

)

= Dkλn−1
1

(

ac

s− b
(1− λ1) + cαv

)

=⇒ Bk+1λn−2
2

(

1− λ2 +
αv

a
(s− b)

)

= Dkλn−1
1

(

1− λ1 +
αv

a
(s− b)

)

=⇒ Bk+1 = Dk (λ
2
1)
n−1

λ1

(

(s− b)αv + a(1− λ1)

(s− b)αv + a(1− λ2)

)

.

(3.27)
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Similarly, the first equation of the second subsystem of (3.25) leads to

(

s− b̃− c

βv

)

x̂k+1
−1 (s2)− cx̂k+1

0 (s2) = −cx̂k−2(s1)−
c

βv
x̂k−1(s1)

=⇒
(

s− b̃− c

βv

)

ŵk+1
0 − cûk+1

0 = −cp̂k−1 −
c

βv
q̂k−1

=⇒ Dk+1

(

1− λ2 −
(s− b)

aβv

)

= Bkλ1

(

1− λ1 −
(s− b)

aβv

)

=⇒ Dk+1 = Bkλ1

(

(s− b)− aβv(1− λ1)

(s− b)− aβv(1− λ2)

)

. (3.28)

Combining (3.27) and (3.28) produces

Bk+1 =

(

λ21
)n−1

λ1

(

(s− b)αv + a(1− λ1)

(s− b)αv + a(1− λ2)

)

λ1

(

(s− b)− aβv(1− λ1)

(s− b)− aβv(1− λ2)

)

Bk−1

=
(

λ21
)n
(

(s− b)αv + a(1− λ1)

(s− b)αvλ1 + a(λ1 − 1)

)(

(s− b)− aβv(1− λ1)

(s− b)λ1 − aβv(λ1 − 1)

)

Bk−1,

that is, Bk+1 = ρvn(s, α
v, βv)Bk−1 and in a similar way, we getDk+1 = ρvn(s, α

v, βv)Dk−1.
This completes the proof.

Corollary 2. The optimal αv and βv for the overlapping OWR with n nodes overlap
and splitting at a voltage node are given by

{

αvopt :=
a(λ1−1)
s−b , and βvopt := − s−b

a(λ1−1) , , |λ1| < 1,

αvopt :=
a(λ2−1)
s−b , and βvopt := − s−b

a(λ2−1) , |λ1| > 1,

and hence satisfy the relation βvopt = − 1
αv
opt

for both cases.

We now consider the other splitting, that is, splitting at an even row (say at x0)
corresponding to a current node. Results for this splitting are similar to the splitting
at a voltage node, but for completeness, we show the required calculations. For this
splitting, the optimized transmission conditions are defined as

xk+1
2n−1(s1) + αcxk+1

2n−2(s1) = xk2n−1(s2) + αcxk2n−2(s2),

xk+1
0 (s2) + βcxk+1

−1 (s2) = xk0(s1) + βcxk−1(s1),
(3.29)

where αc, βc ∈ R are optimization parameters. These transmission conditions are
rewritten for βc 6= 0 as,

xk+1
2n−1(s1) = −αcxk+1

2n−2(s1) + xk2n−1(s2) + αcxk2n−2(s2),

xk+1
−1 (s2) = −x

k+1
0 (s2)

βc
+
xk0(s1)

βc
+ xk−1(s1).
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Substituting the above Laplace transformed transmission conditions into (3.17) leads
to

sx̂k+1(s1) =







. . .
. . .

. . .

−c b̃ c
a (b+ aαc)













...

x̂k+1
2n−3(s1)

x̂k+1
2n−2(s1)






+







...
0

−ax̂k2n−1(s2)− aαcx̂k2n−2(s2)






,

sx̂k+1(s2) =







(b− a
βc ) −a

−c b̃ c
. . .

. . .
. . .













x̂k+1
0 (s2)

x̂k+1
1 (s2)

...






+







ax̂k−1(s1) +
a
βc x̂k0(s1)

0
...






.

(3.30)

Theorem 3.3.3. The convergence factor of the overlapping OWR algorithm with
n nodes overlap and for a splitting at a current node for an infinitely long RLCG
transmission line is

ρcn(s, α
c, βc) :=







(

(s−b)+aαc(λ2−1)
(s−b)+aαc(λ1−1)

)(

βc(s−b)+a(1−λ2)
βc(s−b)+a(1−λ1)

)

(

λ21
)n

, |λ1| < 1,
(

(s−b)+aαc(λ1−1)
(s−b)+aαc(λ2−1)

)(

βc(s−b)+a(1−λ1)
βc(s−b)+a(1−λ2)

)

(

λ22
)n

, |λ1| > 1.
(3.31)

Proof. The proof is similar to the proof of Theorem 3.2.3, but the optimized trans-
mission conditions (3.29) change the constants Bk+1 and Dk+1. For the case |λ1| < 1,
going back to the proof of Theorem 3.2.3, we have

q̂k+1
j = Bk+1λj2, and p̂k+1

j =
aBk+1

s− b

(

λj2 − λj+1
2

)

,

ŵk+1
j = Dk+1λj1, and ûk+1

j =
aDk+1

s− b

(

λj−1
1 − λj1

)

.

Substituting these equations into the last equation of the first subsystem of (3.30)
results in

(s− b+ aαc)x̂k+1
2n−2(s1)− ax̂k+1

2n−3(s1) = −ax̂k2n−1(s2)− aαcx̂k2n−2(s2)

=⇒ (s− b− aαc)p̂k+1
n−1 − aq̂k+1

n−1 = −aŵkn−1 − aαcûkn−1

=⇒ Bk+1λn−1
2

(

−1 +

(

1− aαc

s− b

)

(1− λ2)

)

= Dkλn−1
1

(

−1− aαc

s− b
(λ2 − 1)

)

=⇒ Bk+1 = Dk(λ21)
n−1

(

(s− b) + aα(λ2 − 1)

(s− b)λ2 + aα(1− λ2)

)

. (3.32)
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Similarly, the first equation of the second subsystem of (3.30) leads to

(

s− b+
a

βc

)

x̂k+1
0 (s2) + ax̂k+1

1 (s2) = ax̂k−1(s1) +
a

βc
x̂k0(s1)

=⇒
(

s− b+
a

βc

)

ûk+1
0 + aŵk+1

0 = aq̂k0 +
a

βc
p̂k0

=⇒ Dk+1

((

1 +
a

βc(s− b)

)

(λ2 − 1) + 1

)

= Bk

(

a

βc(s− b)
(1− λ2) + 1

)

=⇒ Dk+1 = Bk

(

βc(s− b) + a(1− λ2)

βc(s− b)λ2 + a(λ2 − 1)

)

. (3.33)

Combining (3.32) and (3.33) yields

Bk+1 =
(

λ21
)n−1

(

(s− b) + aαc(λ2 − 1)

(s− b)λ2 + aαc(1− λ2)

)(

βc(s− b) + a(1− λ2)

βc(s− b)λ2 + a(λ2 − 1)

)

Bk−1

= (λ21)
n

(

(s− b) + aαc(λ2 − 1)

(s− b) + aαc(λ1 − 1)

)(

βc(s− b) + a(1− λ2)

βc(s− b) + a(1− λ1)

)

Bk−1,

that is, Bk+1 = ρcn(s, α
c, βc)Bk−1 and in a similar way, we getDk+1 = ρcn(s, α

c, βc)Dk−1.
This completes the proof.

Corollary 3. The optimal αc and βc for the overlapping OWR with n nodes overlap
and splitting at a current node are given by

{

αcopt :=
s−b

a(1−λ2) , and βcopt := −a(1−λ2)
s−b , , |λ1| < 1,

αcopt :=
s−b

a(1−λ1) , and βcopt := −a(1−λ1)
s−b , , |λ1| > 1,

and hence satisfy the relation βcopt = − 1
αc
opt

for both cases.

Remark 3.3.3. We observe that for all cases, that is, nonoverlapping OWR, over-
lapping OWR with splitting at a voltage node and overlapping OWR with splitting
at a current node, the convergence factor for each case is the same at all nodes
irrespective of which subsystem they belong to.

Remark 3.3.4. For the overlapping OWR, it is interesting to note the relation
between αvopt and α

c
opt. Since λ1λ2 = 1, we have

αcopt =
s− b

a(1− λ2)
=

s− b

a(λ1 − 1)λ2
=

λ1
αvopt

,

that is, αvoptα
c
opt = λ1. But since λ1 is a complicated function of s, one cannot find

an expression for αcopt using an expression for αvopt and vice versa. This forces us to
perform an optimization study for both cases separately.
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3.4 Optimization

In Section 3.2, we proved that the classical WR methods converge, but their conver-
gence rate is very low. For the OWR methods, the optimized transmission conditions
which transfer a specific combination of currents and voltages at the interface are ex-
pected to improve the convergence. We need to choose the optimization parameters
α and β appropriately to have rapid convergence, that is, we would like to have
|ρ(s, α, β)| ≪ 1 for the nonoverlapping OWR method and |ρvn(s, αv, βv)| ≪ 1, and
|ρcn(s, αc, βc)| ≪ 1 for the overlapping OWR methods. This leads to solving a min-
max problem of the form

min
α,β∈R

(

max
ℜ(s)≥0

|Γ(s, α, β)|
)

, (3.34)

where Γ(s, α, β) refers to ρ(s, α, β) or ρvn(s, α
v, βv) or ρcn(s, α

c, βc) defined in equations
(3.21), (3.26) and (3.31) respectively. But there are already four unknowns in each
min-max problem. We thus reduce this problem to a simplified problem using some
assumptions and lemmas.

We start with the nonoverlapping OWR method.

3.4.1 Nonoverlapping OWR

Motivated by the relation between βopt and αopt given in Corollary 1, we assume
β = −α. Thus the convergence factor ρ(s, α, β) defined in (3.21) reduces to ρ(s, α) :=
ρ(s, α,−α) and is given by

ρ(s, α) =







(

(s−b)+aα(λ2−1)
(s−b)λ2+aα(1−λ2)

)(

(s−b)+aα(λ2−1)
(s−b)λ1+aα(1−λ2)

)

, |λ1| < 1,
(

(s−b)+aα(λ1−1)
(s−b)λ1+aα(1−λ1)

)(

(s−b)+aα(λ1−1)
(s−b)λ2+aα(1−λ1)

)

, |λ1| > 1.
(3.35)

We further reduce the range of s ∈ C
+ using the following lemmas.

Lemma 3.4.1. For α < 0, the maximum of the modulus of the convergence factor
|ρ(s, α)| lies on the imaginary axis of the complex plane.

Proof. We prove this lemma by contradiction. We assume that the zeros of the
denominator of the convergence factor ρ(s, α) lie on the right half of the complex
plane, that is, σ ≥ 0, where s = σ+ iω. We first consider the condition |λ1| < 1, with
λ1 = l1+ il2. Since |λ1| < 1, we have |l1| < 1 and |l2| < 1. Equating the denominator
of ρ(s, α) to zero, we get (s − b)λ2 + aα(1 − λ2) = 0, that is, s − b = aα(1 − λ1).
Comparing the real part of the last equation leads to σ = b + aα(1 − l1), which is
a contradiction since σ ≥ 0 while b < 0 and aα(1 − l1) < 0. A similar analysis can
be done for the other case |λ1| > 1. Thus |ρ(s, α)| is analytic in the right half of the
complex plane. The Maximum Modulus Principle for the analytic functions states
that the maximum lies on the boundary, that is, on the imaginary axis of the complex
plane.
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Lemma 3.4.1 states that we can restrict the domain of ℜ(s) ≥ 0 to s = iω, where
ω ∈ R.

Lemma 3.4.2. For s = iω, the functions λ1 and λ2 satisfy

λ1(−ω) = λ1(ω), and λ2(−ω) = λ2(ω).

Proof. The proof of this theorem is similar to the proof of Lemma 2.4.2. Recall the
definition of λ1 from Theorem 3.2.1. For s = iω,

λ1(ω) =
2ac− (iω − b̃)(iω − b) +

√

(2ac− (iω − b̃)(iω − b))2 − 4a2c2

2ac

=
ω2 + 2ac− bb̃+ iω(b+ b̃) +

√
r1 + ir2

2ac
=
ω2 + 2ac− bb̃+ iω(b+ b̃) + (z1 + iz2)

2ac

=

(

ω2 + 2ac− bb̃+ z1
2ac

)

+ i

(

ω(b+ b̃) + z2
2ac

)

, (3.36)

where

r1 := ω4 + (4ac− b2 − 4bb̃− b̃2)ω2 − 4acb̃b+ b̃2b2,

r2 := 2ω(b+ b̃)(2ac− bb̃+ ω2),

and z1 + iz2 :=
√
r1 + ir2, with z1, z2 ∈ R. Further, a similar calculation shows

λ1(−ω) = ω2+2ac−bb̃−iω(b+b̃)+
√
r1−ir2

2ac . Using some techniques of complex analysis one
can show that if

√
r1 + ir2 = z1 + iz2 then

√
r1 − ir2 = z1 − iz2. Thus,

λ1(−ω) =

(

ω2 + 2ac− bb̃+ z1
2ac

)

− i

(

ω(b+ b̃) + z2
2ac

)

=

(

ω2 + 2ac− bb̃+ z1
2ac

)

+ i

(

ω(b+ b̃) + z2
2ac

)

= λ1(ω).

Following these calculations, we can also prove that λ2(−ω) = λ2(ω), and this com-
pletes the proof of this lemma.

Lemma 3.4.3. For s = iω, |ρ(ω, α)| is an even function of ω.

Proof. Using Lemma 3.4.2 and the definition of the convergence factor of the nonover-
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lapping OWR given in (3.35), for |λ1| < 1 and s = iω,

|ρ(−ω, α)| =

∣

∣

∣

∣

(

(−iω − b) + aα(λ2(−ω)− 1)

(−iω − b)λ2(−ω) + aα(1− λ2(−ω))

)(

(−iω − b) + aα(λ2(−ω)− 1)

(−iω − b)λ1(−ω) + aα(1− λ2(−ω))

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ2(ω) + aα(1− λ2(ω))

)(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ1(ω) + aα(1− λ2(ω))

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ2(ω) + aα(1− λ2(ω))

)(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ1(ω) + aα(1− λ2(ω))

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ2(ω) + aα(1− λ2(ω))

)(

(iω − b) + aα(λ2(ω)− 1)

(iω − b)λ1(ω) + aα(1− λ2(ω))

)∣

∣

∣

∣

= |ρ(ω, α)| .

Lemmas 3.4.1 and 3.4.3, reduce the min-max problem (3.34) for the nonoverlapping
OWR to

min
α<0

(

max
ωmin≤ω≤ωmax

|ρ(ω, α)|
)

, (3.37)

where we have restricted the range of ω to [ωmin, ωmax], where ωmin := π
T and ωmax :=

π
∆t , with T as the final time and ∆t as the time discretization parameter. This
restriction is valid since for numerical simulations, we consider time integration over
finite time t ∈ (0, T ]. Solving the min-max problem (3.37) in closed form is impossible
using the available complex analysis tools. We therefore make some more assumptions
and then use asymptotic analysis with respect to ωmin → 0, which corresponds to
final time T → ∞.

Assumption 3.4.1. We assume that b̃ = 0. Since b̃ = −G
C , assuming b̃ = 0 means

that the conductance G in the RLCG transmission line is zero. This is the case when
there is no leakage of current in the dielectric medium between the two conductors
of the transmission line.

Numerically, we observe from the left plot of Figure 3.4 that the solution of the
min-max problem (3.37) is given by equioscillation between the frequencies ωmin and
ωmax, that is, the optimized α, denoted by α∗

0 satisfies

|ρ(ωmin, α
∗
0)| = |ρ(ωmax, α

∗
0)|. (3.38)

Further, we denote the minimum frequency ωmin by the asymptotic parameter ǫ
and study the behavior of the convergence factor as ǫ→ 0. Under this condition, we
observe numerically that the optimized α∗

0 satisfy the relation α∗
0 = −C0ǫ

−δ, for some
δ, C0 > 0. We determine these constants using the equioscillation relation (3.38).

We first evaluate λ1 and λ2 at ωmin = ǫ.
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Figure 3.4: Equioscillation for nonoverlapping OWR for different values of T (left)
and dependence of α∗

0 on ωmin (right).

Lemma 3.4.4. For small ω such that ω → 0, the functions λ1 and λ2 satisfy the
asymptotic relation

λ1(ω) =

(

1 +

√
2
√
acbω1/2

2ac
+

(√
2
√
acb

4acb
− b

√
2
√
acb

16a2c2

)

ω3/2

)

+i

(√
2bω1/2

2
√
acb

+
bω

2ac
+

( √
2b2

16ac
√
acb

−
√
2

4
√
acb

)

ω3/2

)

+O(ω5/2),

λ2(ω) =

(

1−
√
2
√
acbω1/2

2ac
−
(√

2
√
acb

4acb
− b

√
2
√
acb

16a2c2

)

ω3/2

)

+i

(

−
√
2bω1/2

2
√
acb

+
bω

2ac
+

( √
2

4
√
acb

−
√
2b2

16ac
√
acb

)

ω3/2

)

+O(ω5/2),

with |λ1| < 1 < |λ2|.

Proof. We go back to the proof of Lemma 3.4.2, and note that for b̃ = 0,

r1 = ω2(4ac− b2 + ω2), and r2 = 2bω(2ac+ ω2).

Since z1 + iz2 =
√
r1 + ir2, squaring both sides and comparing real and imaginary

parts leads to z21 − z22 = r1 and 2z1z2 = r2. Further, z2 can be written in terms of z1
as z2 =

r2
2z1

, which on substituting into first equation yields

z41 − r1z
2
1 −

r22
4

= 0.
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Taking the positive root of this equation, since ω → 0 gives

z21 =
r1 +

√

r21 + r22
2

=
ω2(4ac− b2 + ω2) +

√

(ω2(4ac− b2 + ω2))2 + (2bω(2ac+ ω2))2

2

= 2acbω +

(

4ac− b2 + ω2

2

)

ω2 +

(

ac

b
+
b

2
+

b3

16ac

)

ω3 +O(ω5).

Taking the square root leads to

z1 =

√

2acbω +

(

4ac− b2 + ω2

2

)

ω2 +

(

ac

b
+
b

2
+

b3

16ac

)

ω3 +O(ω5)

=
√
2
√
acbω1/2 +

(√
2
√
acb

2b
−

√
2
√
acbb

8ac

)

ω3/2 +O(ω5/2).

Since z2 =
r2
z1
,

z2 =
2bω(2ac+ ω2)

√
2
√
acbω1/2 +

(√
2
√
acb

2b −
√
2
√
acbb

8ac

)

ω3/2 +O(ω5/2)

=
√
2
√
acbω1/2 −

( √
2ac

2
√
acb

−
√
2b2

8
√
acb

)

ω3/2 +O(ω5/2).

