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ASYMPTOTIC ANALYSIS OF QUENCHING PROBLEMS

MAREK FILA AND BERNHARD KAWOHL

Introduction. Let Ω ⊂ Rn be a bounded domain with smooth
boundary and let α > 0. Consider the problem

(P )

⎧⎨
⎩

ut − Δu = −u−α in (0, T ) × Ω,
u = 1 on (0, T ) × ∂Ω,
u(0, x) = u0(x) in Ω.

Here 0 < u0(x) ≤ 1 is assumed throughout the paper. It is well known
that for sufficiently large domains Ω the solution can approach zero
in finite time, see [10,2]. This phenomenon is called quenching and
throughout this paper we assume that u quenches at time T < ∞.

It was furthermore shown that ut → −∞ as u → 0, see [10,5,1,6].

In the present paper we derive some asymptotic estimates for u near
the point (T, 0) in which u is supposed to quench. They will be of the
type

min
x∈Ω

u(t, x) ≤ [(1 + α)(T − t)]1/(1+α),(1)

u(t, x) ≥ C1(T − t)1/(1+α),(2)

u(T, r) ≤ C2r
2/(1+α) for α < 1,(3)

u(t, r) ≥ C3r
2/(1+γ) for 0 < γ < α.(4)

Notice that (2) implies the blow up of ut at quenching. Therefore,
(1) and (2) give us the rate at which ut → −∞. Notice further that
(3) implies ur(T, 0) = 0 for 0 < α < 1, see also Remark 2.10. (3) and
(4) will be derived only in a radial situation where Ω is a ball and u0

radially symmetric and for (3) u0 ≡ 1. A consequence of (4) is the fact
that for n ≥ 2 or α < 3

||1 − u(t, ·)||H1
0(Ω) ≤ C4 for any t ∈ (0, T ),
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so that u does not blow up in H1(Ω) as t → T−. For α ∈ (0, 1) one
can establish this result without using (4) and for general domains Ω,
see Theorem 3.1.

Moreover, we are interested in the behavior of
∫
Ω

u−α dx, or even of

(5) Iλ(t) =
∫

Ω

u−λ(t, x) dx

as t → T−, where λ > 0. It turns out that there exists a number
λ∗ = (n/2)(1 + α) such that Iλ(t) blows up for λ > λ∗ and remains
bounded in time for λ < λ∗. More precisely, if Ω ⊂ Rn is pseudoconvex,
i.e., if the mean curvature of ∂Ω is nonnegative, and if λ > λ∗, then

(6) Iλ(t) → ∞ as t → T−.

But if Ω ⊂ Rn is a ball and u0 satisfies certain assumptions (see
Theorem 3.1), then for λ < λ∗

Iλ(t) ≤ C5 < ∞ as t → T−,

while for λ = λ∗, 0 < α < 1 and u0 ≡ 1

Iλ(T ) = ∞.

The proofs of these results are based on the maximum principle and
were partly inspired by papers of Friedman and McLeod [7] and
Bebernes, Bressan and Lacey [4] on blow up problems. Since blow
up and quenching problems are essentially of the same nature (see [1,
11]), it is not surprising to find out that they are amenable to similar
techniques. We point out that the estimate (2) is implicitly contained
in the work of Deng and Levine [6] on quenching.

After this paper had been submitted for publication, H. Levine kindly
pointed out the work of Guo [8,9] to us. In terms of our notation, Guo
obtained the following results: In [8] Guo shows for n = 1 and α ≥ 3
and for fairly general initial data u0 that

(∗) lim
t→T

u(t, x)(T − t)−γ = k

uniformly on the parabolic domains |x| ≤ C
√

T − t. Here γ = 1/(1+α),
k = k(γ, u0) and C is any positive constant. Notice that (∗) is stronger
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than our Theorem 1.2. In [9] Guo derives (∗) for balls in Rn, n ≥ 2,
of radius R2 > 2γ(γ + n − 2) for u0 ≡ 1 and for α > 1. In contrast to
Guo’s result, we have weaker assumptions in Theorem 1.2 (convex Ω
and more general u0) and we obtain a weaker statement than (∗).

