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Abstract. Steady slow viscous flow is considered inside a vessel with circular cross

section. The centerline curvature is specified as a function of arc length. The Stokes

equations are written in orthogonal curvilinear coordinates. The primary small parameter

is the slenderness ratio e, which is the ratio of vessel radius to vessel length or wavelength.

The product of centerline curvature and vessel length is assumed to be of order unity. A

transverse drift appears at 0(e2) that is proportional to the rate of change of curvature.

Contours of axial velocity show a primary peak shifted toward the inside wall and a

secondary peak grows toward the outside wall as curvature is increased. The flux ratio or

relative hydrodynamic conductance is calculated to 0(e4) and includes the effect of

variable curvature. The present calculations tend to indicate that the sinusoidal mode of

buckled micro-vessel could offer substantially more resistance to flow than the helical

buckled mode.

I. Introduction. In another related work, Chadwick [1] has determined the Stokes flow

inside a torus. The solution was represented by an eigenfunction expansion in toroidal

coordinates. The resistance was calculated as a function of the ratio of tube radius to coil

radius, and it was found not to be more than a few percent different than that of a straight

tube. The motivation for both that work and the present study is to see if the buckled

modes that sometimes occur in the microcirculation offer a significantly different resis-

tance to flow than straight vessels. The torus was used as an approximation to a tightly

wound helix. A sinusoidally shaped tortuosity also occurs at times. In this case the

centerline curvature is not constant, and that leads to complicating effects not present in

the torus. The analytical technique used here is to introduce curvilinear coordinates that in

effect straighten the tube but complicate the component form of the Stokes equations.

Scaling the equations introduces a single small parameter e, which is both the ratio of tube

radius to length and the product of a reference centerline curvature and tube radius. In
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general the latter is an independent small parameter ek, but here we keep e of order unity.

The problem is then one of internal slender body theory for the Stokes equations. Van

Dyke [2] has recently considered the two dimensional version of the present problem for

the Navier-Stokes equations, also allowing for variable channel width. In that problem

Reynolds number also appears as a parameter since the inertial terms are included. In the

present work the Reynolds number does not appear. We have decided to use the Stokes

equations as a starting point rather than the Navier-Stokes equations because the

application is for the microcirculation where the Reynolds number Re is substantially less

than unity (10~3 in capillaries and 10~2 in small arterioles). There have been a number of

order asymptotic expansions for flow in curved tubes, that are calculated, like the present

work, as small deviations from Poiseuille flow.

It would be useful to summarize how some of the authors treat the three parameters, e,

ek, and Re. The present work uses the limiting process e -* 0, with k = 0(1) and Re = 0.

Dean [3] considered steady, fully developed flow in a tube with constant centerline

curvature, based on special approximating equations. That work used the limiting process

ek Re2 —> 0, with Re -» oo, and ek —> 0. The product ex Re2 is now known as the Dean

number. The parameter e plays no role in the constant curvature, fully developed case.

Van Dyke [4] has extended this expansion to high order using the computer, and he

reviews other related work on this problem. Wang [5] calculated the first correction term

for flow in a varicose vein having sinusoidal centerline curvature, with e -* 0, k = 0(1)

and Re = O(l). Murata, et al. [6] also considered variable curvature with the double

expansion e -» 0, k -> 0, and Re = O(l).

II. Formulation of the problem. We consider Stokes flow through a tube with a circular

cross section and a curved centerline. The flow is driven by a prescribed pressure drop

across the tube. The shape of the centerline is given intrinsically by a specified curvature ic

as a function of the arc length S along the centerline in the direction of primary flow. In

general the centerline could also have torsion. Here the centerline will be assumed to lie in

one plane, so the torsion is zero. Polar coordinates are introduced in the cross plane to

form a right handed curvilinear system (R, 6, 5) shown in Fig. 1. The ray 8 = 0 points in

the same direction as the curvature vector

k = dr/dS

P=0

P=Po

Fig. 1. Curvilinear coordinates system (R,B, S) used in analysis.
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where r is the unit tangent vector to the centerline. In this coordinate system the square of

a length element is

(dR)2 + R2{d0)2 +(1 - k(S)R cos 0)2{dS)2

from which we identify the metrical coefficients

hx = 1,

h2 = R~\ (1)

h3 = (1 — k(S)RcosO) '.