From (3.36), we get

λ1(ω) =

(

1 +

√
2
√
acbω1/2

2ac
+

(√
2
√
acb

4acb
− b

√
2
√
acb

16a2c2

)

ω3/2

)

+ i

(√
2bω1/2

2
√
acb

+
bω

2ac
−
( √

2

4
√
acb

−
√
2b2

16ac
√
acb

)

ω3/2

)

+O(ω5/2)

and

λ2(ω) =

(

ω2 + 2ac− z1
2ac

)

+ i

(

bω − z2
2ac

)

=

(

1−
√
2
√
acbω1/2

2ac
−
(√

2
√
acb

4acb
− b

√
2
√
acb

16a2c2

)

ω3/2

)

+i

(

−
√
2bω1/2

2
√
acb

+
bω

2ac
+

( √
2

4
√
acb

−
√
2b2

16ac
√
acb

)

ω3/2

)

+O(ω5/2).

This completes the proof.

Lemma 3.4.5. For the nonoverlapping OWR, the modulus of the convergence factor
|ρ(ω, α)| at ωmin and ωmax is given by

|ρ(ωmin, α)| = 1− 2C0

√
2
√
acbω

1/2−δ
min

bc
+O

(

ω1−2δ
min

)

, (3.39)
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and,

|ρ(ωmax, α)| = 1− gr
aC0

ωδmin +O(ω2δ
min), (3.40)

where gr := ℜ
(

(iωmax−b)(2+λ1(ωmax)+λ2(ωmax))
λ2(ωmax)−1

)

and ωmin → 0.

Proof. We first derive an asymptotic expression for |ρ(ω, α)| at ωmin = ǫ. The de-
pendence of α on ǫ is given by α = −C0ǫ

−δ, for some C0, δ > 0. Let A(ǫ) and
B(ǫ) denote the modulus of numerator and denominator of ρ(ωmin, α). Using the
asymptotic expansions and Lemma 3.4.4, we have

A(ǫ) :=
∣

∣

∣((s− b) + aα(λ2 − 1))2
∣

∣

∣

=

∣

∣

∣

∣

∣

(

−b+ C0

√
2
√
acb

√
ǫ

2ǫδc

)

+ i

(

aC0b
√
2b
√
ǫ

2ǫδ
√
acb

+ ǫ− C0bǫ

2eδc

)

+O
(

ǫ3/2−δ
)

∣

∣

∣

∣

∣

2

= b2 − bC0

√
2
√
acbǫ1/2−δ

c
+
C2
0abǫ

1−2δ

c
+O

(

ǫ3/2−δ
)

,

and

B(ǫ) := |((s− b)λ2 + aα(1− λ2)) ((s− b)λ1 + aα(1− λ2))|

=

∣

∣

∣

∣

∣

(

b2 +
bC0

√
2
√
acb

√
ǫ

ǫδc

)

+ i

(

aC0

√
2b2

√
ǫ

ǫδ
√
acb

+
C2
0abǫ

ǫ2δc
− 2bǫ

)

+O
(

ǫ3/2−δ
)

∣

∣

∣

∣

∣

=

(

b4 +
2b3C0

√
2
√
acbǫ1/2−δ

c
+

4b3C2
0aǫ

1−2δ

c
+O

(

ǫ3/2−δ
)

)1/2

= b2

(

1 +
2C0

√
2
√
acbǫ1/2−δ

bc
+

4C2
0aǫ

1−2δ

bc
+O

(

ǫ3/2−δ
)

)1/2

= b2 +
bC0

√
2
√
acbǫ1/2−δ

c
+
C2
0abǫ

1−2δ

c
+O

(

ǫ3/2−δ
)

.

The expression for |ρ(ωmin, α)| is thus reduced to

|ρ(ωmin, α)| =
A(ǫ)

B(ǫ)
=
b2 − bC0

√
2
√
acbǫ1/2−δ

c +
C2

0
abǫ1−2δ

c +O
(

ǫ3/2−δ
)

b2 + bC0

√
2
√
acbǫ1/2−δ

c +
C2

0
abǫ1−2δ

c +O
(

ǫ3/2−δ
)

=
1− C0

√
2
√
acbǫ1/2−δ

bc +
C2

0
aǫ1−2δ

bc +O
(

ǫ3/2−δ
)

1 + C0

√
2
√
acbǫ1/2−δ

bc +
C2

0
aǫ1−2δ

bc +O
(

ǫ3/2−δ
)

=

(

1− C0

√
2
√
acbǫ1/2−δ

bc
+O

(

ǫ1−2δ
)

)(

1− C0

√
2
√
acbǫ1/2−δ

bc
+O

(

ǫ1−2δ
)

)

= 1− 2C0

√
2
√
acbǫ1/2−δ

bc
+O

(

ǫ1−2δ
)

,
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that is, we arrive at (3.39). Further, since ωmax is fixed, the asymptotic expansion in
|ρ(ωmax, α)| is only because of the presence of α = −C0ǫ

−δ which satisfies α→ ∞ as
ǫ→ 0. Recall from (3.35), at ω = ωmax,

|ρ(ωmax, α)| =

∣

∣

∣

∣

∣

((iωmax − b) + aα(λ2 − 1))2

((iωmax − b)λ2 + aα(1− λ2))((iωmax − b)λ1 + aα(1− λ2))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a2α2(λ2 − 1)2
(

1 + iωmax−b
aα(λ2−1)

)2

a2α2(λ2 − 1)2
(

(iωmax−b)λ2
aα(λ2−1) − 1

)(

(iωmax−b)λ1
aα(λ2−1) − 1

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

1 + iωmax−b
aα(λ2−1)

)2

1− (iωmax−b)(λ1+λ2)
aα(λ2−1) + (iωmax−b)2

a2α2(λ2−1)2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1− (iωmax − b)

aC0(λ2 − 1)
ǫδ
)2(

1− (iωmax − b)(λ1 + λ2)

aC0(λ2 − 1)
ǫδ +O(ǫ2δ)

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1− 2(iωmax − b)

aC0(λ2 − 1)
ǫδ +O(ǫ2δ)

)(

1− (iωmax − b)(λ1 + λ2)

aC0(λ2 − 1)
ǫδ +O(ǫ2δ)

)∣

∣

∣

∣

=

∣

∣

∣

∣

1− (iωmax − b)(2 + λ1 + λ2)

aC0(λ2 − 1)
ǫδ +O(ǫ2δ)

∣

∣

∣

∣

,

where λ1 and λ2 are evaluated at ω = ωmax. It is complicated to separate the
real and imaginary part, and hence we define the real and imaginary part by gr :=

ℜ
(

(iωmax−b)(2+λ1(ωmax)+λ2(ωmax))
λ2(ωmax)−1

)

and gi := ℑ
(

(iωmax−b)(2+λ1(ωmax)+λ2(ωmax))
λ2(ωmax)−1

)

. The

asymptotic expression for |ρ(ωmax, α)| simplifies to

|ρ(ωmax, α)| =

∣

∣

∣

∣

1− (gr + igi)

aC0
ǫδ +O(ǫ2δ)

∣

∣

∣

∣

=

(

1− 2gr
aC0

ǫδ +O(ǫ2δ)

)1/2

= 1− gr
aC0

ǫδ +O(ǫ2δ),

and this completes the proof.

Theorem 3.4.1. For the nonoverlapping OWR when applied to an infinitely long

RLC transmission line, and for small ωmin > 0, if α∗
0 = −C0ω

−1/4
min , then the conver-

gence factor ρ(ω, α) is bounded from above by

|ρ(ω, α)| ≤ |ρ(ωmin, α
∗
0)| = 1− 2C0

√
2
√
acbω

1/4
min

bc
+O

(

ω
1/2
min

)

,

where

C0 =

(

grbc

2
√
2a

√
abc

)1/2

, and gr = ℜ
(

(iωmax − b)(2 + λ1(ωmax) + λ2(ωmax))

λ2(ωmax)− 1

)

.
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Proof. The left plot of Figure 3.4 shows that the solution of the min-max problem
(3.37) is found by equioscillation between ωmin and ωmax. The constants C0 and δ
in the expression of α = −C0ǫ

−δ are determined by comparing the exponents and
coefficients of the dominating terms in the asymptotic expressions of |ρ(ωmin, α)| and
|ρ(ωmax, α)| which are given by (3.39) and (3.40) respectively. We thus obtain

1

2
− δ = δ, and

2C0

√
2
√
abc

bc
=

gr
aC0

,

which leads to δ = 1
4 and C0 =

(

grbc

2
√
2a

√
abc

)1/2
. This completes the proof.

3.4.2 Overlapping OWR

We now consider the overlapping OWR, and first consider partitioning at a voltage
node. Corollary 2 motivates us to assume βv = − 1

αv . The convergence factor (3.26)
reduces to

ρvn(s, α
v) :=







(

(s−b)αv+a(1−λ1)
(s−b)αvλ1+a(λ1−1)

)2
(

λ21
)n

, |λ1| < 1,
(

(s−b)αv+a(1−λ2)
(s−b)αvλ2+a(λ2−1)

)2
(

λ22
)n

, |λ1| > 1.
(3.41)

The process of finding the optimized αv is similar to the one followed for the nonover-
lapping OWR method described in Section 3.4.1.

Lemma 3.4.6. For αv < 0 the maximum of the modulus of the convergence factor
|ρvn(s, αv)| lies on the imaginary axis of the complex plane.

Proof. The proof is very similar to the proof of Lemma 3.4.1, and we do not repeat
the calculations.

Lemmas 3.4.6 and 3.4.2 simplify the min-max problem (3.34) to

min
αv<0

(

max
ωmin≤ω≤ωmax

|ρvn(ω, αv)|
)

. (3.42)

Recall that ωmin = π
T and ωmax = π

∆t . We solve the above min-max problem by
using asymptotic analysis with respect to ωmin → 0. The left plot of Figure 3.5
illustrates that the solution of the min-max solution (3.42) is numerically given by
equioscillation between ωmin and ω where ωmin < ω < ωmax. We thus need to find
expressions for ω and the optimized αv, denoted by αv∗n . They satisfy the coupled
equations

|ρvn(ωmin, α
v∗
n )| = |ρvn(ω, αv∗n )|, and

∂

∂ω
|ρvn(ω, αv∗n )| = 0. (3.43)
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Figure 3.5: Equioscillation for overlapping OWR for partitioning at a voltage node
and for different values of overlap n with ωmin = 6.25 × 10−4 (left) and dependence
of αv∗n on ωmin (right).

Further, the right plot of Figure 3.5 shows the relation between αv∗n and ωmin, which
is given by αv∗n = −Cvnǫδ, where ǫ = ωmin → 0 and Cvn, δ > 0. Moreover, ω → 0
as ωmin → 0 (see the left plot of Figure 3.6). We thus assume ω = dvnǫ

η for some
constants dvn, η > 0.

Lemma 3.4.7. For the overlapping OWR with partitioning at a voltage node, solving
∂
∂ω |ρvn(ω, αv∗n )| = 0 yields the relation

η = δ, and dvn = −2cCvn
n

. (3.44)

Proof. For small ω, Lemma 3.4.4 states that |λ1| < 1. Recalling the expression for
ρvn(ω, α) given in (3.41), we have

|ρvn(ω, αv)| =

∣

∣

∣

∣

∣

(

(iω − b)αv + a(1− λ1)

(iω − b)αvλ1 + a(λ1 − 1)

)2
(

λ21
)n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

(iω − b)αv + a(1− λ1)

(iω − b)αvλ1 + a(λ1 − 1)

)∣

∣

∣

∣

2
(

|λ1|2
)n

=
A(ω, ǫ)

B(ω, ǫ)
L(ω), (3.45)

where A(ω, ǫ) := |(iω − b)αv + a(1− λ1)|2, B(ω, ǫ) := |(iω − b)αvλ1 + a(λ1 − 1)|2

and L(ω) =
(

|λ1|2
)n

. Using the asymptotic expressions for λ1 derived in Lemma
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3.4.4, for small ω, we obtain

A(ω, ǫ) =

∣

∣

∣

∣

(

Cvnbω
δ −

√
2
√
acb

√
ω

2c
−
(√

2
√
acb

4cb
− b

√
2
√
acb

16ac2

)

ω3/2

)

+i

(

−a
√
2b
√
ω

2
√
acb

− bω

2c
+

(

a
√
2

4
√
acb

−
√
2b2

16c
√
acb

)

ω3/2

)

+O(ω5/2)

∣

∣

∣

∣

=
abω

c
− Cvnbǫ

δ
√
2
√
acb

√
ω

c
+
a
√
2b2ω3/2

2c
√
acb

+O(ω3/2ǫδ), (3.46)

B(ω, ǫ) =

(

Cvnbǫ
δ +

Cvnb
√
2
√
acb

√
ωǫδ

2ac
+

√
2
√
acb

√
ω

2c
+

(√
2
√
acb

4cb
− b

√
2
√
acb

16ac2

)

ω3/2

)2

+

(

a
√
2b
√
ω

2
√
acb

+
Cvn

√
2b2

√
ωǫδ

2
√
acb

+
bω

2c
−
(

a
√
2

4
√
acb

−
√
2b2

16c
√
acb

)

ω3/2

)2

+O(ω5/2)

=
abω

c
+
Cvnb

√
2
√
acb

√
ωǫδ

c
+
a
√
2b2ω3/2

2c
√
acb

+O(ω3/2ǫδ), (3.47)

and

L(ω) =





(

1 +

√
2
√
acbω1/2

2ac

)2

+

(√
2bω1/2

2
√
acb

+
bω

2ac

)2

+O(ω3/2)





n

,

=

(

1 +

√
2
√
acb

√
ω

ac
+
bω

ac
+O(ω3/2)

)n

,

= 1 +
n
√
2
√
acb

√
ω

ac
+
nb(1− n)ω

ac
+O(ω3/2). (3.48)

Further, differentiating these expressions with respect to ω produces

∂

∂ω
A(ω, ǫ) =

ab

c
− Cvnb

√
2
√
acbǫδ

2c
√
ω

+
3a

√
2b2

√
ω

4c
√
acb

+O(ω1/2ǫδ),

∂

∂ω
B(ω, ǫ) =

ab

c
+
Cvnb

√
2
√
acbǫδ

2c
√
ω

+
3a

√
2b2

√
ω

4c
√
acb

+O(ω1/2ǫδ),

∂

∂ω
L(ω) =

n
√
2
√
acb

2
√
ωac

+
nb(1− n)

ac
+O(ω1/2).

(3.49)

Finally, solving ∂
∂ω |ρvn(ω, αv)| = 0, is equivalent to equating F1 = F2, where

F1 := B(ω, ǫ)

(

A(ω, ǫ)
∂

∂ω
L(ω) + L(ω)

∂

∂ω
A(ω, ǫ)

)

=
a2b2ω

c2
− ab2Cvn

√
2
√
acb

√
ωǫδ

2c2
+

(

3ab2n
√
2
√
acb

2c3
+

5a2b4
√
2

4c2
√
acb

)

ω3/2 +O(ωǫδ),
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Figure 3.6: Relation between ω and ωmin for overlapping OWR with partitioning at
a voltage node (left) and at a current node (right).

and

F2 := A(ω, ǫ)L(ω)
∂

∂ω
B(ω, ǫ)

=
a2b2ω

c2
+
ab2Cvn

√
2
√
acb

√
ωǫδ

2c2
+

(

ab2n
√
2
√
acb

c3
+

5a2b3
√
2

4c2
√
acb

)

ω3/2 +O(ωǫδ).

Thus, F1 = F2 leads to ω = −2Cv
ncǫ

δ

n . Since ω is asymptotically represented as
ω = dvnǫ

η, comparing the exponents and coefficients yield the relation (3.44).

Lemma 3.4.8. For the overlapping OWR with splitting at a voltage node, the mod-
ulus of the convergence factor |ρvn(ω, αv)| evaluated at ωmin and ω are given by

|ρvn(ωmin, α
v) = 1− 2

√
2
√
abc ω

1/2−δ
min

Cvnbc
+O(ω1−2δ

min ), (3.50)

and

|ρvn(ω), αv| = 1 +

(

n
√
2
√
abc
√

dvn
ac

− 2Cvn
√
2
√
acb

a
√

dvn

)

ω
δ/2
min +O(ωδmin), (3.51)

where we have already substituted the asymptotic relations αv = −Cvnǫδ and ω = dvnǫ
δ,

with ǫ = ωmin.

Proof. We first find an expression for |ρ(ω, α)| by substituting ω = dvnǫ
δ in the asymp-

totic expressions A(ω, ǫ) and B(ω, ǫ) calculated in (3.46) and (3.47) . From Lemma
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3.4.4 we have |λ1| < 1 and hence

A(ω, ǫ)

B(ω, ǫ)
=

abdvnǫ
δ

c +

(

−Cv
nb

√
2
√
abc

√
dvn

c + a
√
2b2(dvn)

3/2

2c
√
abc

)

ǫ3δ/2 +O(ǫ2δ)

abdvnǫ
δ

c +

(

Cv
nb

√
2
√
abc

√
dvn

c + a
√
2b2(dvn)

3/2

2c
√
abc

)

ǫ3δ/2 +O(ǫ2δ)

=

1 +

(

−Cv
n

√
2
√
abc

a
√
dvn

+
b
√
dvn

√
2

2
√
abc

)

ǫδ/2 +O(ǫδ)

1 +

(

Cv
n

√
2
√
abc

a
√
dvn

+
b
√
dvn

√
2

2
√
abc

)

ǫδ/2 +O(ǫδ)

=

(

1 +

(

−C
v
n

√
2
√
abc

a
√

dvn
+
b
√

dvn
√
2

2
√
abc

)

ǫδ/2 +O(ǫδ)

)

(

1−
(

Cvn
√
2
√
abc

a
√

dvn
+
b
√

dvn
√
2

2
√
abc

)

ǫδ/2 +O(ǫδ)

)

= 1− 2Cvn
√
2
√
abc

a
√

dvn
ǫδ/2 +O(ǫδ), (3.52)

which on multiplication with L(ω) given in (3.48) yeilds

|ρvn(ω, α)| =

(

A(ω, ǫ)

B(ω, ǫ)

)

L(ω)

=

(

1− 2Cvn
√
2
√
abc

a
√

dvn
ǫδ/2 +O(ǫδ)

)(

1 +
n
√
2
√
abc
√

dvn
ac

ǫδ/2 +O(ǫδ)

)

= 1 +

(

−2Cvn
√
2
√
abc

a
√

dvn
+
n
√
2
√
abc
√

dvn
ac

)

ǫδ/2 +O(ǫδ).