1. Time decay. In this section we establish the estimates (1) and
(2). By definition, a point x ∈ Ω is called quenching point if there
exists a sequence (tm, xm) ∈ (0, T ) × Ω such that tm → T−, xm → x
and u(tm, xm) → 0 as m → ∞.

Lemma 1.1. Suppose that Ω is convex. Then the set of quenching
points lies in a compact subset of Ω.

We refer to [6] for a proof.

Theorem 1.2.

a) minx∈Ω u(t, x) ≤ [(1 + α)(T − t)]1/(1+α) for 0 ≤ t < T.

b) Suppose that Δu0 − u−α
0 ≤ 0 in Ω and that Ω is convex. Then

there exists a positive constant C depending on u0 such that

u(t, x) ≥ C(T − t)1/(1+α) for 0 < t < T and x ∈ Ω.

Proof. It is easy to see that u(t) := minx∈Ω u(t, x) is locally Lipschitz
and u′ ≥ −u−α for a.e. t ∈ (0, T ). Integrating the inequality (1/(1 +
α))(u−α)′ ≥ −1 from t to T we obtain statement a) (cf. Theorem 4.5
in [7]).

To prove b) we observe that Lemma 1.1 implies the existence of a
constant η > 0 such that Ωη := {x ∈ Ω|dist (x, ∂Ω) > η} contains all
quenching points. For δ sufficiently small it can be shown that

J̃(t, x) := ut + δu−α ≤ 0 in (η, T ) × Ωη

as in the proofs [7, Lemma 4.1, Theorem 4.2]; see [6, proof of Theorem
3.1] for details. This completes the proof of Theorem 1.2.
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Remark 1.3. Theorem 1.2a gives a simple lower bound for the
quenching time T , namely

T ≥ 1
1 + α

min
x∈Ω

(u0(x))1+α.

2. Spatial asymptotics at t = T . Let us introduce some notation.
We denote the spatial gradient (∂u/∂x1, . . . , ∂u/∂xn) of u by ∇u and
its components by ui, i = 1, . . . , n. Correspondingly, uij denotes
∂2u/∂xi∂xj . Furthermore, we introduce the functions

f(u) = −u−α, α > 0,(2.1)

f̃(u) =

⎧⎪⎪⎨
⎪⎪⎩

−1
1−αu1−α if 0 < α < 1,

ln u if α = 1,
1

1−αu1−α if α > 1,

(2.2)

and

P (t, x) =
1
2
|∇u|2 + f̃(u(t, x))(2.3)

for (t, x) ∈ (0, T ) × Ω. If α ≥ 1, a straightforward calculation shows
that

(2.4) Pt − ΔP = 2αu−α−1|∇u|2 − f2(u) −
n∑

i,j=1

u2
ij in (0, T ) × Ω,

so that we cannot infer anything about P from the parabolic maximum
principle. If, however, α < 1, we calculate

(2.5) Pt − ΔP = f2(u) −
n∑

i,j=1

u2
ij in (0, T ) × Ω

and observe that

(2.6)
n∑

i=1

(Pi − f(u)ui)2 =
n∑

i,j=1

(ujuij)2 ≤ |∇u|2
n∑

i,j=1

u2
ij .
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A combination of (2.5) and (2.6) gives

Pt − ΔP ≤ �b · ∇P,

where �b = |∇u|−2(2f(u)∇u − ∇P ) is locally bounded in ((0, T ) ×
Ω)\{(t, x)|∇u(t, x) = 0}. Therefore, P can only attain a maximum
in a point where ∇u = 0 or on the parabolic boundary of (0, T ) × Ω.
But in points where ∇u = 0 we have P ≤ 0 so that a positive maximum
cannot occur in those points.