The vector form of the Stokes field equations is

VP = -juv X V X V, (2)

V • F = 0, (3)

where V is the velocity, p is pressure, and n is viscosity. We now scale the variables in the

following way:

r = R/a\ £ = S/L\ k = Lie;

P = P/Pq'i q=V/{P,a2/Lii) (4)

where a is the tube radius, L is the tube length or characteristic wavelength, and P0 is the

driving pressure (measured relative to the exit pressure taken to be zero). We now work

with the dimensionless coordinates (r, 0. |) and dimensionless pressure p and velocity q,

which has components (u,v,w) in radial, theta, and axial directions. The divergence,

gradient, and curl can be written in the (r, 6, £) coordinates using the method outlined by

Love [7], The dimensionless form of Eqs. (2), (3) then become

(rh~lu)r + (h~1v)e + erw( = 0, (5)

~rh~ 1pr = e[{rh)~l[{rv) r - u0]} g + e2r{ h(h'xw) r) ( - e3r{hu(} £, (6)

-(rh)~lpe = -e{{rh)~l\(rv)r - ue]} r + e2r~l{ h( h'1w)e } ( - e3r-1{hvi}(, (7)

{rh(h~lw)r} r + r-l{h(h~lw)e} g - hrp^ = e{rhu() r + cr_1{ h(rv)(} e. (8)

We now use the notation

h3 = h = (1 — E/cr cos#)-1

with subscripts denoting partial differentiation. The parameter e = a/L is the basic small

parameter in the problem. At this stage we also assume that k = 0( 1), i.e. the characteris-

tic radius of curvature is like L in physical units. To complete the formulation, we impose

boundary conditions on pressure,

p{r,6,0) = 1; p(r,6,l) = 0 (9)

and conditions on velocity at the tube wall.

«(1,6,0 = v(i,e,0 = w( 1,0,t) = o. (10)
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III. Asymptotic solution. We consider the system of equations (5)—(10) in the narrow

tube limit of e -> 0. The following expansions of the dependent variables are assumed:

u = eul(r, 0, £) + e2u2 + ...,

v = 6, £) +

w = w0(r) + EH'i(r, 6, £) + e2w2 + (11)

P = PiU) + epi(r,e, £) + e2p2 + ....

The numerical subscripts should not be confused with partial differentiation. The domi-

nant flow is fully developed and unidirectional, with flow in the cross plane (the secondary

flow) being of higher order. We use the notation

A"1 = 1 - ef,

h = 1 + ef + e2/2 + ■ ■ •

to shorten the writing somewhat. Substitution of the expansions (11) into the system

(5)-(10) and taking the limit as e -» 0 gives a hierarchy of equations to be solved in turn.

The 0( 1) system corresponds to that of Poiseuille flow

Por=Po0 = (12a)

'"-'{"Vh = dPo/dt, (12b)

/>o(0) = l; p0(l) = 0, (12c)

with the solution

w0 = i(l-/")\ (13a)

/>o = 1 ~ (13b)

The O(e) radial and tangential momentum equations again give

Pw=Pir = °- (l4a)

The 0(e) longitudinal momentum equation can then be written

VrWj = dpi/dt, - /+ r~1(fw0)r - r~2(fw0)

= dpx/di — friccos 6 (14b)

where denotes the transverse Laplacian operator

r~\r( )r)r+r~2{ )ee.

We proceed now to show that px = 0. The 0(e2) continuity equation is

V T • qT2 = Vr-( fqTl) — (l^)

where vT • qT is transverse divergence r~l{{ru)r + ve). Integrating Eq. (15) over the cross

section and applying the boundary conditions (10) then shows the O(e) contribution to

the flux is independent of £.
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^0. (16)

Apply Green's theorem in the form

JJ {W0^TWl - WiV^H-o) dA = jf2" (w0wlr - d6.
A

The right-hand side vanishes by the no slip condition. Using Eqs. (13a) and (14b) reduces

the left-hand side to

77 dp^

8
jj wxdA = 0. (17)
A

Differentiation of Eq. (17) with respect to £ and using Eq. (16) shows that dpY/d£ is a

constant. To satisfy the boundary conditions/^(O) = P\(V) = 0 then requires that

Pi = 0- (18)

We can expect that there is no 0(e) change in the resistance of the curved tube since there

is no 0(e) longitudinal pressure gradient. This is in fact the case since the solution of Eq.