For ω = ωmin, we go back to Lemmas 3.4.4 and 3.4.7, and substitute ω = ǫ in the
expressions of A(ω, ǫ) and B(ω, ǫ) defined in (3.45) to arrive at

A(ωmin, ǫ)

B(ωmin, ǫ)
=

∣

∣

∣
−(iǫ− b)Cvnǫ

δ + a
(

−
√
2
√
acb

√
ǫ

2ac − i
√
2b
√
ǫ

2
√
abc

+O(ǫ)
)∣

∣

∣

2

∣

∣

∣
−(iǫ− b)Cvnǫ

δ
(

1 +
√
2
√
acb

√
ǫ

2ac + i
√
2b
√
ǫ

2
√
abc

)

+ a
(√

2
√
acb

√
ǫ

2ac + i
√
2b
√
ǫ

2
√
abc

)

+O(ǫ)
∣

∣

∣

2

=

∣

∣

∣

(

Cvnbǫ
δ −

√
2
√
abcǫ1/2

2c

)

− i
(

a
√
2bǫ1/2

2
√
abc

)

+O(ǫ)
∣

∣

∣

2

∣

∣

∣

(

Cvnbǫ
δ + Cv

nb
√
2
√
abcǫ1/2+δ

2ac +
√
2
√
abc

√
ǫ

2c

)

+ i
(

Cv
n

√
2b2ǫ1/2+δ

2
√
abc

+ a
√
2b
√
ǫ

2
√
abc

)

+O(ǫ)
∣

∣

∣

2

=
(Cvn)

2b2ǫ2δ − Cv
nb

√
2
√
abcǫ1/2+δ

c +O(ǫ)

(Cvn)
2b2ǫ2δ + Cv

nb
√
2
√
abcǫ1/2+δ

c +O(ǫ)
.
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Dividing the numerator and denominator by the dominating term (Cvn)
2 b2ǫ2δ further

simplifies it to

A(ωmin, ǫ)

B(ωmin, ǫ)
=

(

1−
√
2
√
acb

Cvnbc
ǫ1/2−δ +O(ǫ1−2δ)

)(

1−
√
2
√
acb

Cvnbc
ǫ1/2−δ +O(ǫ1−2δ)

)

= 1− 2
√
2
√
acb

Cvnbc
ǫ1/2−δ +O(ǫ1−2δ), (3.53)

which on multiplication with L(ωmin) given in (3.48) leads to

|ρvn(ωmin, α
v)| =

(

1− 2
√
2
√
acb

Cvnbc
ǫ1/2−δ +O(ǫ1−2δ)

)(

1 +
n
√
2
√
abc

ac
ǫ1/2 +O(ǫ)

)

=

(

1− 2
√
2
√
acb

Cvnbc
ǫ1/2−δ +O(ǫ1−2δ)

)

.

This completes the proof.

Theorem 3.4.2. For the overlapping OWR with partitioning at a voltage node and

with n node overlap, if αv∗n = −Cvnω
1/3
min, then the convergence factor ρvn(ω, α

v) is
bounded above by

|ρvn(ω, αv)| ≤ |ρvn(ωmin, α
v∗
n )| = 1− 2

√
2
√
abc ω

1/6
min

Cvnbc
+O(ω

1/3
min),

where Cvn =
(

−a2
2nb2c

)1/3
.

Proof. For the overlapping OWR with n ≥ 1 node overlap, the left plot of Figure
3.5 numerically shows that the solution of the min-max problem (3.42) is given by
equioscillation between ωmin and ω. Using the relation (3.44), and equating the
expressions of the modulus of the convergence factor |ρvn(ωmin, α

v)| and |ρvn(ω, αv)|
leads to

δ/2 = 1/2− δ, and
2
√
2
√
acb

Cvnbc
=
n
√
2
√
abc
√

dvn
ac

− 2Cvn
√
2
√
abc

a
√

dvn
,

which simplifies to

δ = 1/3, and Cvn =

( −a2
2nb2c

)1/3

.

Substituting these constants into (3.50) completes the proof.

We now consider the other type of partitioning, that is, splitting at a current node.
For this partitioning, βcopt and αcopt are related via the relation βcopt = − 1

αc
opt

(see



CHAPTER 3. RLCG 85

0 10 20 30
0

0.2

0.4

0.6

0.8

1

|
c n
|

n=1

n=2

n=3

10
-5

10
-4

10
-3

10
-2

-10
3

-10
2

-10
1

-10
0

n=1

n=2

n=3

C
c

n
 

min

-1/3

C
c

1
 

min

-1/4

Figure 3.7: Equioscillation for overlapping OWR for partitioning at a current node
and for different values of overlap n with ωmin = 6.25 × 10−4 (left) and dependence
of αc∗n on ωmin for n > 1 (right).

Corollary 3). Thus assuming βc = − 1
αc simplifies the convergence factor ρcn(s, α

c)
defined in (3.31) to

ρcn(s, α
c) :=







(

(s−b)+aαc(λ2−1)
(s−b)+aαc(λ1−1)

)2
(

λ21
)n

, |λ1| < 1,
(

(s−b)+aαc(λ1−1)
(s−b)+aαc(λ2−1)

)2
(

λ22
)n

, |λ1| > 1,
(3.54)

Lemma 3.4.9. For αc < 0 the maximum of the modulus of the convergence factor
|ρcn(s, αc)| lies on the imaginary axis of the complex plane.

Proof. The idea is to use the method of contradiction. The proof is very similar to
the proof of Lemma 3.4.1, and hence we do not repeat the calculations.

Lemmas 3.4.2 and 3.4.9 reduce the min-max problem (3.34) to

min
αc<0

(

max
ωmin≤ω≤ωmax

|ρcn(ω, αc)|
)

. (3.55)

We solve this min-max problem using asymptotic analysis with respect to ωmin → 0.
The left plot of Figure 3.7 shows that for n = 1, the solution of the min-max problem
is numerically given by equioscillation between ωmin and ωmax, while for n > 1, the
equioscillation takes place between ωmin and ωc, where ωmin < ωc < ωmax. Solving
(3.55) is equivalent to solve

|ρc1(ωmin, α
c∗
1 )| = |ρc1(ωmax, α

c∗
1 )|, for n = 1, (3.56)

and

|ρcn(ωmin, α
c∗
n )| = |ρcn(ωc, αc∗n )|, and

∂

∂ω
|ρcn(ωc, αc∗n )| = 0, for n > 1, (3.57)
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Further, from the right plot of Figure 3.7, we observe that the optimized αc, denoted
by αc∗n is given by αc∗n = −Ccnǫ−δ, with Ccn, δ > 0 and ǫ = ωmin → 0. Moreover, the
right plot of Figure 3.6 illustrates that for n > 1, ωc → 0 as ωmin → 0. Thus, we
assume that ωc = dcnǫ

η, where dcn > 0 and η > 0.

Note that αc∗n → −∞ as ǫ → 0. We therefore introduce the new notation γ := − 1
αc ,

and hence γ = hcnǫ
δ, where hcn := 1

Cc
n
. With this new notation, the convergence factor

(3.54) can be rewritten as

Γcn(s, γ) :=







(

(s−b)λ1γ+a(λ1−1)
(s−b)γ+a(1−λ1)

)2
(

λ21
)n−1

, |λ1| < 1,
(

(s−b)λ2γ+a(λ2−1)
(s−b)γ+a(1−λ2)

)2
(

λ22
)n−1

, |λ1| > 1.
(3.58)

We show the calculations for the case |λ1| < 1,

ρcn(s, α
c) =

(

(s− b) + aαc(λ2 − 1)

(s− b) + aαc(λ1 − 1)

)2
(

λ21
)n

=

(

(s− b)λ1γ − a(1− λ1)

(s− b)γ − a(λ1 − 1)

)2
(

λ22
) (

λ21
)n

=

(

(s− b)λ1γ + a(λ1 − 1)

(s− b)γ + a(1− λ1)

)2
(

λ21
)n−1

= Γcn(s, γ).

Remark 3.4.1. Comparing Γcn(s, γ) with ρ
v
n(s, α

v) defined in (3.41), we observe that
the numerator of Γcn(s, γ) is similar to the denominator of ρvn(s, α

v) and vice versa.
Therefore, we can use the asymptotic expressions for ρvn(s, α

v) and avoid doing the
same calculations again. Since αvn = −Cvnǫδ and γ = hcnǫ

δ, the constants Ccn in these
expressions will be replaced by hcn.

We first find the optimized αc for n = 1 by solving (3.56).

Theorem 3.4.3. For the overlapping OWR with splitting at a current node and with
n = 1 node overlap, if αc∗1 = −Cc1ǫ−1/4, then the convergence factor ρc1 satisfies

|ρc1(ω, α)| ≤ |ρc1(ωmin, α
c∗
1 )| = 1− 2

√
2
√
acbCc1
bc

ω
1/4
min +O(ω

1/2
min),

where

Cc1 =

(

grbc

2
√
2
√
abc

)1/2

, and gr := ℜ
(

2(iωmax − b)(1 + λ2(ωmax))

λ2(ωmax)− 1

)

.

Proof. We first find an expression for |ρc1(ωmin, α
c∗
1 )|. For ω = ωmin, from Lemma

3.4.4, we have |λ1| < 1 and hence

|Γc1(ω, γ)| =

∣

∣

∣

∣

(iωmin − b)λ1γ + a(λ1 − 1)

(iωmin − b)γ + a(1− λ1)

∣

∣

∣

∣

2

=
B(ωmin, ǫ)

A(ωmin, ǫ)
,
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where A(ωmin, ǫ) and B(ωmin, ǫ) are defined in (3.45). However in these expressions,
the constants Cvn will be replaced by hcn. Using the expression (3.53), we arrive at

|ρc1(ωmin, α
c)| = |Γc1(ωmin, γ)| =

B(ωmin, ǫ)

A(ωmin, ǫ)
=

1
B(ωmin,ǫ)
A(ωmin,ǫ)

=
1

1 + 2
√
2
√
acb

hc
1
bc ǫ1/2−δ +O(ǫ1−2δ)

= 1− 2
√
2
√
acb

hc1bc
ǫ1/2−δ +O(ǫ1−2δ)

= 1− 2
√
2
√
acbCc1
bc

ǫ1/2−δ +O(ǫ1−2δ). (3.59)

For ω = ωmax, we use the technique used in the proof of Lemma 3.4.5. Since α = Cc1ǫ
δ,

we have from (3.54),

|ρc1(ωmax, α)| =

∣

∣

∣

∣

∣

(

(iωmax − b) + aαc(λ2 − 1)

(iωmax − b) + aαc(λ1 − 1)

)2

λ21

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(iωmax − b) + aαc(λ2 − 1)

(iωmax − b)λ2 − aαc(λ2 − 1)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

(

1 + (iωmax−b)
aCc

1
(λ2−1)ǫ

δ
)2

(

1− (iωmax−b)λ2
aCc

1
(λ2−1) ǫ

δ
)2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1− 2(iωmax − b)

aCc1(λ2 − 1)
ǫδ +O(ǫ2δ)

)(

1− 2(iωmax − b)λ2
aCc1(λ2 − 1)

ǫδ +O(ǫ2δ)

)∣

∣

∣

∣

=

∣

∣

∣

∣

1− 2(iωmax − b)(1 + λ2)

aCc1(λ2 − 1)
ǫδ +O(ǫ2δ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1− (gr + igi)

aCc1
ǫδ +O(ǫδ)

∣

∣

∣

∣

=

(

1− 2gr
aCc1

ǫδ +O(ǫδ)

)1/2

= 1− gr
aCc1

ǫδ +O(ǫδ),

where λ1 and λ2 are evaluated at ωmax, and gr := ℜ
(

2(iωmax−b)(1+λ2(ωmax))
λ2(ωmax)−1

)

and

gi := ℑ
(

2(iωmax−b)(1+λ2(ωmax))
λ2(ωmax)−1

)

. For n = 1, the constants Cc1 and δ can be found by

comparing the exponents and coefficients of the dominating terms of |ρc1(ωmin, α
c)|

and |ρc1(ωmax, α
c)|, which results in δ = 1/4 and Cc1 =

(

grbc

2
√
2
√
abc

)1/2
. This completes

the proof.

We now consider the case when n > 1 nodes are overlapped.

Lemma 3.4.10. For the overlapping OWR with n > 1 nodes overlap and partitioning
at a current node, solving ∂

∂ω |ρcn(ωc, αc∗n )| = 0 produces the relation

η = δ, and dcn =
−2c

(n− 1)Ccn
. (3.60)
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Proof. For small ω, |λ1| < 1, and hence using (3.58), we have

|ρcn(ω, αc)| = |Γcn(ω, γ)| =
∣

∣

∣

∣

(s− b)λ1γ + a(λ1 − 1)

(s− b)γ + a(1− λ1)

∣

∣

∣

∣

2
∣

∣λ21
∣

∣

n−1
=
B(ω, α)

A(ω, α)
Lc(ω),

(3.61)
where A(ω, α) and B(ω, α) are defined in (3.45) and Lc(ω) = |λ21|n−1. For small ω,
we have already derived expressions for A(ω, α), B(ω, α) and Lc(ω) in (3.46), (3.47)
and (3.48). Hence we do not do these calculations again but change the constants to
arrive at

A(ω, ǫ) =
abω

c
+
hcnb

√
2
√
acbǫδ

√
ω

c
+
a
√
2b2ω3/2

2c
√
acb

+O(ω3/2ǫδ),

B(ω, ǫ) =
abω

c
− hcnb

√
2
√
acbǫδ

√
ω

c
+
a
√
2b2ω3/2

2c
√
acb

+O(ω3/2ǫδ),

Lc(ω) = 1 +
(n− 1)

√
2
√
acb

√
ω

ac
+

(n− 1)nbω

ac
− (n− 1)2bω

ac
+O(ω3/2),

(3.62)

which on differentiating with respect to ω leads to

∂

∂ω
A(ω, ǫ) =

ab

c
+
hcnb

√
2
√
acbǫδ

2c
√
ω

+
3a

√
2b2

√
ω

4c
√
acb

+O(ω1/2ǫδ),

∂

∂ω
B(ω, ǫ) =

ab

c
− hcnb

√
2
√
acbǫδ

2c
√
ω

+
3a

√
2b2

√
ω

4c
√
acb

+O(ω1/2ǫδ),

∂

∂ω
Lc(ω) =

(n− 1)
√
2
√
acb

2
√
ωac

+
(n− 1)b

ac
+

(n− 1)2b

ac
+O(ω1/2).

Finally, solving ∂
∂ω |ρcn(ω, αc)| = 0, is equivalent to equating F1 − F2 = 0, where

F1 := A(ω, ǫ)

(

B(ω, ǫ)
∂

∂ω
Lc(ω) + Lc(ω)

∂

∂ω
B(ω, ǫ)

)

=
a2b2ω

c2
+
ab2hcn

√
2
√
acbǫδ

√
ω

2c2
+

(

5a2b3
√
2

4c2
√
acb

+
3(n− 1)ab2

√
2
√
acb

2c3

)

ω3/2 +O(ωǫδ),

and

F2 := B(ω, ǫ)Lc(ω)
∂

∂ω
A(ω, ǫ)

=
a2b2ω

c2
− ab2hcn

√
2
√
acbǫδ

√
ω

2c2
+

(

5a2b3
√
2

4c2
√
acb

+
(n− 1)ab2

√
2
√
acb

c3

)

ω3/2 +O(ωǫδ).

Thus, F1 − F2 = 0 leads to ωc = −2hcncǫ
δ

n−1 . Since hcn = 1
Cc

n
and ωc is asymptotically

represented as ω = dcnǫ
η, comparing the exponents and coefficients yields the required

relation (3.60).
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Lemma 3.4.11. For the overlapping OWR with splitting at a current node, and with
n > 1, the modulus of the convergence factor |ρcn(ω, α)| evaluated at ωmin and ωc is
given by

|ρcn(ωmin, α
c)| = 1− 2

√
2
√
acbCcn
bc

ω
1/2−δ
min +O(ω1−2δ

min ), (3.63)

and

|ρcn(ωc, αc)| = 1 +

(

(n− 1)
√
2
√
acb
√

dcn
ac

− 2
√
2
√
abc

aCcn
√

dcn

)

ω
δ/2
min +O(ωδmin), (3.64)

where we have already substituted asymptotic relations α = −Ccnǫδ and ωc = dcnǫ
δ,

with ǫ = ωmin.

Proof. For |λ1| < 1, using the definition of the convergence factor ρcn and (3.61), we
have

|ρcn(ωmin, α
c)| = |ρc1(ωmin, α

c)||λ21|n−1 = |ρc1(ωmin, α
c)|Lc(ωmin),

and using the expressions of |ρc1(ωmin, α
c)| and Lc(ωmin) given by (3.59) and (3.62),

we arrive at

|ρcn(ωmin, α
c)| =

(

1− 2
√
2
√
acbCcn
bc

ǫ1/2−δ +O(ǫ1−2δ)

)(

1 +
(n− 1)

√
2
√
acb

√
ǫ

ac
+O(ǫ)

)

,

= 1− 2
√
2
√
acbCcn
bc

ǫ1/2−δ +O(ǫ1−2δ).

Similarly, for ω = ωc, the combination of equations (3.61), (3.52) and (3.62) yields

|ρcn(ωc, α)| =
B(ωc, ǫ)

A(ωc, ǫ)
Lc(ω

c) =
1

B(ωc,ǫ)
A(ωc,ǫ)

Lc(ω
c)

=







1

1 + 2hcn
√
2
√
abc

a
√
dcn

ǫδ/2 +O(ǫδ)







(

1 +
(n− 1)

√
2
√
acb
√

dcn
ac

ǫδ/2 +O(ǫδ)

)

=

(

1− 2hcn
√
2
√
abc

a
√

dcn
ǫδ/2 +O(ǫδ)

)(

1 +
(n− 1)

√
2
√
acb
√

dcn
ac

ǫδ/2 +O(ǫδ)

)

= 1 +

(

−2
√
2
√
abc

aCcn
√

dcn
+

(n− 1)
√
2
√
acb
√

dcn
ac

)

ǫδ/2 +O(ǫδ).

Theorem 3.4.4. For the overlapping OWR with splitting at a current node and with
n > 1 overlap, if αc∗n = −Ccnǫ−1/3, then the convergence factor ρcn satisfies

|ρcn(ω, αc)| ≤ |ρcn(ωmin, α
c∗
n )| = 1− 2

√
2
√
acbCcn
bc

ω
1/6
min +O(ω

1/3
min), (3.65)
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where

Ccn =

(

−2(n− 1)b2c

a2

)1/3

.

Proof. The left plot of Figure 3.7 illustrates that for n > 1 overlap, the solution of
the min-max problem (3.55) is given by equioscillation between ωmin and ωc. Using
the relation (3.60) and comparing the exponents and coefficients of the dominating
terms of |ρcn(ωmin, α

c)| and |ρcn(ωc, αc)|, we obtain

δ = 1/3, and Ccn =

(

2(n− 1)b2c

a

)1/3

.

This completes the proof.

Theorem 3.4.5. The convergence of the overlapping OWR is faster for the splitting
at a voltage node.