In summary, we have shown that for α < 1 any positive maximum of
P (t, x) will have to be attained on the parabolic boundary of (0, T )×Ω.

Remark 2.1. The usefulness of the P -function for semilinear (and
quasilinear) elliptic and parabolic problems is demonstrated in the book
of Sperb [15] in great detail.

We shall now restrict the set of points in which P attains a positive
maximum even further. We need the following definition: A domain
Ω ⊂ Rn is called pseudoconvex if ∂Ω ∈ C3+γ for some γ ∈ (0, 1) and if
the mean curvature H(x) of ∂Ω is nonnegative.

Lemma 2.2. If α < 1 and if Ω is pseudoconvex, then P (t, x)
attains any positive maximum initially. Thus, if P (0, x) ≤ 0 in Ω,
then P (t, x) ≤ 0 in (0, T ) × Ω.

Proof. By contradiction, suppose that there is a positive time t0 and
a point x0 ∈ ∂Ω such that P attains a positive maximum in (t0, x0).
Then by Hopf’s second lemma,

(2.7)
∂P

∂ν
(t0, x0) > 0,

where ν denotes the exterior normal to ∂Ω. But (2.7) can be rewritten
as

(2.8) uνuνν + f(u)uν = (uνν + f(u))uν > 0.

If we write the differential equation for u in curvilinear coordinates on
the boundary, we obtain

(2.9) −uνν − (n − 1)H(x0)uν = f(u).
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But (2.9) implies a contradiction to (2.8), i.e.,

(uνν + f(u))uν = −(n − 1)H(x0)u2
ν ≤ 0.

Remark 2.3. If P ≤ 0 in (0, T ) × Ω, then

(2.10)
∂

∂ν
u(1+α)/2 ≤ 1 + α√

2(1 − α)
,

a statement which can be used to get upper bounds on u at the
quenching time. This will be done in the following theorem.

Theorem 2.4. Let Ω = BR(0), 0 < α < 1 and u0 ≡ 1. then

(2.11) u(T, r) ≤ Cαr2/(1+α),

where

(2.12) Cα = (1 + α)2/(1+α)[2(1 − α)]−1/(1+α).

Moreover,

(2.13) ur(T, 0) = 0.

Proof. Since Δu0 − u−α
0 ≤ 0 in Ω, the solution u is nonincreasing in

t; hence, there is a pointwise limit u(T, ·). From Lemma 2.2 we have
P (t, x) ≤ 0 in (0, T ) × Ω. Now (2.11) follows from an integration of
(2.10) and from the fact that u quenches in (T, 0), because ur ≥ 0 in
(0, T ) × Ω. Finally, (2.13) follows from (2.11) because

1
r
{u(T, r) − u(T, 0)} ≤ Cαr(1−α)/(1+α).

Remark 2.5. Theorem 2.4 holds also for slightly more general initial
data. We used the assumptions

u0 = u0(r),
∂

∂r
u0(r) ≥ 0 in Ω,(2.14)

∂2

∂r2
u0 +

n − 1
r

∂

∂r
u0 − u−α

0 ≤ 0 in Ω,(2.15)
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and P (0, r) ≤ 0. These assumptions are satisfied, e.g., for

u0(r) = 1 − δR2 + δr2

provided δ > 0 is sufficiently small.

Remark 2.6. Theorem 2.4 makes no statement about the limiting case
α → 1−, since Cα tends to +∞ as α → 1−.

It is the purpose of the following considerations to derive a lower
bound for u which complements the one given by (2.11). To this end,
we follow an idea of Friedman and McLeod [7]. We set w = rn−1ur

and J(t, r) = w + c(r)F (u) with c and F to be determined later. This
Ansatz leads to the differential equation

(2.16) Jt +
n − 1

r
Jr − Jrr = B in (0, T ) × Ω

with

(2.17)
B = f ′(u)w + cF ′f +

2(n − 1)
r

cF ′ur

+
n − 1

r
c′F − cF ′′u2

r − 2c′F ′ur − c′′F.