Proof. We substitute the values of Ccn and Cvn into the expression of |ρcn(ωmin, α
c∗
n )|

and |ρvn(ωmin, α
v∗
n )| which for n > 1 leads to,

|ρcn(ωmin, α
c∗
n )| − |ρvn(ωmin, α

v∗
n )|

=

(

1− 2
√
2
√
abcCcn
bc

ω
1/6
min +O(ω1/3)

)

−
(

1− 2
√
2
√
abc

Cvnbc
ω
1/6
min +O(ω1/3)

)

=

(

2
√
2
√
abc

bc
ω
1/6
min

)

(

1

Cvn
− Ccn

)

+O(ω1/3)

=

(

2
√
2
√
abc

bc
ω
1/6
min

)(

(

−2nb2c

a2

)1/3

−
(

−2(n− 1)b2c

a2

)1/3
)

+O(ω1/3)

> 0,

where the last inequality follows since c < 0 and this completes the proof.

3.5 Numerical Results

We consider an RLC transmission line of length N = 149 with R = 2KΩ/cm,
L = 4.95 × 10−3µH/cm and C = 0.021pF/cm. For the time discretization, we use
backward Euler with ∆t = T/5000, where T is the total time. We first compare
the classical WR and OWR algorithm for large time T = 100. The left plot in
Figure 3.8 clearly shows the improvement in the convergence factor when optimized
transmission conditions are used. The dashed and dotted lines show the results for



CHAPTER 3. RLCG 91

5 10 15 20 25

Iterations

10
-15

10
-10

10
-5

10
0

E
rr

o
r

WR1

WR2

WR3

OWR1

OWR2

OWR3

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

WR

Vol n=1

Vol n=2

Cur n=1

Cur n=2

Figure 3.8: Convergence for long time T = 100 (left) and convergence factor in Laplace
space (right).
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Figure 3.9: Comparison of different splittings in time (left) and of values of the optimized
alpha for the overlapping OWR with splitting at a voltage node (right).

classical WR while solid lines represent the OWR algorithm. We also see the effect
of overlapping nodes (e.g. WR1 denotes the WR algorithm with one node overlap).
Increasing the overlap increases the convergence speed. However, the gain is very
small. The right plot of Figure 3.8 compares the convergence factor for OWR in
Laplace space for both splittings, at a current node and a voltage node. The dotted
black line is for WR with single node overlap while the other lines are for OWR. For
OWR, the splitting at a voltage node leads to faster convergence. This is also true
in the time domain, see the left plot of Figure 3.9. But for classical WR, splitting
does not matter in the Laplace space, see Theorems 3.2.2 and 3.2.2, while there is
small difference in time domain. Finally, the right plot of Figure 3.9 validates our
asymptotic result in Theorem 3.4.2. Both numerically computed and asymptotically
derived values of the optimal α for splitting at a voltage node are very close.
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3.6 Conclusion

For an infinitely long RLC transmission line, we presented a first analysis of all three
cases: nonoverlapping WR and OWR, and overlapping WR and OWR with splitting
either at a current or voltage node. We showed that using optimized transmission
conditions, we can achieve a drastic improvement in the convergence rate. Note that
our analysis is in the Laplace domain since the analysis is easier and the convergence
in the Laplace domain implies convergence in the time domain, see Lemma 2.2.1. We
also see that overlapping nodes increase the convergence rate for both WR and OWR
algorithms but the improvement (by the factor of (λ1)

2n) is not large. Further, for
OWR, the splitting at a voltage node leads to a little faster convergence than the
splitting at a current node, while this splitting does not effect the convergence of
WR. We finally compared the values of the optimized α found numerically and by
asymptotic analysis and they are very close.



Chapter 4

Approximation of a large RC

circuit by a small RC circuit

In general, the analysis of the application of OWR methods to large electric circuits is
complicated. In previous chapters, we saw that RC circuits and RLCG transmission
lines are an integral part of many circuits and hence their quick simulation is impor-
tant. We considered infinitely long RC circuits and found that the analysis to find
the optimization parameters in OWR is impossible without the use of asymptotic
analysis. The same happens with infinitely long RLCG transmission lines (refer to
Chapter 3). We therefore search for a better way to find the optimization parameters
of the OWR method.

The complexity of the min-max problem of the type

min
α,β∈R

(

max
ℜ(s)>0

|ρ(s, α, β)|
)

can be reduced if we consider a smaller circuit, say with two or four nodes. In such
cases, the expression of the convergence factor ρ(s, α, β) for the OWR algorithm is
less complicated and hence the above mentioned min-max problem can be solved
using available complex analysis tools.

In this chapter, we therefore first reduce the infinitely long RC circuit shown in
Figure 2.2 to a smaller RC circuit with two nodes and four nodes respectively. We
then apply the WR and OWR methods to these reduced circuits, and find explicit
expressions for the optimization parameters in the OWR method. Finally, we show
that under special conditions for the reduced RC circuits, we can derive expressions
for α∗

T,0 and α∗
R,0 from Theorems 2.4.1 and 2.4.3 for the infinitely long RC circuits.

We then perform some numerical experiments and conclude this chapter. Note that
we consider only the nonoverlapping WR and OWR methods in this chapter; the
study of overlapping WR and OWR for these reduced circuits is in progress.
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Figure 4.1: An RC circuit of length N .

4.1 RC circuit with two nodes

We would first like to reduce an infinitely long RC circuit to a small RC circuit of two
nodes. We have shown in Chapter 2 that the MNA formulation of an infinitely long
RC circuit leads to a large system of differential equations. Further, we analyzed the
convergence of WR and OWR in the Laplace space. In this section, we shall again
use the Laplace transformation to reduce these large circuits into smaller ones.

Consider an RC circuit of length N as shown in Figure 4.1. For convenience in
the analysis that will follow, we assume N to be even, and we renumber the nodes:
instead of using the numbering from 1 to N , we use the numbering from -N/2 + 1
to N/2. We split this circuit into two sub-circuits of equal length at node 0 and do
not add any overlap. Let u and w denote the unknowns in the first and second sub-
circuit respectively. Application of the Laplace transformation to the WR system of
differential equations for these two sub-circuits leads to

sûk+1 =











b a
. . .

. . .
. . .

a b a
a b





















û−N
2
+1

...
û−1

û0











k+1

+











0
...
0

aûk+1
1











,

sŵk+1 =











b a
a b a

. . .
. . .

. . .

a b





















ŵ1

ŵ2
...
ŵN

2











k+1

+











aŵk+1
0

0
...
0











,

(4.1)

where we have considered the source term f = 0. One can refer to Sections 2.1 and
2.2 for more details.

Our goal is to reduce these two subsystems to smaller subsystems by eliminating
ûj where j ∈ {−N/2 + 1,−1} and ŵj for j ∈ {2, N/2}. We start with the sec-
ond subsystem corresponding to ŵk+1. Backward elimination leads to ŵk+1

N/2 =

ĥ1ŵ
k+1
N/2−1 and ŵk+1

N/2−j = ĥj+1ŵ
k+1
N/2−j−1 where ĥ1 := a

s−b and ĥj+1 := a
s−b−aĥj

, for

j = 1, 2, . . . , N/2 − 2. Thus, eliminating all ŵk+1
j except ŵk+1

1 leaves us with only
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Figure 4.2: Reduced RC Circuit into 2 nodes with impedance Z = R/(1− h).

one equation sŵk+1
1 = (b+ aĥN/2−1)ŵ

k+1
1 + aŵk+1

0 . Similarly, for the first subsystem

corresponding to û, we are left with sûk+1
0 = (b+ aĥN/2−1)û

k+1
0 + aûk+1

1 .

We now find an expression for ĥj . If the length of the circuit is infinite, that is, N →
∞, then we can write ĥ∞ = a

s−b−aĥ∞
which on solving leads to ĥ∞ =

s−b±
√

(s−b)2−4a2

2a ,

which are the same as λ1 and λ2 defined in (2.10) for the infinite RC circuit. A careful
calculation shows that for ℜ(s) > 0 or b = −(2 + ǫ)a, where ǫ > 0, |ĥj | < 1. From
Lemma 2.2.2 and Remark 2.2.2, we have |λ2| < 1 < |λ1| and hence we consider
h := ĥ∞ that represents λ2 at a certain frequency ω, where s = σ + iω with σ ≥ 0.

Therefore, the two subsystems of equations (4.1) reduces to

s

[

û0
ŵ1

]k+1

=

[

b+ ah a
a b+ ah

] [

û0
ŵ1

]k+1

, (4.2)

where h is the value of λ2(s) for some s ∈ C
+ and is given by

h := h1 + ih2 ≈ λ2(s) =
s− b−

√

(s− b)2 − 4a2

2a
. (4.3)

Using Kirchoff’s current law and Kirchoff’s voltage law as explained in the book
[63], we present the circuit interpretation of this reduced system (4.2) in Figure 4.2.
We see that two resistors with impedance R/(1− h) are added on both sides of the
circuit. Note that we have considered homogeneous source terms since the system
(4.1) represents error equations. Further, h ≈ λ2(s) and 0 < |λ2| < 1, and hence
|R/(1− h)| > 0. Also, if the value of h is very close to 1, then we need to add huge
resistors on both sides.

In the next section, we analyze the WR algorithm applied to the reduced system
(4.2), and find the convergence factor as a function of h.

4.1.1 Classical Waveform Relaxation Method

We decompose the reduced RC circuit in Figure 4.2 into two smaller RC circuits
with one node each. We do not introduce any overlap. The circuit interpretation of
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Figure 4.3: Application of the classical WR to the reduced RC circuit of 2 nodes with
impedance Z = R/(1− h).

WR can be seen in Figure 4.3. We have already seen in Chapter 2 that the classical
WR methods transfers only the voltages at the interfaces. In the PDE sense, these
transmission conditions are interpreted as Dirichlet transmission conditions.

We now find an explicit formulation of the convergence factor (in the Laplace space)
for the classical WR method, when applied to the reduced circuit of two nodes (see
Figure 4.2).

Theorem 4.1.1. The convergence factor of the classical nonoverlapping WR method
when applied to the reduced system of equations (4.2) is given by

Γ
[2]
cla(s, h) :=

1

φ2(s, h)
=

a2

(s− b− ah)(s− b− ah)
, (4.4)

where

φ(s, h) :=
s− b

a
− h. (4.5)

Proof. The application of WR method to the system of equations (4.2) leads to
solving two coupled equations,

sûk+1
0 = (b+ ah)ûk+1

0 + aûk+1
1 , (4.6)

sŵk+1
1 = (b+ ah)ŵk+1

1 + aŵk+1
0 , (4.7)

where the unknowns ûk+1
1 and ŵk+1

0 are given by the transmission conditions

uk+1
1 = wk1 , and wk+1

0 = uk0. (4.8)

These transmission conditions are interpreted as voltages and are transferred at the
start of each iteration. Substituting the transmission conditions (4.8) into (4.6)-(4.7)
leads to

ûk+1
0 =

a

s− b− ah
ŵk1 =

1

φ
ŵk1 , and ŵk+1

1 =
a

s− b− ah
ûk0 =

1

φ
ûk0,

where φ = s−b
a − h. These coupled equations simplify to ûk+1

0 = Γ
[2]
cla(s, h)û

k−1
0 and

ŵk+1
1 = Γ

[2]
cla(s, h)ŵ

k−1
1 , where the convergence factor Γ

[2]
cla(s, h) is defined by (4.4),

and this completes the proof.
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From now onwards, we will denote φ := φ(s, h) to simplify the notations and will
show its dependence on s and h whenever necessary.

Remark 4.1.1. Note that if h = λ2(s), then φ = s−b
a − h = s−b

a − λ2 and since

λ1+λ2 = (s−b)/a, we have φ = λ1, which means Γ
[2]
cla(s, λ2) =

1
λ2
1

. Thus, substituting

h = λ2 in the convergence factor of the reduced RC circuit with two nodes gives us
the convergence factor of infinitely long RC circuit.

Further, from the expression of the convergence factor (4.4), we can clearly observe

that for fixed h,
∣

∣

∣Γ
[2]
cla

∣

∣

∣ decreases as frequency ω, where s = iω, increases. Thus,
∣

∣

∣Γ
[2]
cla

∣

∣

∣

is inversely proportional to ω.

4.1.2 Optimized Waveform Relaxation Method

We had already seen in Chapters 2 and 3, that the classical WR method has an ex-
tremely slow convergence factor especially when large time windows are used. Hence
we use more efficient transmission conditions to increase its convergence. Similarly,
we define new transmission conditions for this reduced RC circuit:

(uk+1
1 − uk+1

0 ) + αuk+1
1 = (wk1 − wk0) + αwk1 ,

(wk+1
1 − wk+1

0 ) + βwk+1
0 = (uk1 − uk0) + βuk0,

(4.9)

where the parameters α, β ∈ R. We rewrite the above transmission conditions as:

uk+1
1 =

uk+1

0

1+α + wk1 − wk
0

1+α ,

wk+1
0 = −wk+1

1

β−1 +
uk
1

β−1 + uk0.
(4.10)

Theorem 4.1.2. The convergence factor of the nonoverlapping OWR method for the
reduced RC circuit with two nodes is given by

Γ[2](s, h, α, β) :=

(

α+ 1− φ

(α+ 1)φ− 1

)(

β − 1 + φ

(β − 1)φ+ 1

)

. (4.11)

Proof. Substituting the Laplace transformed transmission conditions (4.10) into the
equation (4.6) yields

(s− b− ah)ûk+1
0 =

aûk+1
0

1 + α
+ aŵk1 − aŵk0

1 + α
.

Further, ŵk0 can be expressed in terms of ŵk1 using (4.7) as aŵk0 = (s − b − ah)ŵk1 ,
which on substituting in the above equation gives

(

s− b− ah− a

1 + α

)

ûk+1
0 =

(

a− s− b− ah

1 + α

)

ŵk1 ,
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which on simplification leads to

ûk+1
0 =

(

α+ 1− φ

(α+ 1)φ− 1

)

ŵk1 , (4.12)

where φ is defined in (4.5). Proceeding in a similar way for the other sub-system ŵ1,
we arrive at

ŵk+1
1 =

(

β − 1 + φ

(β − 1)φ+ 1

)

ûk0. (4.13)

Combining (4.12) and (4.13), we obtain ûk+1
0 = Γ[2](s, h, α, β)ûk−1

0 and ŵk+1
1 =

Γ[2](s, h, α, β)ŵk−1
1 , where Γ[2](s, h, α, β) is given by (4.11) and this completes the

proof.

Remark 4.1.2. If we choose h = λ2(s), then we get φ = s−b
a −λ2. Further, using the

property λ1 + λ2 = s−b
a , the expression for φ simplifies to φ = λ1, and substituting

this in the definition (4.11) results in

Γ[2](s, λ2, α, β) =

(

α+ 1− λ1
(α+ 1)λ1 − 1

)(

β − 1 + λ1
(β − 1)λ1 + 1

)

= ρ0(s, α, β),

where ρ0(s, α, β) is the convergence factor of the nonoverlapping OWR when applied
to infinitely long RC circuits and is given in (2.20).

We would now like to make the modulus of the convergence factor Γ[2] as small as
possible, which means we need to choose appropriate α and β. This leads to solving
the min-max problem

min
α,β∈R

(

max
ℜ(s)≥0

∣

∣

∣
Γ[2](s, h, α, β)

∣

∣

∣

)

. (4.14)

Circuit elements are fixed and hence the parameters a and b cannot be changed.
Also, we still do not know what value of h should be taken, since h is somehow
considered as the approximation of λ2(s) at some s ∈ C

+. Therefore we are left with
the parameters α and β to optimize. We assume β = −α. This choice comes from
the optimal values of α and β which are given as

αopt := φ− 1, and βopt := 1− φ.

Lemma 4.1.1. For 0 < |h| < 1, with 0 < h1 < 1, −b ≥ 2a and α > 0, the
convergence factor Γ[2] is analytic in the right half of the complex plane. Further,
∣

∣Γ[2]
∣

∣ attains its maximum on the imaginary axis of the complex plane.

Proof. We first show that under the conditions, −b ≥ 2a and 0 < |h| < 1, with
0 < h1 < 1, we have |φ| > 1. Let b = −(2+ ǫ)a, where ǫ ≥ 0. Since s lies in the right
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half of the complex plane, we can express s = σ+iω, where σ ≥ 0 and −∞ < ω <∞.
From the definition of φ in (4.5), for ǫ ≥ 0,

|φ|2 =

∣

∣

∣

∣

s− b

a
− h

∣

∣

∣

∣

2

=

∣

∣

∣

∣

σ + iω + (2 + ǫ)a

a
− h1 − ih2

∣

∣

∣

∣

2

=
∣

∣

∣

σ

a
+ 2 + ǫ− h1 + i

(ω

a
− h2

)∣

∣

∣

2
=
(σ

a
+ 2 + ǫ− h1

)2
+
(ω

a
− h2

)2

> 1,

where the last inequality holds since σ, a ≥ 0 and 2+ ǫ− h1 > 1. We now show that
the denominator of Γ[2] defined in (4.11) does not have a root in the right half of the
complex plane. This can be proved by contradiction using the same arguments used
in the proof of Theorem 2.4.1. Finally, the maximum modulus principle for analytic
functions states that its maximum is attained on the imaginary axis of the complex
plane and this completes the proof.

Lemma 4.1.2. The modulus of the convergence factor
∣

∣Γ[2]
∣

∣ is an even function with
respect to the frequency ω where s = iω.

Proof. We first prove that for s = iω, if h(ω) = h1 + ih2, then h(−ω) = h1 − ih2.

From the proof of Lemma 2.4.2, we observe that h(ω) = (2+ǫ)a−z1
2a + iω−z22a = h1+ ih2.

Using the same analysis we note that h(−ω) = (2+ǫ)a−z1
2a + i−ω+z22a = h1 − ih2, and

hence

|φ(−ω)| =

∣

∣

∣

∣

−iω − b

a
− h(−ω)

∣

∣

∣

∣

=

∣

∣

∣

∣

−iω − b

a
− h1 + ih2

∣

∣

∣

∣

=

∣

∣

∣

∣

(−b
a

− h1

)

+ i

(−ω
a

+ h2

)∣

∣

∣

∣

=

√

(−b
a

− h1

)2

+

(−ω
a

+ h2

)2

=

√

(−b
a

− h1

)2

+
(ω

a
− h2

)2

=

∣

∣

∣

∣

iω − b

a
− h1 − ih2

∣

∣

∣

∣

=

∣

∣

∣

∣

iω − b

a
− h(ω)

∣

∣

∣

∣

= |φ(ω)|.

As a result of Lemmas 4.1.1 and 4.1.2, our minimization problem (4.14) reduces to

min
α>0

(

max
ωmin≤ω≤ωmax

∣

∣

∣Γ[2](ω, h, α)
∣

∣

∣

)

, (4.15)

where we have restricted ω between ωmin := π
T and ωmax := π

∆t with T as the final
simulation time and ∆t as the time discretization parameter. The restriction holds
since we solve the problem on a finite time interval [0, T ] and with time discretization
∆t.
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Figure 4.4: Dependence of h1 (left) and h2 (right) on ω for different values of a.

Remark 4.1.3. Since h = λ2(s), for some s ∈ C
+, Lemma 2.2.2 states that 0 <

|h| < 1. Further, for ω ≥ 0, where s = iω, the left plot of Figure 4.4 shows that the
real part of h, that is, h1 satisfies 0 < h1 < 1, while the right plot shows that the
imaginary part of h, that is, h2 satisfies −1 < h2 ≤ 0.

We now solve the min-max problem (4.15) using the available complex analysis
tools. We observed in Chapter 2 that a solution of the min-max problem is given by
equioscillation. Since we apply the nonoverlapping OWR to the reduced RC circuit,
the equioscillation occurs between ω = ωmin and ω = ωmax, when the asymptotic
analysis is carried out with respect to the final time T → 0 along with ǫ = 0 (see
Section 2.4.1), while the equioscillation occurs between ω = 0 and ω = ωmax, when
the asymptotic analysis is carried out with respect to the reaction term ǫ → 0 (see
Section 2.4.2). We thus solve the min-max problem (4.15) using equioscillation such
that both these asymptotic analysis results are valid.

We simplify the expression of
∣

∣Γ[2]
∣

∣ by defining

x :=
ω

a
, p := α+ 1, 2c2 := − b

a
, d := 2c2 − h1. (4.16)

Since α > 0, b ≥ 2a and 0 < h1 < 1, we have x ≥ 0, p > 1, c2 ≥ 1 and d > 1. The
modulus of the convergence factor of the OWR given in (4.11) in these new variables
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simplifies to

R(x, p, d) :=
∣

∣

∣Γ[2](ω, h, α)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

(

α+ 1−
(

iω−b
a − (h1 + ih2)

)

(α+ 1)
(

iω−b
a − (h1 + ih2)

)

− 1

)2
∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

p−
(

ix+ 2c2 − h1 − ih2
)

p (ix+ 2c2 − h1 − ih2)− 1

)∣

∣

∣

∣

∣

2

=
(p− d)2 + (x− h2)

2

(pd− 1)2 + (x− h2)2p2
. (4.17)

Our min-max problem (4.15) thus reduces to: Find for fixed d > 1 and h, the

min
p>1

(

max
0≤xmin≤x≤xmax

R(x, p, d, h2)

)

, (4.18)

where xmin := ωmin

a and xmax := ωmax

a .

Lemma 4.1.3. R(x, p, d, h2) has only one critical point x = 0 with respect to x.
Further, x = 0 is a local minimum if d −

√
d2 − 1 < p < d +

√
d2 − 1 and a local

maximum if p ∈ (−∞, d−
√
d2 − 1) ∪ (d+

√
d2 − 1,∞).

Proof. Differentiating R(x, p, d, h2) with respect to x yields

∂R(x, p, d, h2)

∂x
=

∂

∂x

(

p2 + d2 − 2pd+ x2 + h22 − 2xh2
p2(x2 + d2) + 1− 2pd

)

=
2(x− h2)

(

2dp3 − p4 − 2pd+ 1
)

(d2p2 + p2(x− h2)2 − 2pd+ 1)2
. (4.19)

Equating the numerator with 0 states that R(x, p, d, h2) has only one critical point
with respect to x at x = h2. Remark 4.1.3 states that for s = iω, with ω ≥ 0, the
imaginary part of h, that is, h2 satisfies −1 < h2 ≤ 0. Since x ≥ 0, the equality
x = h2 holds only when x = h2 = 0. We now check whether the critical point x = 0

is a local maximum or local minimum by checking the sign of ∂2R(x,p,d,h2)
∂x2

at x = 0.
Differentiating (4.19) with respect to x and evaluating at h2 = 0 leads to

∂2R(x, p, d, 0)

∂x2
=

2(p− 1)(p+ 1)(2dp− p2 − 1)(d2p2 − 3p2x2 − 2dp+ 1)

(d2p2 + p2x2 − 2dp+ 1)3
,

which on evaluation at x = 0 simplifies to

∂2R(x, p, d, 0)

∂x2

∣

∣

∣

∣

x=0

=
2(p− 1)(p+ 1)(2dp− p2 − 1)

(dp− 1)4
.

Since p > 1, the polynomial 2dp−p2−1 determines the sign of ∂
2R(x,p,d)
∂x2

|x=0. Simpli-

fying the polynomial −p2+2dp− 1 = −(p− p1)(p− p2), where p1 = d−
√
d2 − 1 and

p2 = d+
√
d2 − 1, we observe that 2dp−p2−1 > 0 if p ∈ (p1, p2) and 2dp−p2−1 < 0

if p ∈ (−∞, p1) ∪ (p2,∞).



CHAPTER 4. APPROXIMATION BY SMALLER RC CIRCUITS 102

Figure 4.5: Plots of p1(d, h2) and p2(d, h2) for different values of d and h2.

Lemma 4.1.3 states that R(x, p, d, h2) has two extrema with respect to x at xmin and
xmax, where xmin ≥ 0 and hence the min-max problem (4.18) reduces to

min
p>1

(max {R(xmin, p, d, h2), R(xmax, p, d, h2)}) .

In order to find the solution p∗ of the above problem, we will first consider xmin → 0
and sufficiently large xmax. Then we will show that with this solution p∗, the modulus
of the convergence factor R(x, p∗, d, h2) does not depend on x for 0 ≤ xmin ≤ x ≤
xmax. These two steps will thus infer that the optimized p∗ is the solution of the
min-max problem (4.18).

Theorem 4.1.3. For the reduced RC circuit with two nodes, the optimized α∗ for
the nonoverlapping OWR method is given by

α[2]∗ := 2c2 − h1 − 1 +

√

(2c2 − h1)
2 − 1. (4.20)

Proof. We will study the behavior of the polynomialsR(xmin, p, d, h2) andR(xmax, p, d, h2)
with respect to p. Recall from (4.17), for xmin → 0,

R(xmin, p, d, h2) = lim
xmin→0

(

(p− d)2 + (xmin − h2)
2

(pd− 1)2 + (xmin − h2)2p2

)

=
(p− d)2 + h22

(pd− 1)2 + p2h22
.

At p = 1, R(xmin, 1, d, h2) = 1 and for large values of p, R(xmin, p, d, h2) = 1
d2+h2

2

.

Differentiating R(xmin, p, d, h2) with respect to p leads to

∂R(xmin, p, d, h2)

∂p
=

2(d2 + h22 − 1)(−d2p+ dp2 − h22p+ d− p)

(d2p2 + h22p
2 − 2dp+ 1)2

. (4.21)

Since d > 1, we have (d2 + h22 − 1) > 0. The sign of ∂R(xmin,p,d,h2)
∂p is thus determined

by the polynomial Q(p) := (−d2p+ dp2 − h22p+ d− p). Let p1 and p2 be the roots of
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Figure 4.6: Dependence of R(x, p, d, h2) on p under the condition xmin → 0 and
xmax → ∞ for d = 1.022 (left) and d = 2 (right).

this polynomial, given by

p1 :=
d2 + h22 + 1−

√

d4 + 2d2h22 + h42 − 2d2 + 2h22 + 1

2d
,

p2 :=
d2 + h22 + 1 +

√

d4 + 2d2h22 + h42 − 2d2 + 2h22 + 1

2d
.

Both plots of Figure 4.5 numerically illustrate that p1 < 1 < p2 for d > 1 and
−1 < h2 < 1. Moreover, the sign of p2 in the polynomial Q(p) is d, which is greater
than zero. Thus, we can conclude that Q(p) ≥ 0 for p ∈ (−∞, p1] ∪ [p2,∞), while
Q(p) < 0 for p ∈ (p1, p2). Equation (4.21) states that at p = 1, R(xmin, 1, d, h2) = 1
and it initially decreases on increasing p till p reaches p2. For p > p2, it starts
increasing monotonically to reach R(xmin, p, d, h2) = 1

d2+h2
2

. This behavior can be

seen numerically in the plots of Figure 4.6. We now consider xmax → ∞. From
(4.18), we have

R(xmax, p, d, h2) = lim
xmax→∞

(

(p− d)2 + (xmax − h2)
2

(pd− 1)2 + (xmax − h2)2p2

)

=
1

p2
. (4.22)

Further, differentiating R(xmax, p, d, h2) with respect to p leads to

∂R(xmax, p, d, h2)

∂p
= − 2

p3
,

which states that R(xmax, p, d, h2) is a decreasing function with respect to p. Start-
ing at p = 1, the function R(xmax, 1, d, h2) = 1 and it monotonically decreases till its
value reaches 0 (see Figure 4.6). The behavior of R(xmin, p, d, h2) and R(xmax, p, d, h2)
with respect to p thus shows that the solution of the min-max problem (4.18) is
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given uniquely by equating R(xmin, p
∗, d, h2) = R(xmax, p

∗, d, h2). This value is op-
timal since perturbing p∗ will increase the maximum value of R over x. Equat-

ing R(xmin, p
∗, d, h2) = R(xmax, p

∗, d, h2) gives
(p−d)2+h2

2

(pd−1)2+p2h2
2

= 1
p2

which simplifies to

p∗ = d±
√
d2 − 1. We observe that d−

√
d2 − 1 < 1 while p ranges from 1 to ∞ and

hence, we infer that the optimized p∗ = d+
√
d2 − 1. Substituting these expressions

into α[2]∗ = p∗ − 1 gives the expression for the optimized α[2]∗ given in (4.20).

Finally, we prove that at this optimal value of p∗, the value of R(x, p∗, d, h2) is the
same for all 0 ≤ xmin ≤ x ≤ xmax. For p = p∗ = d+

√
d2 − 1,

R(x, p∗, d, h2) =
(p∗ − d)2 + (x− h2)

2

(p∗d− 1)2 + (x− h2)2(p∗)2

=
d2 − 1 + (x− h2)

2

(d2 + d
√
d2 − 1− 1)2 + (x− h2)2(d2 + d2 − 1 + 2d

√
d2 − 1)

=
d2 − 1 + (x− h2)

2

(2d4 + 2d3
√
d2 − 1− 3d2 − 2d

√
d2 − 1 + 1) + (x− h2)2(2d2 − 1 + 2d

√
d2 − 1)

=
d2 − 1 + (x− h2)

2

(d2 − 1)(2d2 + 2d
√
d2 − 1− 1) + (x− h2)2(2d2 − 1 + 2d

√
d2 − 1)

=
d2 − 1 + (x− h2)

2

(d2 − 1 + (x− h2)2)(2d2 + 2d
√
d2 − 1− 1)

=
1

2d2 + 2d
√
d2 − 1− 1

,

that is, for p = p∗, the modulus of the convergence factor R(x, p∗, d, h2) does not
depend on x and hence not on ω. This shows that to make the analysis easy, we
could consider the assumption xmin → 0 and xmax → ∞ instead of evaluating R at
xmin and xmax and this completes the proof.

4.1.3 Relation with the infinitely long RC circuit

In this section, we will relate the reduced RC circuit with two nodes shown in Figure
4.2 to the infinitely long RC circuit as shown in Figure 2.2. We will then verify if the
expression of the optimized α[2]∗ for the RC circuit with two nodes given by (4.20)
is the same for the optimized α∗ for the infinitely long RC circuit.

For the reduced RC circuit, the value of h is given by h = λ2(ω) for some ωmin ≤
ω ≤ ωmax. Remark 4.1.2 states that for the particular choice of h = λ2, we have
Γ[2](ω, λ2, α, β) = ρ0(ω, α, β), where Γ[2] and ρ0 are the convergence factor of OWR
applied to the RC circuit of two nodes and infinitely long RC circuit respectively.
But h is fixed and we cannot vary it with ω. Moreover for the nonoverlapping OWR
applied to the RC circuit, we proved that the optimized α∗ is found by equating the
modulus of the convergence factor at ωmin and ωmax. This reduces the choice of range
of h and we can choose either h = λ2(ωmin) or h = λ2(ωmax). But for ω = ωmax,
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equation (4.22) proves that Γ[2](ωmax, h, α) =
1

α+1 , that is, the convergence factor is
independent of h and ω. This allows us to choose h = λ2(ωmin).

With this choice of h, we find an expression for the optimized α∗ for the infinitely
long RC circuits.

4.1.3.1 Asymptotics with respect to time T → ∞

In Section 2.4.1 of Chapter 2, we proved that for the nonoverlapping OWR, the

optimized α∗
T,0 is given by (2.30), that is, α∗

T,0 =
(

2
a

)1/4
ω
1/4
min, where ωmin = π

T . In
this section, we will see that we can arrive at the same expression for the optimized
α∗ using Theorem 4.1.3.

When we use asymptotics with respect to large time, we consider b = −2a and
ξ = ωmin → 0. Under this condition, we proceed in the same manner as in the proof
of Lemma 2.4.3 to arrive at λ2(ωmin) = 1− z1

2a+i
ξ−z2
2a , where z1+iz2 :=

√

−ξ2 + 4ξai.
Using the asymptotic expressions for z1 and z2 derived in the proof of Lemma 2.4.3,
we get

h = λ2(ωmin) =

(

1−
√
2
√
ξ

2
√
a

+

√
2ξ3/2

16a3/2

)

+ i

(

−
√
2
√
ξ

2
√
a

+
ξ

2a
−

√
2ξ3/2

16a3/2

)

+O(ξ5/2),

and thus separating real and imaginary parts of h = h1 + ih2 leads to

h1 = 1−
√
2
√
ξ

2
√
a

+O(ξ3/2), and h2 = −
√
2
√
ξ

2
√
a

+
ξ

2a
+O(ξ3/2).

Further, we had defined c2 = − b
2a and since b = −2a, we have c2 = 1 and

d = 2c2 − h1 = 2−
(

1−
√
ξ√

2
√
a
+O(ξ3/2)

)

= 1 +

√
ξ√

2
√
a
+O(ξ3/2).

Now

√

d2 − 1 =

√

(

1 +

√
ξ√

2
√
a
+O(ξ3/2)

)2

− 1 =

√

1 +

√
2
√
ξ√

a
+O(ξ)− 1

=

(

2

a

)1/4

ξ1/4 +O(ξ1/2).

Substituting the expansions for d and
√
d2 − 1 into the expression for the optimized

α[2]∗ for the reduced RC circuit (4.20), we arrive at

α[2]∗ = d+
√

d2 − 1 =

(

2

a

)1/4

ξ1/4 +O(ξ1/2),

=

(

2

a

)1/4

ω
1/4
min +O(ω

1/2
min),
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which is the same expression for the optimized α∗
T,0 given in Theorem 2.4.1 for the

infinitely long RC circuit.

4.1.3.2 Asymptotics with respect to ǫ→ 0

In Section 2.4.2 of Chapter 2, we proved that for the nonoverlapping OWR, the
optimized α∗ is given by (2.49), that is, α∗

R,0 =
√
2ǫ1/4, where b = −(2 + ǫ)a. In this

section, we will see that we can arrive at the same expression for the optimized α∗

using Theorem 4.1.3.

We used asymptotics with respect to the reaction term ǫ → 0, where b = −(2 + ǫ)a
and considered ωmin = 0. Under these conditions,

h = λ2(0) =
−b−

√
b2 − 4a2

2a
=

(2 + ǫ)a−
√
ǫ2a2 + 4ǫa2

2a
=

2 + ǫ− 2
√
ǫ
√

1 + ǫ
4

2

=
2 + ǫ− 2

√
ǫ
(

1 + ǫ
8 +O(ǫ2)

)

2
= 1−

√
ǫ+

ǫ

2
+O(ǫ3/2).

Since h in general is complex with h = h1 + ih2, we have h1 = 1−√
ǫ+ ǫ

2 +O(ǫ3/2).

Now, we had defined c2 = − b
2a and since b = −(2 + ǫ)a, we have c2 = 1 + ǫ

2 . This
simplifies d to

d = 2c2 − h1 = 2 + ǫ−
(

1−
√
ǫ+

ǫ

2
+O(ǫ3/2)

)

= 1 +
√
ǫ− ǫ

2
+O(ǫ3/2),

and therefore,

√

d2 − 1 =

√

(

1 +
√
ǫ− ǫ

2
+O(ǫ3/2)

)2
− 1 =

√

2
√
ǫ+O(ǫ) =

√
2ǫ1/4 +O(ǫ1/2).

Substituting the expansions for d and
√
d2 − 1 into the expression for the optimized

α[2]∗ for the reduced RC circuit (4.20), we arrive at

α[2]∗ = d+
√

d2 − 1 =
√
2ǫ1/4 +O(ǫ1/2) = α∗

R,0,

which is the same expression for the optimized α∗
R,0 given in Theorem 2.4.3 for the

infinitely long RC circuit.

We thus conclude that in order to find the optimized α∗
T,0 and α∗

R,0 for the nonover-
lapping WR method applied to the infinitely long RC circuit, we can first reduce
it to a smaller equivalent RC circuit with two nodes and then use the expression
for α[2]∗ given by (4.20). Further, we could not prove in Chapter 2 that the solu-
tion of the min-max problem (2.25) obtained by equioscillation is unique. But using
the technique of reducing the large circuit into a smaller circuit, we could prove the
uniqueness of the solution obtained by equioscillation.
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Z v−1

C

R v0

C

R v1

C

R v2

C

Z

Figure 4.7: Reduced RC Circuit with four nodes and impedance Z = R/(1− h).

4.2 RC circuit with four nodes

In this section, we do a similar but quite more complicated analysis for the reduction
of the infinitely long RC circuit (as shown in Figure 2.2) into a smaller RC circuit
with four nodes (see Figure 4.7). The process of reduction to the smaller circuit is
the same as discussed in Section 4.1, and we arrive at the smaller system of equations

s









û−1

û0
û1
û2









k+1

=









b+ ah a
a b a

a b a
a b+ ah

















û−1

û0
û1
û2









k+1

, (4.23)

where a > 0, −b ≥ 2a and

h = λ2(s) =
s− b−

√

(s− b)2 − 4a2

2a
, with s ∈ C

+.

4.2.1 Classical Waveform Relaxation Method

When the nonoverlapping classical WR algorithm is applied to an RC Circuit with
four nodes, the system of equations (4.23) is split into two equal subsystems at node
0;

s

[

û−1

û0

]k+1

=

[

b+ ah a
a b

] [

û−1

û0

]k+1

+

[

0

aûk+1
1

]

,

s

[

ŵ1

ŵ2

]k+1

=

[

b a
a b+ ah

] [

ŵ1

ŵ2

]k+1

+

[

aŵk+1
0

0

]

,

(4.24)

with the classical transmission conditions given by

ûk+1
1 = ŵk1 , and ŵk+1

0 = ûk0. (4.25)

We now find the expression for the convergence factor of this WR method.

Theorem 4.2.1. For the reduced RC circuit with four nodes, the convergence factor
of the nonoverlapping waveform relaxation method is given by

Γ
[4]
cla(s, h) :=

1

ψ2
=

(

a(s− b− ah)

(s− b)(s− b− ah)− a2

)2

, (4.26)
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where

ψ :=

(

(s− b)(s− b− ah)− a2

a(s− b− ah)

)

. (4.27)

Proof. We solve the coupled equations (4.24) using the transmission conditions (4.25).
Solving the first subsystem û for û−1 and û0 leads to

ûk+1
−1 =

(

a

s− b− ah

)

ûk+1
0 , and (s− b)ûk+1

0 = aûk+1
−1 + aûk+1

1 .