We use ur = wr1−n and w = −cF + J to find out that

B = bJ − c(f ′F − fF ′) − c3

r2n−2
F ′F 2 +

2cc′

rn−1
F ′F

+
n − 1

r
c′F − 2

n − 1
rn

c2F ′F − c′′F,

where b is bounded for 0 < r < R.

We intend to show that B−bJ ≥ 0, since then there is hope to derive
J ≥ 0 via the maximum principle as well. This is the reason why we
pick now c(r) = −εrn and F (u) = u−γ with γ > 0. Then B − bJ ≥ 0
can be established, provided that

(2.18) (γ − α)uγ−α ≤ −2εnγ

holds. Notice that the other terms in B − bJ remain nonnegative
because the signs of c, F and their derivatives are under control.
Property (2.18) can be satisfied only if γ < α and, since u ≤ 1, if

(2.19) ε ≤ α − γ

2nγ
.
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Under assumption (2.19), the function J can only attain a negative
minimum for t = 0 or r = 0 or r = R. But J(t, 0) = 0 for t ∈ (0, T ).
We also calculate

Jr(t, r) = rn−1(ut − f(u)) − εnrn−1u−γ + εγrnu−γ−1

so that Jr(t, R) ≥ 0 as long as

(2.20) ε ≤ 1
n

.

So, under conditions (2.19) and (2.20), the function J can only attain
a negative minimum initially.

Theorem 2.7. Let Ω = BR(0), and suppose that the initial data u0

satisfy J(0, r) ≥ 0, i.e.,

(2.21) u0 = u0(r) and
∂

∂r
u0 ≥ εru−γ

0 in Ω,

where γ < α and ε ≤ min{(α − γ)/2nγ, 1/n}. Then

(2.22) u(t, r) ≥ Cγ,εr
2/(1+γ) in (0, T ) × Ω,

and

(2.23) Cγ,ε =
[
(γ + 1)ε

2

]1/(1+γ)

.

Proof. By the maximum principle J(t, x) ≥ 0 in (0, T )×Ω, i.e., ur ≥
εru−γ in (0, T )×Ω. A simple integration gives (1/(γ + 1))uγ+1(t, r) ≥
ε(r2/2) and the proof is complete.

Remark 2.8. Assumption (2.21) can be verified for initial data of the
type

(2.24) u0(r) = 1 − δR2 + δr2
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provided δ ≥ ε/2, cf. Remark 2.5.

Remark 2.9. Notice that in (2.22) the limit γ → α− does not give
any new information since ε, and thus Cγ,ε → 0 as (α − γ) → 0.

Remark 2.10. If α > 1 and if u ∈ C([0, T ] × Ω), then (2.22) implies
that ur(T, 0) = +∞.

3. Integral estimates. In the present section we shall investigate
integrals like

∫
Ω

|∇u|2 dx or
∫

Ω

u−λ dx for λ > 0 as t → T−.

Theorem 3.1. Let u be a solution of (P) which quenches at time T ,
and suppose that (1 − u0) ∈ H1

0 (Ω).

a) If α < 1, then there exists a constant M depending on u0 and |Ω|
such that

(3.1) ||u(t, ·)||H1(Ω) ≤ M for t ∈ (0, T ).

b) If α ∈ (0, 3) and n = 1, or if n ≥ 2 and α > 0, if Ω = BR(0)
and if u0 satisfies the assumptions of Theorem 2.7, then there exists a
constant M depending on u0, R and Cγ,ε, such that (3.1) holds.

c) If α > 3, n = 1 (Ω = (−R, R)) and if u0 satisfies the assumptions
of Theorem 2.7, then

∫
Ω
|ux|2 dx → ∞ as t → T−.