Substituting the first equation into the second simplifies it to

(s− b)ûk+1
0 =

a2

(s− b− ah)
ûk+1
0 + aûk+1

1

=⇒
(

(s− b)− a2

s− b− ah

)

ûk+1
0 = aûk+1

1

=⇒ ûk+1
0 =

(

a(s− b− ah)

(s− b)(s− b− ah)− a2

)

ûk+1
1

=⇒ ûk+1
0 =

1

ψ
ûk+1
1 =

1

ψ
ŵk1 . (4.28)

Similarly, from the second sub-system for ŵ, we have

ŵk+1
1 =

(

a(s− b− ah)

(s− b)(s− b− ah)− a2

)

ŵk+1
0 =

1

ψ
ŵk+1
0 =

1

ψ
ûk0. (4.29)

Combining equations (4.28) and (4.29) results in ûk+1 = Γ
[4]
cla(s, h)û

k−1 and ŵk+1 =

Γ
[4]
cla(s, h)ŵ

k−1, and this completes the proof.

Remark 4.2.1. For the special choice of h = λ2(s), using the properties of λ1 and

λ2 defined in Lemma 2.2.2, the convergence factor Γ
[4]
cla reduces to ρ0,cla(s), where

ρ0,cla(s) is the convergence factor (2.11) for the nonoverlapping WR method applied
to the infinitely long RC circuit. To prove this, we first simplify the expression of ψ
given by (4.27). For h = λ2,

ψ =

(

(s− b)(s− b− aλ2)− a2

a(s− b− aλ2)

)

=

(

(

s−b
a

) (

s−b
a − λ2

)

− 1
s−b
a − λ2

)

=

(

(λ1 + λ2) (λ1 + λ2 − λ2)− 1

λ1 + λ2 − λ2

)

=

(

(λ1 + λ2) (λ1)− 1

λ1

)

=

(

λ21 + 1− 1

λ1

)

= λ1. (4.30)

The convergence factor thus reduces to Γ
[4]
cla(s, λ2(s)) = 1

ψ2 = 1
λ2
1

= ρ0,cla(s). We

would thus like to choose h such that analyzing the convergence factor Γ
[4]
cla will be

sufficient to understand the convergence behavior of the infinitely long RC circuit.
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4.2.2 Optimized Waveform Relaxation Method

We now deal with the usual problem of the classical WR methods, that is, the slow
convergence when a large time interval is used. To improve its convergence, we use
the same optimized transmission conditions (2.16) defined in Section 2.3,

(uk+1
1 − uk+1

0 ) + αuk+1
1 = (wk1 − wk0) + αwk1 ,

(wk+1
1 − wk+1

0 ) + βwk+1
0 = (uk1 − uk0) + βuk0,

(4.31)

with α, β ∈ R. These transmission conditions can be rewritten as

uk+1
1 =

uk+1

0

1+α + wk1 − wk
0

1+α ,

wk+1
0 = −wk+1

1

β−1 +
uk
1

β−1 + uk0.
(4.32)

These transmission conditions are same as the one considered by Khaleel et al [2],
where the analysis was carried for the application of OWR to an RC circuit of length
four.

Theorem 4.2.2. The convergence factor of the nonoverlapping OWR method for the
reduced RC circuit with four nodes is given by

Γ[4](s, h, α, β) :=

(

α+ 1− ψ

(α+ 1)ψ − 1

)(

β − 1 + ψ

(β − 1)ψ + 1

)

. (4.33)

Proof. We solve the two subsystems (4.24) with these new transmission conditions
(4.31). We go back to the proof of Theorem 4.2.1, and substitute the Laplace trans-
formed transmission conditions (4.32) into equation (4.28) to obtain

ûk+1
0 =

1

ψ
ûk+1
1 =

1

ψ

(

ûk+1
0

1 + α
+ ŵk1 − ŵk0

1 + α

)

.

From (4.29), we have ŵk+1
1 = 1

ψ ŵ
k+1
0 . Substituting this into the above equation

simplifies it to

(

1− 1

(α+ 1)ψ

)

ûk+1
0 =

(

1

ψ
− 1

1 + α

)

ŵk1

=⇒
(

ψ(α+ 1)− 1

ψ(α+ 1)

)

ûk+1
0 =

(

α+ 1− ψ

ψ(1 + α)

)

ŵk1

=⇒ ûk+1
0 =

(

α+ 1− ψ

ψ(1 + α)− 1

)

ŵk1 . (4.34)

Similarly, from the other subsystem for ŵ, we obtain

ŵk+1
1 =

(

β − 1 + ψ

ψ(β − 1) + 1

)

ûk0. (4.35)
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Combining relations (4.34)-(4.35) yields

ûk+1
j = Γ[4]ûk−1

j , for j = −1, 0,

ŵk+1
j = Γ[4]ŵk−1

j , for j = 1, 2,

where Γ[4] is given by (4.33). This completes the proof.

Remark 4.2.2. We showed in Remark 4.2.1 that with the special choice of h = λ2,

the convergence factor Γ
[4]
cla of the WR applied to the reduced RC circuit with four

nodes is equal to the convergence factor ρ0,cla of the nonoverlapping WR method
when applied to the infinitely long RC circuit. From (4.30), under the condition
h = λ2, we have ψ = λ1, and hence

Γ[4](s, λ2, α, β) =

(

α+ 1− ψ

(α+ 1)ψ − 1

)(

β − 1 + ψ

(β − 1)ψ + 1

)

=

(

α+ 1− λ1
(α+ 1)λ1 − 1

)(

β − 1 + λ1
(β − 1)λ1 + 1

)

= ρ0(s, α, β),

where ρ0(s, α, β) is the convergence factor of the non-overlapping OWR when applied
to an infinitely long RC circuit and is given by (2.20).

Remark 4.2.3. For h = 0, the convergence factor Γ[4] reduces to the convergence
factor of OWR applied to RC circuit with exactly four nodes. This case has been
considered in [2].

For a particular choice of h, we would now like to choose α and β such that the
modulus of the convergence factor

∣

∣Γ[4]
∣

∣ is as small as possible.

4.2.3 Optimization

We observed in Section 2.4 that the best choice of α and β comes by solving a min-
max problem. For the reduced RC circuit with four nodes we need to solve for a
fixed h with |h| < 1,

min
α,β∈R

(

max
ℜ(s)≥0

∣

∣

∣
Γ[4](s, h, α, β)

∣

∣

∣

)

. (4.36)

Assumption 4.2.1. The analysis is too complicated when h is complex. Hence in
this section, we assume h ∈ R with h ∈ (0, 1), that is, h1 = h and h2 = 0, where
h = h1 + ih2.

We simplify this problem using the following lemmas.

Lemma 4.2.1. For h ∈ (0, 1), with a > 0, and b < 0 such that −b ≥ 2a, the function
ψ satisfies |ψ| > 1 in the right half of the complex plane, that is, for s = σ+ iω, with
σ ≥ 0.
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Proof. We first separate the real and imaginary part of ψ, which is expressed by
(4.27). For s = σ + iω with σ ≥ 0

ψ =

(

(s− b)(s− b− ah)− a2

a(s− b− ah)

)

=
s− b

a
− a2

a(s− b− ah)

=
σ + iω − b

a
− a

σ + iω − b− ah
.

Let us define 2c2 := −b
a , d := 2c2 − h, σ1 := σ

a and z := ω
a . Since −b ≥ 2a, and

0 < h < 1, we have c2 ≥ 1 and d > 1. The above expression thus reduces to

ψ = σ1 + iz + 2c2 − 1

σ1 + d+ iz
= σ1 + iz + 2c2 − σ1 + d− iz

(σ1 + d)2 + z2

=

(

σ1 + 2c2 − σ1 + d

z2 + (σ1 + d)2

)

+ iz

(

1 +
1

(σ1 + d)2 + z2

)

(4.37)

= x+ iy,

where x :=
(

σ1 + 2c2 − σ1+d
z2+(σ1+d)2

)

and y := z
(

1 + 1
(σ1+d)2+z2

)

. Since σ1, d > 0,

we have σ1+d
(σ1+d)2+z2

< 1. Further, c2 ≥ 1 and hence x > 1, that is, ℜ(ψ) > 1, which

implies |ψ| > 1.

Lemma 4.2.2. Let h ∈ (0, 1), β < 0 < α, a > 0, and b < 0 such that −b ≥ 2a.
Then the convergence factor Γ[4](s, h, α, β) is analytic in the right half of the complex
plane and the maximum of

∣

∣Γ[4](s, h, α, β)
∣

∣ lies on the non negative imaginary axis,
that is, s = iω, where ω ≥ 0.

Proof. Since |ψ| > 1, we use similar arguments used in the proof of Lemma 2.4.1 to
show that Γ[4] is analytic in the right half of the complex plane. Further, for s = iω,
with −∞ < ω <∞, we show that |ψ(ω)| is even with respect to ω. From (4.37) with
σ1 = 0,

|ψ(−ω)| =

∣

∣

∣

∣

(

2c2 − d

(−z)2 + d2

)

− iz

(

1 +
1

d2 + (−z)2
)∣

∣

∣

∣

=

(

(

2c2 − d

(−z)2 + d2

)2

+ z2
(

1 +
1

d2 + (−z)2
)2
)1/2

=

∣

∣

∣

∣

(

2c2 − d

z2 + d2

)

+ iz

(

1 +
1

d2 + z2

)∣

∣

∣

∣

= |ψ(ω)|.

Now we use exactly the same steps as we used in the proof of Lemma 2.4.2 to show
that

∣

∣Γ[4](−ω, h, α, β)
∣

∣ =
∣

∣Γ[4](ω, h, α, β)
∣

∣ and this completes the proof.

Finally, we assume that β = −α to simplify our problem (4.36). This choice of β
again comes from the fact that the optimal α and β are given by αopt := ψ − 1 and
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βopt := 1− ψ. Thus our min-max problem (4.36) reduces for fixed h ∈ (0, 1) to,

min
α>0

(

max
0≤ω<∞

∣

∣

∣Γ[4](ω, h, α)
∣

∣

∣

)

. (4.38)

From (4.27), we observe that ψ is a complicated function of ω. We therefore first ex-
press ψ in a simplified form which will make the analysis feasible. From the definition
of ψ in (4.27), for s = iω with ω ∈ [0,∞),

ψ =

(

(iω − b)(iω − b− ah)− a2

a(iω − b− ah)

)

=
−b
a

+
1

a
(x+ iy) , (4.39)

where

x+ iy = iω − a2

iω − (b+ ah)
= iω − a2(iω + (b+ ah))

(iω − (b+ ah))(iω + (b+ ah))

= iω +
a2(iω + (b+ ah))

ω2 + (b+ ah)2
=

(

a2(b+ ah)

ω2 + (b+ ah)2

)

+ iω

(

1 +
a2

ω2 + (b+ ah)2

)

.

Thus we have

x =
a2(b+ ah)

ω2 + (b+ ah)2
, and y = ω

(

1 +
a2

ω2 + (b+ ah)2

)

. (4.40)

We now express y2 in terms of x by eliminating its dependence on ω. The expression

of x can be rewritten as x
b+ah = a2

ω2+(b+ah)2
and hence, ω2 = a2(b+ah)

x − (b + ah)2.

Squaring the expression for y leads to

y2 = ω2

(

1 +
a2

ω2 + (b+ ah)2

)2

=

(

a2(b+ ah)

x
− (b+ ah)2

)(

1 +
x

b+ ah

)2

=

(

a2

x
− (b+ ah)

)(

(b+ ah+ x)2

b+ ah

)

=

(

a2 − x(b+ ah)
)

(b+ ah+ x)2

x(b+ ah)
. (4.41)

We now approximate the optimal αopt by a constant. From (4.39),

αopt := ψ − 1 = − b
a
+
p

a
− 1, (4.42)

where p ∈ R is the constant approximation for p := x+ iy defined in (4.40). Substi-
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tuting the expressions for x and y from (4.40) in the convergence factor Γ[4] gives

|Γ[4](x, h, p)| =

∣

∣

∣

∣

∣

(

α+ 1− ψ

(α+ 1)ψ − 1

)2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

p−b
a + b

a − x
a − iya

)2

((

p−b
a

)

(

x−b
a + iya

)

− 1
)2

∣

∣

∣

∣

∣

∣

∣

=
a2
(

(p− x)2 + y2
)

((p− b)(x− b)− a2)2 + y2(p− b)2

=

a2
(

(p− x)2 +

(

(a2−x(b+ah))(b+ah+x)2
x(b+ah)

))

((p− b)(x− b)− a2)2 +
(

(a2−x(b+ah))(b+ah+x)2
x(b+ah)

)

(p− b)2

=
a2(x(x− p)2(b+ ah) + (x+ b+ ah)2(a2 − x(b+ ah))

x(b+ ah)((p− b)(x− b)− a2)2 + (x+ b+ ah)2(p− b)2(a2 − x(b+ ah))
.

Since −b ≥ 2a, we assume 2c2 := − b
a with c2 ≥ 1. We divide both numerator and

denominator by a6 to get

R(c, h, x̃, p̃) :=
∣

∣

∣Γ[4](x, h, p)
∣

∣

∣ =
ã2x̃

2 + ã1x̃+ ã0

b̃2x̃2 + b̃1x̃+ b̃0
, (4.43)

where

x̃ := x
a ,

p̃ := p
a ,

ã2 := 1− 2h2 − 2h
(

−4c2 + p̃
)

+ 4c2
(

p̃− 2c2
)

,
ã1 :=

(

4c4 − 4c2h+ h2 − p̃2 − 2
) (

2c2 − h
)

,

ã0 :=
(

h− 2c2
)2
,

b̃2 := −
(

2c2 + p̃
) (

32c6 − 24c4h+ 16c4p̃+ 4c2h2 − 12c2hp̃+ 2h2p̃− 6c2 + 2h− p̃
)

,

b̃1 :=
(

16c6h− 4c4h2 + 16c4hp̃− 4c2h2p̃+ 4c2hp̃2 − h2p̃2 + 4c2p̃+ 2p̃2 + 1
) (

h− 2c2
)

b̃0 :=
(

2c2 + p
)2 (

h− 2c2
)2
.

Since ω ∈ [0,∞), the expression for x = a2(b+ah)
ω2+(b+ah)2

produces x ∈
[

a2

b+ah , 0
)

, which

implies x̃ ∈
[

−1
2c2−h , 0

)

. Finally, α > 0 and since α = −2c2+ p̃−1, we have p̃ > 1−2c2

and hence our min-max problem (4.38) further reduces to, find for fixed h ∈ (0, 1),
and c2 ≥ 1,

min
p̃>1−2c2

(

max
−1

2c2−h
≤x̃<0

R(c, h, x̃, p̃)

)

, (4.44)

where R(c, h, x̃, p̃) is defined in (4.43).

Lemma 4.2.3. For 0 < h < 1 and c2 ≥ 1, the polynomial L defined by

L(c, h, p̃) :=
(

16c4 − 12c2h+ 2h2 − 1
)

p̃2 +
(

16c4h− 12c2h2 + 2h3 + 4c2 − 2h
)

p̃

+
(

−64c8 + 80c6h− 32c4h2 + 4c2h3 + 28c4 − 16c2h+ 2h2 − 1
)
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0
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T
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,h
)
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Figure 4.8: The polynomial T (c, h) > 0 on (left) and inequality p̃− < 1 − 2c2 < p̃+
on (right) for all 0 < h < 1 and 1 ≤ c < 2.

has two roots

p̃− :=
−8c4h+ 6c2h2 − h3 − 2c2 + h−

√

T (c, h)

16c4 − 12c2h+ 2h2 − 1
, (4.45)

p̃+ :=
−8c4h+ 6c2h2 − h3 − 2c2 + h+

√

T (c, h)

16c4 − 12c2h+ 2h2 − 1
, (4.46)

with

T (c, h) = 1024c12 − 2048c10h+
(

1664h2 − 512
)

c8 +
(

−704h3 + 704h
)

c6

+
(

164h4 − 352h2 + 48
)

c4 +
(

−20h5 + 76h3 − 32h
)

c2 +
(

h6 − 6h4 + 5h2 − 1
)

.

Moreover, p̃− < 1− 2c2 < p̃+, and

L(c, h, p̃) =

{

> 0, for p̃ > p̃+

< 0, for 1− 2 c2 < p̃ < p̃+

}

.

Proof. Since the polynomial L is quadratic, one can easily check that its roots p̃−
and p̃+ are given by (4.45) and (4.46) respectively. For c2 ≥ 1, and h ∈ (0, 1),
the polynomial T (c, h) is always positive (see the left plot of Figure 4.8). Also, we
see numerically p̃− < 1 − 2c2 and p̃+ > 1 − 2c2 (see the right plot of Figure 4.8).
Let A(c, h) = 16c4 − 12c2h + 2h2 − 1. The roots of A(c, h) with respect to c2 are

c2±(h) :=
3h±

√
h2+4
8 . Since h ∈ (0, 1), 8− 3h > 0, and hence

c2±(h) =
3h±

√
h2 + 4

8
< 1 ⇐⇒ 3h±

√

h2 + 4 < 8

⇐⇒ h2 + 4 < (8− 3h)2 = 9h2 − 48h+ 64

⇐⇒ 0 < 2h2 − 12h+ 15.
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The last inequality holds since h ∈ (0, 1). This shows that both real roots of A(c, h)
are less than 1 for h ∈ (0, 1). The coefficient of c4 is positive and therefore A(c, h) > 0
for all c2 > 1 and h ∈ (0, 1). Thus we proved that the coefficient of p̃ in the polynomial
L(c, h, p̃) is always greater than zero, and hence L(c, h, p̃) is positive for large values
of |p̃|, that is, L(c, h, p̃) → ∞ as p̃ → ±∞. Since L is continuous, it should cut the
x axis twice, at p̃ = p̃− and p̃ = p̃+. Finally, since p̃− < p̃+, we can conclude that
L(c, h, p̃) > 0 for (∞, p̃−) ∪ (p̃+,∞) and L(c, h, p̃) ≤ 0 for p̃ ∈ [p̃−, p̃+].

Lemma 4.2.4. For p̃ > 1− 2c2, with c2 ≥ 1 and h ∈ (0, 1), the polynomial

d(c, h, p̃) :=
(

−16c4 + 12c2h− 2h2 + 1
)

p̃4 +
(

−16c4h+ 12c2h2 − 2h3 − 4c2 + 2h
)

p̃3

+
(

128c8 − 128c6h+ 40c4h2 − 4c2h3 − 32c4 + 12c2h+ 2
)

p̃2

+
(

64c8h− 48c6h2 + 8c4h3 + 80c6 − 88c4h+ 28c2h2 − 2h3 − 4c2 + 2h
)

p̃

− 256c12 + 320c10h− 128c8h2 + 16c6h3 + 240c8 − 208c6h+ 56c4h2

− 4c2h3 − 32c4 + 16c2h− 2h2 + 1

has only two real roots, say p̃1 and p̃2, with 1− 2c2 < p̃1 < p̃2. Moreover p̃2 > 0 and
d satisfies the inequalities

d(c, h, p̃) =

{

< 0, for p̃ ∈ (1− 2 c2, p̃1) ∪ (p̃2,∞),

> 0, for p̃ ∈ (p̃1, p̃2)

}

.

Proof. In the previous Lemma 4.2.3, we observed that the coefficient of p̃4 in the
polynomial d is negative and hence d(c, h, p̃) is negative for large values of |p̃|. Taking
a derivative of d(c, h, p̃) with respect to p̃ leads to

∂d(c, h, p̃)

∂p̃
=4
(

−16c4 + 12c2h− 2h2 + 1
)

p̃3 + 3
(

−16c4h+ 12c2h2 − 2h3 − 4c2 + 2h
)

p̃2

+ 2
(

128c8 − 128c6h+ 40c4h2 − 4c2h3 − 32c4 + 12c2h+ 2
)

p̃

+
(

64c8h− 48c6h2 + 8c4h3 + 80c6 − 88c4h+ 28c2h2 − 2h3 − 4c2 + 2h
)

.

Further, evaluating the derivative of the polynomial d at different values of p̃ yields

∂d(c, h, p̃)

∂p̃

∣

∣

∣

∣

p̃=−2c2
= 128c6 − 112c4h+ 28c2h2 − 2h3 − 12c2 + 2h > 0,

∂d(c, h, p̃)

∂p̃

∣

∣

∣

∣

p̃=1−2c2
= −8

(

4c4 − 2c2h− 2c2 + h− 1
) (

4c2 − h− 1
)2
< 0,

∂d(c, h, p̃)

∂p̃

∣

∣

∣

∣

p̃=0

= 2
(

2c2 − h
) (

16c6h− 4c4h2 + 20c4 − 12c2h+ h2 − 1
)

> 0,

∂d(c, h, p̃)

∂p̃

∣

∣

∣

∣

p̃=2c2
= −256c8h+ 192c6h2 − 32c4h3 − 64c6 − 16c4h+ 28c2h2 − 2h3 + 4c2 + 2h < 0.

The above inequalities are illustrated by the plots in Figure 4.9. Using the Interme-
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Figure 4.9: Plots of ∂d(c,h,p̃)∂p̃ evaluated at different values of p̃.

diate Value Theorem, we infer that the three roots r1, r2, and r3 of the derivative
of the polynomial d satisfy the conditions r3 ∈ (−2c2, 1− 2c2), r2 ∈ (1− 2c2, 0) and
r1 ∈ (0, 2c2). Since we are concerned with p̃ > 1− 2c2, we discard r3.

Since d(c, h, 1 − 2c2) = −4
(

4c4 − 2c2h− 2c2 + h− 1
) (

4c2 − h− 1
)2

< 0, looking
at the sign of the derivative of the polynomial d at 1 − 2c2, we can infer that by
increasing p̃, the polynomial d starts decreasing to reach its minimum at r2 where
it starts increasing to reach its maximum at r1 ∈ (0, 2c2). One can check that
d(c, h, 2c2) = 256c8−320c6h+112c4h2−8c2h3−32c4+20c2h−2h2+1 > 0 and hence
the polynomial d has a root p1 ∈ (1− 2c2, 2c2). Further, d starts decreasing beyond
p̃ > 2c2 to become negative. Hence we have the other real root p2 of d greater than
2c2. This proves that d has only two real roots and this completes the proof.

Lemma 4.2.5. For c2 ≥ 1, and h ∈ (0, 1), the root p̃+ given by (4.46) lies between p̃1
and p̃2, where p̃1 and p̃2 are the roots of the polynomial d(c, h, p̃) defined in Lemma
4.2.4.

Proof. From the left plot of Figure 4.10, we observe that for all c2 ≥ 1 and h ∈ (0, 1),
the polynomial d(c, h, p̃) defined in Lemma 4.2.4 satisfies d(c, h, p̃+) > 0 and hence
using the same Lemma 4.2.4, we can conclude that p̃+ ∈ (p̃1, p̃2).

Lemma 4.2.6. For p̃ ∈ [p̃1, p̃2], with c
2 ≥ 1 and h ∈ (0, 1), the polynomial P2(c, h, p̃)

defined as

P2(c, h, p̃) :=(−16c4 + 12c2h− 2h2 + 1)p̃2 + (−16c4h+ 12c2h2 − 2h3 − 4c2 + 2h− 2(2c2 − h)3)p̃

+ 64c8 − 80c6h+ 32c4h2 − 4c2h3 − 28c4 + 16c2h− 2h2 + 1− 4c2(2c2 − h)3

is always negative.

Proof. Let r− and r+, with r− < r+ be the roots (with respect to p̃) of the polynomial
P2(c, h, p̃). From both plots of Figure 4.11, we observe that under the conditions
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Figure 4.10: Plot of d(c, h, p̃+) on (left) and d(c, h, r+) on (right) for different values
of c and h.
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Figure 4.11: Plot of P2(c, h, p̃) for different values of p̃.

c2 ≥ 1 and h ∈ (0, 1), we have

P2(c, h,−2c2) = −16c4 + 12c2h− 2h2 + 1 < 0,

P2(c, h, 1− 2c2) = 2
(

4c4 − 2c2h− 2c2 + h− 1
) (

6c2 − 2h− 1
)

> 0,

P2(c, h, 2c
2) = −64c8 + 32c6h− 32c4 + 20c2h− 2h2 + 1 < 0.

Thus by the Intermediate Value Theorem, r− ∈ (−2c2, 1−2c2) and r+ ∈ (1−2c2, 2c2).
From Lemma 4.2.4, since d(c, h, r+) < 0 (see the right plot of Figure 4.10) , we infer
that r+ 6∈ [p̃1, p̃2]. Thus r− < r+ < p̃1. Further, the coefficient of p̃2 in the polynomial
P2 is negative and hence P2(c, h, p̃) ≥ 0 for p̃ ∈ [r−, r+] and P2(c, h, p̃) < 0 elsewhere.
Hence the polynomial P2(c, h, p̃) is always negative for p̃ ∈ [p̃1, p̃2].

Lemma 4.2.7. For p̃ > 1− 2c2 with c2 ≥ 1 and h ∈ (0, 1), we define the polynomial
P4 by

P4(c, h, p̃) := L(c, h, p̃)G(c, h, p̃),
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Figure 4.12: Numerical verification of Ps(c, h) > 0 and d(c, h, ˆ̃p) > 0 on (left) and
inequality ˆ̃p− < 1− 2c2 < ˆ̃p < p̃+ on (right) for different values of c and h.

where

G(c, h, p̃) =
(

−16c8 + 32c6h− 24c4h2 + 8c2h3 − 16c4 − h4 + 12c2h− 2h2 + 1
)

p̃2

+
(

−32c6 + 32c4h− 12c2h2 + 2h3 − 4c2 + 2h
)

p̃+ 64c12 − 128c10h

+ 96c8h2 − 32c6h3 − 16c8 + 4c4h4 + 48c6h− 40c4h2 + 12c2h3

− 28c4 − h4 + 16c2h− 2h2 + 1.

The polynomial P4(c, h, p̃) has two real roots ˆ̃p and p̃+ which are both greater than
1 − 2c2. Further, ˆ̃p < p̃+ for 1 ≤ c < 1.5. Moreover P4 is negative for p̃ ∈ (1 −
2c2, ˆ̃p) ∪ (p̃+,∞) and positive for p̃ ∈ (ˆ̃p, p̃+).

Proof. The polynomial P4 has four roots, two roots of the polynomial L and the two
other roots of the polynomial G. We have studied the polynomial L in Lemma 4.2.3
and have shown that L has two real roots p̃− and p̃+ such that p̃− < 1 − 2c2 < p̃+.
Similarly, one can show that the polynomial G has two real roots,

ˆ̃p :=
−16c6 + 16c4h− 6c2h2 + h3 − 2c2 + h+

√

Ps(c, h)

16c8 − 32c6h+ 24c4h2 − 8c2h3 + 16c4 + h4 − 12c2h+ 2h2 − 1
,

ˆ̃p− :=
−16c6 + 16c4h− 6c2h2 + h3 − 2c2 + h−

√

Ps(c, h)

16c8 − 32c6h+ 24c4h2 − 8c2h3 + 16c4 + h4 − 12c2h+ 2h2 − 1
,

where

Ps(c, h) :=
(

4c4 − 2c2h+ 2c2 − h− 1
) (

8c6 − 12c4h+ 6c2h2 − h3 + 6c2 − 2h+ 1
)

(

4c4 − 2c2h− 2c2 + h− 1
) (

8c6 − 12c4h+ 6c2h2 − h3 + 6c2 − 2h− 1
)

.

From the left plot of Figure 4.12 we observe that Ps(c, h) > 0 for c2 ≥ 1 and h ∈ (0, 1)
and hence the roots ˆ̃p and ˆ̃p− are real and ˆ̃p− < 1 − 2c2 < ˆ̃p (see the right plot of
Figure 4.12). The roots p̃− and p̃+ of the polynomial L(c, h, p̃) are well studied in
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Lemma 4.2.3. Since p̃− and ˆ̃p− are less than 1 − 2c2, we discard them. Further, in
general we cannot say if ˆ̃p < p̃+ or ˆ̃p > p̃+, since these inequalities depend on the
value of c. But, under the conditions h ∈ (0, 1) and 1 ≤ c < 1.5, we have ˆ̃p < p̃+.

We observe numerically from the left plot of Figure 4.12 that d(c, h, ˆ̃p) > 0 and hence
from Lemma 4.2.4 we conclude that ˆ̃p ∈ (p̃1, p̃2). The sign of the coefficient of p̃2 in the
polynomial G(c, h, p̃) is negative and hence G(c, h, p̃) < 0 for p̃ ∈ (−∞, ˆ̃p−) ∪ (ˆ̃p,∞)
while G(c, h, p̃) ≥ 0 for p̃ ∈ [ ˆ̃p−, ˆ̃p]. Finally, from Lemma 4.2.3, we have L(c, h, p̃) > 0
for p̃ > p̃+ and L(c, h, p̃) < 0 for 1− 2c2 < p̃ < p̃+. Summarizing the behavior of the
polynomials L and G, we have

G(c, h, p̃) =











> 0, for p̃ ∈ (1− 2c2, ˆ̃p),

< 0, for p̃ ∈ (ˆ̃p, p̃+),

< 0, for p̃ ∈ (p̃+,∞),

, and L(c, h, p̃) =











< 0, for p̃ ∈ (1− 2c2, ˆ̃p),

< 0, for p̃ ∈ (ˆ̃p, p̃+),

> 0, for p̃ ∈ (p̃+,∞),

and hence

P4(c, h, p̃) =

{

> 0, for p̃ ∈ (ˆ̃p, p̃+),

< 0, for p̃ ∈ (1− 2c2, ˆ̃p) ∪ (p̃+,∞).

This completes the proof.

Lemma 4.2.8. For p̃ > 1− 2c2, with c2 ≥ 1 and h ∈ (0, 1), let x1(c, h, p̃) be defined
as

x1(c, h, p̃) :=

(

2
(

2c2 + p̃
) (

2c2 − h
)

+
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
, (4.47)

where the polynomials L(c, h, p̃) and d(c, h, p̃) are defined in Lemma 4.2.3 and 4.2.4
respectively. x1(c, h, p̃) is not defined for p̃ = p̃+ and is complex for p̃ ∈ (1−2c2, p̃1)∪
(p̃2,∞). Further, x1 <

−1
2c2−h for p̃ ∈ [p̃1, p̃+) and x1 > 0 for p̃ ∈ (p̃+, p̃2].

Proof. Lemma 4.2.3 states that the polynomial L(c, h, p̃) has a unique real root p̃+
greater than 1 − 2c2. Since L(c, h, p̃) is in the denominator, x1 is not defined for
p̃ = p̃+. From Lemma 4.2.4, we find that d(c, h, p̃) < 0 for p̃ ∈ (1− 2c2, p̃1) ∪ (p̃2,∞)
and hence x1 is complex in this region. Now, consider the case p̃ ∈ [p̃1, p̃+). Since
L(c, h, p̃) < 0 for 1− 2c2 < p̃ < p̃+, we have

x1 <
−1

2c2 − h
⇐⇒ (2(2c2 + p̃)(2c2 − h) +

√

d(c, h, p̃))(2c2 − h)

L(c, h, p̃)
<

−1

2c2 − h

⇐⇒ (2(2c2 + p̃)(2c2 − h) +
√

d(c, h, p̃))(2c2 − h)2 > −L(c, h, p̃)
⇐⇒ (2c2 − h)2

√

d(c, h, p̃) > −L(c, h, p̃)− 2(2c2 + p̃)(2c2 − h)3 = P2(c, h, p̃).

Lemma 4.2.5 and 4.2.6 state that the right side of the above inequality is negative
while the left side is positive and hence x1 <

−1
2c2−h is true. For the case p̃ ∈ (p̃+, p̃2],

both the numerators and denominators are positive and hence x1 > 0.



CHAPTER 4. APPROXIMATION BY SMALLER RC CIRCUITS 120

Lemma 4.2.9. For p̃ > 1− 2c2, with c2 ≥ 1 and h ∈ (0, 1), we define x2(c, h, p̃) by

x2(c, h, p̃) :=

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
, (4.48)

where the polynomials L(c, h, p̃) and d(c, h, p̃) are defined in Lemma 4.2.3 and 4.2.4
respectively. x2(c, h, p̃) is not defined for p̃ = p̃+ and is complex for p̃ ∈ (1−2c2, p̃1)∪
(p̃2,∞). Further, under the condition p̃1 < ˆ̃p < p̃+ < p̃2, we have x2 ≥ −1

2c2−h
for p̃ ∈ [ ˆ̃p, p̃+) ∪ (p̃+, p̃2], and x2 <

−1
2c2−h for p̃ ∈ [p̃1, ˆ̃p). In addition, x2 < 0 for

p̃ ∈ [p̃1, p̃+) ∪ (p̃+, ˜̃p), and x2 ≥ 0 for [ ˜̃p, p̃2] where ˜̃p :=
√
4c4 − 1 and p̃+ < ˜̃p < p̃2.

Proof. The proof is similar to the proof of Lemma 4.2.8. By Lemmas 4.2.3 and 4.2.4,
x2(c, h, p̃) is not defined for p̃ = p̃+ and complex for p̃ ∈ (1− 2c2, p̃1) ∪ (p̃2,∞).

For p̃ ∈ [p̃1, p̃+), L(c, h, p̃) < 0 and hence

x2 ≥
−1

2c2 − h
⇐⇒

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
≥ −1

2c2 − h

⇐⇒
(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)2 ≤ −L

⇐⇒
(

2c2 − h
)2√

d(c, h, p̃) ≥ L+ 2
(

2c2 + p̃
) (

2c2 − h
)3

= −P2(c, h, p̃).

By Lemma 4.2.6, P2(c, h, p̃) is always negative and hence squaring on both sides gives

⇐⇒
(

2c2 − h
)4
d(c, h, p̃) ≥ (P2(c, h, p̃))

2

⇐⇒
(

2c2 − h
)4
d(c, h, p̃)− (P2(c, h, p̃))

2 ≥ 0

⇐⇒ P4(c, h, p̃) ≥ 0.

Lemma 4.2.7 gives the behavior of the polynomial P4 and hence we conclude that
x2 ≥ −1

2c2−h for p̃ ∈ [ ˆ̃p, p̃+) and x2 <
−1

2c2−h for p̃ ∈ [p̃1, ˆ̃p).

Similarly, for p̃ ∈ (p̃+, p̃2], we follow the steps to arrive at

x2 ≥
−1

2c2 − h
⇐⇒

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
≥ −1

2c2 − h

⇐⇒
(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)2 ≥ −L

⇐⇒
(

2c2 − h
)2√

d(c, h, p̃) ≤ L+ 2
(

2c2 + p̃
) (

2c2 − h
)3

= −P2(c, h, p̃)

⇐⇒ P4(c, p̃, h) ≤ 0.

Using Lemma 4.2.7, we conclude x2 ≥ −1
2c2−h if p̃ ∈ [ ˆ̃p, p̃+) ∪ (p̃+, p̃2] and x2 <

−1
2c2−h

for p̃ ∈ [p̃1, ˆ̃p).
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Further, for p̃ ∈ [p̃1, p̃+), we also have

x2 < 0 ⇐⇒

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
< 0.

Since L(c, h, p̃) < 0, the above inequality reduces to

⇐⇒
(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

> 0

⇐⇒
(

2
(

2c2 + p̃
) (

2c2 − h
))2 − d(c, h, p̃) > 0

⇐⇒
(

p̃2 − 4c4 + 1
)

L(c, p̃, h) > 0

⇐⇒
(

p̃− ˜̃p
) (

p̃+ ˜̃p
)

(p̃− p̃+) (p̃− p̃−) > 0

⇐⇒ z(c, p̃, h) > 0,

where p̃+ and p̃− are the roots of L(c, p̃, h) which are defined in Lemma 4.2.3, ˜̃p :=√
4c4 − 1, and z(c, p̃, h) :=

(

p̃− ˜̃p
) (

p̃+ ˜̃p
)

(p̃− p̃+) (p̃− p̃−). Clearly, ˜̃p > 1−2c2 and

hence only two roots of z(c, p̃, h), namely, ˜̃p, p̃+ are greater than 1 − 2c2. Further,
since L(c, ˜̃p, h) > 0 and d(c, ˜̃p, h) > 0, we infer from Lemmas 4.2.4 and 4.2.3 that
p̃1 < p̃+ < ˜̃p < p̃2. Finally, since p̃ ∈ [p̃1, p̃+), we have L(c, p̃, h) > 0 and (p̃− ˜̃p) < 0,
and thus z(c, p̃, h) > 0. Thus we conclude that x2 < 0 for p̃ ∈ [p̃1, p̃+).

For p̃ ∈ (p̃+, p̃2], we follow similar steps and since L(c, p̃, h) > 0, we have

x2 < 0 ⇐⇒

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
< 0

⇐⇒
(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

< 0

⇐⇒
(

p̃2 − 4c4 + 1
)

L(c, p̃, h) < 0

⇐⇒
(

p̃− ˜̃p
) (

p̃+ ˜̃p
)

(p̃− p̃+) (p̃− p̃−) < 0.

Since p̃ ∈ (p̃+, p̃2] and p̃+ > p̃1, we have x2 < 0 for p̃ ∈ (p̃+, ˜̃p) while x2 ≥ 0 for
p̃ ∈ [ ˜̃p, p̃2]. This completes the proof.