Proof. We recall that the Liapunov functional

V (t) =
1
2

∫
Ω

|∇u|2 dx −
∫

Ω

( ∫ u

1

f(w) dw

)
dx

is nonincreasing in time, since V ′(t) = − ∫
Ω

u2
t dx ≤ 0. Therefore,

(3.2)
∫

Ω

|∇u|2 dx ≤ 2V (0) + 2
∫

Ω

( ∫ u

1

f(w) dw

)
dx.
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But if α �= 1, we have

(3.3)
∫

Ω

( ∫ u

1

f(w) dw

)
dx =

−1
1 − α

∫
Ω

(u1−α − 1) dx,

and for α < 1, this expression is always bounded by 1/(1 − α). This
proves statement a) for α < 1.

To prove part b) for α �= 1, we use (2.22) to conclude that (3.3) is
bounded as long as 2(α − 1) < n(1 + γ), i.e., for n ≥ 2 and α > 0 or
for n = 1 and 0 < α < 3.

For α = 1, one sees that
∫

Ω

( ∫ u

1

f(w) dw

)
dx =

∫
Ω

− ln u dx ≤ − ln Cγ,ε− 2
γ + 1

∫
Ω

ln r dr ≤ M,

which concludes the proof of b).

Finally, we prove c) by contradiction. Assume that there is a sequence
tn → T− such that u(tn, ·) is bounded in H1(Ω). Then, after passing
to a subsequence, u(tn, ·) converges weakly in H1(Ω) to some function
v. By Theorem 2.7, v ≥ Cγ,εx

2/(1+γ) in (−R, R) for any γ < α. This
is a contradiction, since v is in H1(Ω) which is embedded in Cβ(Ω) if
β < 1/2.

In the remainder of this section we shall consider

Iλ(t) =
∫

Ω

u−λ(t, x) dx.

Under the assumptions of Theorem 2.7, we know that u(t, x) ≥
Cγ,εr

2/(1+γ), so that

(3.4) u−λ(t, x) ≤ C−λ
γ,ε r−2λ/(1+γ).

But the right-hand side of (3.4) is integrable near zero as long as
n > 2λ/(1 + γ) or λ < (n/2)(1 + γ). This proves (3.5) below while
(3.6) is a simple consequence of (2.11).

Corollary 3.2. Under the assumptions of Theorem 2.7,

(3.5) lim
t→T−

Iλ(t) < ∞
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for λ < (n/2)(1 + α), and under the assumptions of Theorem 2.4,

(3.6) Iλ(T ) = ∞

for λ ≥ (n/2)(1 + α).

Note that Corollary 3.2 does not apply to Kawarada’s original prob-
lem in which λ = α = n = 1. Moreover, Corollary 3.2 is based on
radial symmetry assumptions. In the following theorem we shall treat
more general, namely pseudoconvex domains Ω. For this purpose, we
introduce the functions

(3.7) g(u) =
∫ 1

μ

2f(s) ds

and

(3.8) u(t0) = min
x∈Ω

u(t0, x).

Lemma 3.3. Let Ω ⊂ Rn be pseudoconvex. Suppose that for some
t0 ∈ (0, T )

(3.9) −g(u) ≥ −g(u0) +
1
2
|∇u0|2 in Ω

holds. Then

(3.10)
1
2
|∇u|2 ≤ −g(u) + g(u) in (0, t0) × Ω.

Proof. For the proof, which is a modification of the proof of Theorem
3.1 in [7], we fix t0 and treat u(t0) as a fixed constant. Then the
function w = u − u satisfies

wt − Δw = f(w + u) =: h(w) in (0, t0) × Ω,

w = u − u on (0, t0) × ∂Ω,

w(0, x) = u0(x) − u in Ω.



574 M. FILA AND B. KAWOHL

We set H(w) =
∫ w

0
h(s) ds and introduce

P̃ =
1
2
|∇w|2 + H(w).