Lemma 4.2.10. For c2 ≥ 1 and h ∈ (0, 1), the function x̃ 7→ R(c, h, x̃, p̃) defined in

(4.43) has a unique local minimum in
[

−1
2c2−h , 0

)

located at

x̃(c, h, p̃) :=

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
,

if p̃ ∈ [ ˆ̃p, p̃+) ∪ (p̃+, ˜̃p), where the polynomials L(c, h, p̃), d(c, h, p̃), p̃+, ˜̃p are defined
in the previous lemmas. For any other value of p̃ > 1 − 2c2, R has no extrema in
[

−1
2c2−h , 0

)

.
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Proof. A partial derivative of R(c, h, x̃, p̃) with respect to x̃ shows that the root of
the polynomial

Q(x̃) =
(

2c2 + p̃+ 1
) (

2c2 + p̃− 1
)

P (x̃)

where

P (x̃) =
(

2c2 − h
)

((64c8 − 80c6h+ 32c4h2 − 16c4hp̃− 16c4p̃2 − 4c2h3 + 12c2h2p̃+ 12c2hp̃2

− 28c4 − 2h3p̃− 2h2p̃2 + 16c2h− 4c2p̃− 2h2 + 2hp̃+ p̃2 + 1)x̃2

+ (32c6 − 32c4h+ 16c4p̃+ 8c2h2 − 16c2hp̃+ 4h2p̃)x̃

+ 16c8 − 16c6h+ 4c4h2 − 4c4p̃2 + 4c2hp̃2 − 4c4 − h2p̃2 + 4c2h− h2)

determine the extrema of R. Further the roots of the polynomial P (x̃) are

¯̃x(c, h, p̃) :=

(

2
(

2c2 + p̃
) (

2c2 − h
)

+
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
,

x̃(c, h, p̃) :=

(

2
(

2c2 + p̃
) (

2c2 − h
)

−
√

d(c, h, p̃)
)

(

2c2 − h
)

L(c, h, p̃)
.

Note that ¯̃x and x̄ are the same as x̃1 and x̃2 defined in (4.47) and (4.48) respectively.
By Lemmas 4.2.8 and 4.2.9, both ¯̃x and x̄ are not defined for p̃ = p̃+ and are complex
for p̃ ∈ (1 − 2c2, p̃1) ∪ (p̃2,∞). We therefore analyze for the intervals [p̃1, p̃+) and

(p̃+, p̃2]. Lemmas 4.2.8-4.2.9 state that R has only one extremum in
[

−1
2c2−h , 0

)

at

x̃ = x̃, which is a minimum, if p̃ ∈ [ ˆ̃p, p̃+)∪(p̃+, p̃2]. For any other value of p̃ > 1−2c2,

R has no extrema in
[

−1
2c2−h , 0

)

.

Lemma 4.2.11. For fixed x̃ ∈
[

−1
2c2−h , 0

)

with h ∈ (0, 1), the optimal p̃∗ lies in the

interval
[

−1
2c2−h ,∞

)

.

Proof. R(c, h, x̃, p̃) is a complicated function of p̃. Using Maple, we find that the
partial derivative of R with respect to p̃ is given by

∂R(c, h, x̃, p̃)

∂p̃
= −z(x̃, h)P (p̃, h),

where the polynomials z and P have the expressions

z(x̃, h) := (16c4 − 12c2h+ 2h2 − 1)x̃2 + (8c4h− 6c2h2 + h3 + 2c2 − h)x̃− 4c4 + 4c2h− h2,

P (p̃, h) := (−8c4x̃+ 4c2hx̃− 4c2x̃2 + 2hx̃2)p̃2 + (−32c6x̃+ 32c4hx̃+ 16c4x̃2 − 12c2h2x̃

−16c2hx̃2 − 8c4 + 2h3x̃+ 4h2x̃2 + 8c2h+ 12c2x̃− 2h2 − 6hx̃− 2x̃2)p̃

−32c8x̃+ 48c6hx̃+ 48c6x̃2 − 24c4h2x̃− 40c4hx̃2 − 16c6 + 4c2h3x̃+ 8c2h2x̃2

+16c4h+ 16c4x̃− 4c2h2 − 8c2hx̃− 8c2x̃2 + 2hx̃2.
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Since z(x̃, h) does not depend on p̃, the extrema of R with respect to p̃ are determined
by the roots of the polynomial P (p̃, h), which are given by

¯̃p(c, h, x̃) :=
Qp(c, h, x̃) +

√

dp(c, h, x̃)

2x(4c4 − 2c2h+ 2c2x− hx)
, (4.49)

p̃(c, h, x̃) :=
Qp(c, h, x̃)−

√

dp(c, h, x̃)

2x(4c4 − 2c2h+ 2c2x− hx)
, (4.50)

with

Qp(c, h, x̃) = (8c4−8c2h+2h2−1)x̃2+(−16c6+16c4h−6c2h2+h3+6c2−3h)x̃−4c4+4c2h−h2,

and

dp(c, h, x̃) =((16c4 − 12c2h− 4c2 + 2h2 + 2h− 1)x̃2 + (8c4h− 8c4 − 6c2h2 + 4c2h+ h3 + 6c2 − 3h)x̃

− 4c4 + 4c2h− h2)((16c4 − 12c2h+ 4c2 + 2h2 − 2h− 1)x̃2

+ (8c4h+ 8c4 − 6c2h2 − 4c2h+ h3 + 6c2 − 3h)x̃− 4c4 + 4c2h− h2).

Using the derivative of dp(c, h, x̃) with respect to x̃, we find the minimum of both

factors of the polynomial dp(c, h, x̃), and observe that for x̃ ∈
[

−1
2c2−h , 0

)

, c2 ≥ 1 and

h ∈ (0, 1),

((16c4 − 12c2h− 4c2 + 2h2 + 2h− 1)x̃2 + (8c4h− 8c4 − 6c2h2 + 4c2h+ h3 + 6c2 − 3h)x̃

−4c4 + 4c2h− h2) < 0, and,

((16c4 − 12c2h+ 4c2 + 2h2 − 2h− 1)x̃2 + (8c4h+ 8c4 − 6c2h2 − 4c2h+ h3 + 6c2 − 3h)x̃

−4c4 + 4c2h− h2) < 0.

Thus, under these conditions, dp(c, h, x̃) > 0.

Further, we also observe that under these conditions, ¯̃p(c, h, x̃) < 1− 2c2 < p̃(c, h, x̃),
and hence we discard ¯̃p(c, h, x̃). Moreover, since the coefficient of p̃2 in the polynomial

P (p̃, h) is always positive when x̃ ∈
[

−1
2c2−h , 0

)

, we observe that R attains its minimum

at p̃. Therefore, for 1 − 2c2 < p̃ < p̃, increasing p̃ increases R, while for p̃ > p̃,

increasing p̃ decreases R. Since the range of x̃ is
[

−1
2c2−h , 0

)

, the optimal p̃∗ will thus

be attained at p̃(c, h, x̃) ∈
[

−1
2c2−h ,∞

)

since with p̃ outside this interval, R can be

uniformly decreased by moving p̃ towards this interval. This completes the proof.

Theorem 4.2.3. For 1 ≤ c < 1.5 and h ∈ (0, 1), the optimized α[4]∗ for the nonover-
lapping OWR method applied to the reduced RC circuit with four nodes is given by

α[4]∗ = 2c2 − 1 + p̃∗, (4.51)

where p̃∗ is the solution of the min-max problem (4.44)

p̃∗ :=
−1 +

√
16c8 − 16c6h+ 4c4h2 − 12c4 + 8c2h− h2 + 1

2c2 − h
. (4.52)
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Proof. We proved in Lemma 4.2.10 that the maximum of the convergence factor R
defined in (4.43) can only be attained at the boundaries, that is, x̃ = −1

2c2−h and x̃ = 0−

since x̃ approaches 0 from the negative axis. Further, Lemma 4.2.11 states that for

x̃ ∈
[

−1
2c2−h , 0

)

, the optimal p̃ lies in
[

−1
2c2−h ,∞

)

. We thus observe the behavior of R

in these intervals. For x̃ = −1
2c2−h , p̃ = p̃(c, h, −1

2c2−h) = −1
2c2−h , and thus R(c, h, x̃ =

−1
2c2−h , p̃ = −1

2c2−h) = 0. From Lemma 4.2.11, increasing p̃ increases R monotonically.

On the other hand, for p̃ = −1
2c2−h , R(c, h, x̃ = 0−, p̃ = −1

2c2−h) =
(2c2−h)2

(4c4−2c2h−1)2
> 0 and

increasing p̃ decreases R(c, h, 0−, p̃) = 1
(2c2+p̃)2

to reach the limp̃→∞
(

1
(2c2+p̃)2

)

= 0.

Thus by increasing p̃, we can increase R(c, h, −1
2c2−h , p̃) = R(c, h, 0−, p̃). Equating

R (c, h, 0, p̃) = R
(

c, h, −1
2c2−h , p̃

)

results in

p̃∗ =1− 2c2,−1− 2c2,
−1−

√
16c8 − 16c6h+ 4c4h2 − 12c4 + 8c2h− h2 + 1

2c2 − h
,

−1 +
√
16c8 − 16c6h+ 4c4h2 − 12c4 + 8c2h− h2 + 1

2c2 − h
.

Since p̃ > 1−2c2, we discard the first three solutions, and this completes the proof.

4.2.4 Comparison with the infinitely long RC circuit

In this section, we will relate the reduced RC circuit with four nodes shown in Figure
4.7 to the infinitely long RC circuit as shown in Figure 2.2. We will then verify if we
can derive the same expressions of α∗

T,0 and α∗
R,0 for the infinitely long RC circuit

using the expression of optimized α[4]∗ for RC circuit with four nodes given by (4.51).

We proved in Section 4.1.3 that for the nonoverlapping OWR method, the value of
h for the reduced RC circuit with both two and four nodes is given by h = λ2(ωmin).
Using this value of h, we find α[4]∗ for the infinitely long RC circuit. Our analysis for
four nodes RC circuit is only valid when h = λ2(ωmin) ∈ R, and hence we consider
only one type of asymptotic analysis, the one with respect to ǫ→ 0. In this analysis,
h = λ2(0) ∈ R.

4.2.4.1 Asymptotics with respect to ǫ→ 0

We saw in Section 4.1.3.2 that for asymptotic analysis with respect to ǫ → 0, where
b = −(2+ ǫ)a, the constants are c2 = 1+ ǫ

2 and h = 1−√
ǫ+O(ǫ). For this analysis,

using the expression of p∗ given by (4.52), we arrive at

p∗ =
−1 +

√
16c8 − 16c6h+ 4c4h2 − 12c4 + 8c2h− h2 + 1

2c2 − h

=
−1 +

√

2
√
ǫ+O(ǫ)

1 +
√
ǫ+O(ǫ)

=
−1 +

√
2ǫ1/4 +O(ǫ1/2)

1 +
√
ǫ+O(ǫ)

= −1 +
√
2ǫ1/4 +O(ǫ1/2).
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Figure 4.13: Solution given by equioscillation for different lengths of the RC circuits
(left) and comparison of the optimized α for ǫ = 0 (right).

Finally, using (4.51), we arrive at

α[4]∗ = 2c2 − 1 + p∗ =
√
2ǫ1/4 +O(ǫ1/2).

This is the same expression for α∗
R,0 derived in Theorem 2.4.3.

4.3 Numerical Experiments

We perform three major numerical experiments to verify whether the method of
reduction of the infinitely long RC circuit to a smaller RC circuit produces fairly good
results. In other words, we would like to see that the optimized α∗ given by Theorems
4.1.3 and 4.2.3 can be used in the transmission conditions of the nonoverlapping OWR
method when applied to infinitely long RC circuit.

First of all, we observe numerically that the solution of the min-max problems (4.15)
and (4.38) of the reduced RC circuits with two and four nodes respectively are found
by equioscillation. For this example, we consider R = 0.5kΩ, C = 0.63pF , ǫ = 0.01
and ωmax = 100. The left plot of Figure 4.13 shows that for all RC circuits whether
they are infinitely long or reduced circuits with two or four nodes, the solution of the
min-max problems is given by equioscillation. Note that α[2]∗ and α[4]∗ are calculated
using equations (4.20) and (4.51) respectively, while α∗

T,0 by Theorem 2.4.1. It is
interesting to observe that for the RC circuit with two nodes, equioscillation occurs
for all ω ∈ [ωmin, ωmax], while for the other cases, equioscillation occurs between
ω = ωmin and ω = ωmax. Further, the right plot of Figure 4.13 shows that the
optimized α∗ found by all methods is very close to numerically optimized α∗.

Next, we observe the effect of the optimized α∗ derived by the different ways on the
convergence of the nonoverlapping OWR methods. We consider the case of the RC
circuit which could not be considered in Chapter 2. that is, an infinitely long RC
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Figure 4.14: Convergence plots of OWR using α∗ found by different methods for
N = 150 and T = 1000 (left) and for N = 200 and T = 2000 (right).

circuit with ǫ = 10−4, with finite time t ∈ (0, T ] and time discretization ∆t = 0.1.
We perform two similar experiments: one with a length of the RC circuit of N = 150
and T = 1000 and the other with N = 200 and T = 2000. For the OWR method, we
use the optimized α∗ derived by four different analysis, that is, asymptotic analyses
with respect to T → ∞, asymptotic analysis with respect to ǫ→ 0, using the reduced
RC circuit of two nodes and the reduced RC circuit of four nodes. We observe that
the convergence rate of the nonoverlapping OWR method is far greater than that of
the classical nonoverlapping WR method. In both plots of Figure 4.14, we observe
that our method of reducing circuits and then solving the min-max problem produces
convergence plots which are very close to the numerically optimized convergence.

4.4 Conclusion

We developed a new methodology for analyzing convergence of nonoverlapping OWR
when applied to infinitely long RC circuits, which can be also extended to other elec-
tric circuits. We showed how long circuits can be reduced to smaller circuits by a
method of back-substitution which is similar to the calculation of a Schur comple-
ment. One of the most important hurdles is to find a best approximation of h, which
contains the information of the remaining circuit. We proved that for the application
of the nonoverlapping OWR to the RC circuit, h can be chosen as h = λ2(ωmin).

In Chapter 2, we could not prove that the solution of the min-max problem given by
equioscillation is unique. Also, we had to use asymptotic analysis to find expressions
for the optimized α∗. Moreover, we considered two separate asymptotic analyses:
one with respect to T → ∞ with ǫ = 0 and the other with respect to ǫ → 0 with
T = ∞. However, the reduction of this infinitely long RC circuit to a smaller circuit
overcomes all these issues. We proved that the solution of the min-max problem is
uniquely given by equioscillation (without using asymptotic analysis). With these
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reduced circuits, we can treat a combined situation, that is, ǫ > 0 and T <∞.

Further, for fixed h ∈ (0, 1), we solved the min-max problems for the reduced RC
circuit of two nodes and four nodes, and found an explicit expression for the optimized
α[2]∗ and α[4]∗ respectively. We then compared our newly derived α[2]∗ and α[4]∗ with
those of α∗

T,0 and α∗
R,0 derived in Chapter 2. Finally, we performed some numerical

experiments to support our theoretical results, and compare reduced circuits with
the infinitely long RC circuit.

However, for the overlapping OWR, we have not yet found a way to approximate h.
We know that h = λ2(ω) for some ω ∈ [ωmin, ωmax]. The solution of the min-max
problem for the overlapping OWR is also given by equioscillation, but its behavior
is different from the nonoverlapping case. The equioscillation takes place between
ω = ωmin and ω = ω̄, where ω̄ ∈ (ωmin, ωmax) and ω̄ close to ωmin. This makes the
analysis to approximate h = λ2(ω) difficult. This is work in progress and expected
to finish soon.



Chapter 5

Conclusion and Future work

This thesis was devoted to the study of the application of nonoverlapping and overlap-
ping WR methods to electric circuits. We studied two types of circuits: the infinitely
long RC circuit and the infinitely long RLCG transmission line. These circuits are
an integral part of most of the integrated circuits and hence their quick simulation is
important. Moreover the systems of ODEs representing these circuits are the same
as the discretized heat and Maxwell’s equations respectively.

In Chapter 2, we first developed the mathematical model of an infinitely long RC cir-
cuit using the well known MNA formulation. We then applied the WR algorithm to
this circuit and studied its convergence in Laplace space. The classical WR method
converges superlinearly for small time windows, but has a slow linear rate of conver-
gence when large time windows are employed. To tackle this problem, we introduced
optimized transmission conditions, which now exchange at the interface a combina-
tion of voltages and currents instead of only voltages in case of the classical WR
method. However the introduction of these new transmission conditions leads to an
optimization problem. Solving this min-max problem yields the best combination of
voltage and current, which are transferred at the interfaces. This min-max problem
cannot be solved using the available complex analysis tools and hence we use asymp-
totic analysis with respect to two different parameters: one with respect to the final
time going to infinity and the other with respect to a reaction term going to zero.
Both of these asymptotic analyses have been performed for both nonoverlapping
and overlapping cases, and it has been found that the optimized parameters for the
nonoverlapping OWR behave differently to that of the overlapping OWR. We showed
that the convergence of both WR and OWR methods increases by overlapping more
nodes. Further, we proved that the improvement in the convergence in WR methods
due to optimized transmission conditions is far more than that because of overlapping
nodes. Finally, though all these analyses are done only for the two subdomain case,
we numerically checked that these optimized parameters can be used for the multiple
subdomain case and for the discretized heat equation.

128
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We presented similar analyses for the infinitely long RLC transmission lines in Chap-
ter 3. We considered both nonoverlapping and overlapping WR methods. We devel-
oped optimized transmission conditions for both of these cases. One interesting and
novel study was based on the way of partitioning the system of ODEs corresponding
to transmission lines. In this case, both the voltages at the nodes and currents in
between are unknowns, and are arranged in a systematic manner one after the other.
Thus the splitting of this system of ODEs becomes interesting. We observed that
the type of splitting does not affect the convergence of the classical WR method,
but the convergence for OWR is faster when partitioning is at a current node. We
then derived asymptotic expressions for the optimization parameters in the optimized
transmission conditions for all possible cases, that is, nonoverlapping OWR, overlap-
ping OWR with splitting at a voltage node and overlapping OWR with splitting at
a current node.

Due the complicated expression of the convergence factor for both circuits, the process
of finding the optimized parameters in the transmission conditions was complicated.
In Chapter 4, we therefore develop a new strategy for this analysis, where we first
reduce the infinitely long circuit into a smaller circuit with minimal nodes required
for the analysis of OWR method. This reduction procedure is performed via back
substitution which is similar to the calculation of a Schur compliment. This analysis
was done for the application of nonoverlapping OWR to the infinitely long RC circuit.

There are many questions which are open. One needs to study the reduction strategy
to the infinitely long RLCG transmission lines. Further, this reductions strategy
needs to be extended to the overlapping OWR methods. We would also like to apply
these methods to other electric circuits like the low pass filter, PEEC circuit and so
on. The considered RC circuit and RLCG transmission lines are in 1D, that is, in
one direction. One could also consider 2D circuits. Along with parallelism in the
space domain, we can also combine WR methods with other time parallel methods
to gain extra parallelism, that is, in the time domain.
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