Then, as in the proof of Lemma 2.1, we obtain

(3.11) P̃t −∇P̃ ≤ b · ∇P̃ in (0, t0) × Ω.

Here b is bounded where ∇u is positive. So P̃ takes a positive maximum
either where ∇u = 0, but P̃ ≤ 0, or on the parabolic boundary of
(0, t0) × Ω. But initially, P̃ ≤ 0 by (3.9) since

(3.12) H(u0 − u) = g(u) − g(u0).

And, on the later boundary, we have, using curvilinear coordinates

∂P̃

∂ν
= wνh(w) − (n − 1)H(x)w2

ν ≤ uνh(w) ≤ 0.

Thus, by the maximum principle, it follows that P̃ ≤ 0 in (0, t0) × Ω.
Replacing u0 in (3.12) by u, one sees that

P̃ =
1
2
|∇w|2 + H(u − u) =

1
2
|∇u|2 + g(u) − g(u),

so that (3.10) follows and the proof is complete.

What about assumption (3.9)? For α ≥ 1 and t0 close to the
quenching time T , we can verify (3.9) because

i) for α = 1, we have g(u) = lnu → −∞, and

ii) for α > 1, we have g(u) = 1/(α− 1)(1−u1−α) → −∞, as u → 0.
So we can establish (3.10) for α ≥ 1 and proceed further from there.

In the sequel we distinguish the cases α = 1 and α > 1. If α = 1,
then (3.10) reads

(3.13)
1
2
|∇u|2 ≤ − ln u + lnu,
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and by convexity of the function − ln u, we have

(3.14)
1
2
|∇u|2 ≤ − 1

u
(u − u) =

1
u

(u − u).

Let u = u(t0, x0) = minx∈Ω u(t0, x) and introduce polar coordinates
(r, θ) about x0. In any direction θ there is a smallest value of r,
r = r0(θ) say, such that u(r, θ) = 2u. Because of (3.14) and the
definition of u, we know that u2

r ≤ (2/u)(u − u) or

(3.15)
ur√
u − u

≤
√

2
u

.

By integration, 2
√

u − u ≤ √
(2/u)r, and taking r = r0(θ), we obtain

(3.16) r0(θ) ≥
√

2u.

Therefore,
∫

Ω

u−λ(t, x) dx ≥
∫

θ

dsθ

∫
{r<r0(θ)}

u−λrn−1 dr

≥
∫

θ

dsθ

∫
{r<r0(θ)}

(2u)−λrn−1 dr

=
∫

θ

dsθ(2u)−λ · 1
n

rn
0 ≥ 2(n/2)−λ · n−1

∫
θ

dsθ · un−λ,

and as u → 0, the last factor blows up provided λ > n. But u → 0 as
t → T− according to Theorem 1.2a. This settles the case α = 1.

If α > 1, then (3.13) is replaced by

(3.17)
1
2
|∇u|2 ≤ 1

α − 1
(u1−α − u1−α),

and by convexity of the function (1/(α − 1))u1−α, we have

(3.18)
1
2
|∇u|2 ≤ u−α(u − u).

Proceeding as in the case α = 1, we arrive at

(3.19)
ur√
u − u

≤
√

2u−α/2
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and after integration at 2
√

u − u ≤ 21/2u−α/2r, so that analogously to
(3.16) we obtain

(3.20) r0(θ) ≥
√

2u(1+α)/2.

Consequently,
∫

Ω

u−λ(t, x) dx ≥ 2−λ+n/2 · n−1

∫
θ

dsθ · u−λ+n(1+α)/2,

and the last factor goes to +∞ as u → 0 for λ > (n/2)(1 + α). Again,
recall that u(t) → 0 as t → T− (Theorem 1.2a). In summary, we have
shown the following

Theorem 3.4. Let Ω ⊂ Rn be pseudoconvex and α ≥ 1. Then for
λ > (n/2)(1 + α), we have

lim
t→T−

Iλ(t) = +∞.
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