(14b) that satisfies the no slip condition is

w^r, 0, |) = ^/c(£)r(l ~ r2)cos0 (19)

and by symmetry no net flux is delivered. We can also show that to within 0(e) there is no

secondary flow.

ul = vx = 0. (20)

To see this, we first note that the O(e) continuity equation is

^t ' 1t\ = 0 (21)

which can be satisfied by introducing the streamfunction such that

"i = yi=-^ir- (22)

The 0(e2) transverse momentum equations can be written

Pir= -r~lSlie, (23a)

Pie = (23b)

= r~l{(rvl)r - uig}. (23c)

Elimination f the vorticity £2j by cross differentiation shows that p2 is tranversely

harmonic

VtP2 = (24)

The solution of Eq. (24) that is single valued and regular at the origin is

OO

Pi{r, M) = A(Z) + £ r"{5„(£)cosrt0 + C„(£)sinn0} (25)
n = l

with A(£), 5„(£), C„(£) to be determined. Substitution of Eq. (22) into Eq. (23c) leads to

V^! = -Bj. (26)
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S2[ can be determined by integration of Eq.'s (23a), (23b) using Eq. 25. The single valued

solution of Eq. (26) that is regular at the origin is

i n + 2

+ i(r,8,t) = 4/-2-s(0 + E + ^ {^B(g)sin/»g - Cn(£)cosn0}

+ H(r,0,t) (27)

where H is another transversely harmonic function

00

H(r, 9, £) = a(£) + £ r"{ A,(£) cos + Y„(£) sin n0 } • (28)
n = 1

is subject to the boundary conditions

%g(i,e,Z) = %r(i,e,Z) = o (29)

which show after substitution that

BU) = B„U) = CM) = = rM) = 0. (30)

Equation (20) then follows from Eq. (22). We also note that

p2(r,0,{)-A((). (31)

A(£) and w2(r, 6, £) can be determined in the following manner. The 0(e2) longitudinal

momentum equation is

v>2 = Pn - f2 + r~\f2wo)r + r~2{f(fW0)0} 8

+ r~1(fwi)r + r'2{wi fe)e

= dA/di + ^k2(£) - ~~ 2#c2(^) cos2^. (32)

The 0(e3) continuity equation is

V t ' It?, = V7- • ( Mt2 ) ~~ w2t. ■ (33)

Integration over the cross section again shows

3
— // w2 dA = 0. (34)

Applying Green's theorem as before (but with w2 replacing wx) we obtain

// w2DA = - JJ vv0 V r w2 dA = ^(^k2(£) - dA/d^. (35)

d -i"2(O} = 0. (36)

From Eqs. (34) and (35) we obtain the differential equation for ^(O

d_ I dA_ _ J_

</{ \ 48

The solution that satisfies both

p2(r,0,O) =p2(r,0,l) = 0 (37)

is
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The 0(e2) contribution to the flux can now be computed from Eq. (35).

<W/- £i<39>A u

It is quite unexpected that Q2 > 0, implying that a small amount of curvature decreases

the resistance of the tube. We define the flux ration Q as the ratio of volume flux in the

curved tube to that in a straight tube of equal length with the same driving pressure. Q has

the expansion

e-i + «-^/o'«2</£+.... (40)

Secondary flow. To determine the dominant secondary flow qT2 = (w2, v2) consider Eq.

(15) rewritten as

Vr" tin = ~ r)2cos6. (41)

This indicates that the rate of change of curvature drives the secondary flow. This might

have been expected since it is known (Chadwick, [1]) that Stokes flow in a torus (constant

curvature) does not have a secondary component. The 0(e2) radial and tangential

momentum equations are

-p3r = r-%e +(wlr - w0fr)(, (42a)

~P3ff = ~r®2r + (w\e - wof«)i- (42b)

p3 can be eliminated by cross differentiation leaving a forced vorticity equation

1 // k*

vr^2=2 J^rsind. (43)

Equations (41) and (43) together with the condition of vanishing flow at the wall

constitute a well defined problem for the determination of qT1. The equations can be

uncoupled by using the decomposition

qT2 = Vt-$ + Vr* X e( (44)

where <?£ is a unit vector in the axial direction. We shall also use the gauge condition

Vr-(^£) = 0 (45)

Then Eqs. (41) and (43) can be put into the uncoupled form

Vfo = - ^^(l - r2)cos8, (46a)

1 titc
=-^-J^r sin 8. (46b)

The coupling is now through the boundary conditions

u2 = $r + = 0 on r = 1, (46c)

v2 = r~l$0 - ^ = 0 on r = 1. (46d)
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The secondary flow system Eq. 46(a)-(d) has the solution

"2 = ~ 1^cos61' ^47a^

 1 /7j/

^2=48 ^(r2- l)(r2-2)sin0. (47b)

Integral curves representing the projection of pathlines onto the transverse plane can be

obtained by integration of

dr/u2 = rdO/v2

to give

/•sinI? = C(1 - r2)1/A (48)

where C is a constant of integration that determines a particular curve in the family. To

complete the solution to 0(e2) we give the solution of Eq. (32) that satisfies the no slip

condition

Wl(r,6,0= -\(^f + ^«2)(l-r2)

+ k20 ~ /'4) + ^1(2r20 — r2) cos 20. (49)

Some higher order results. It would be desirable to calculate higher order terms in the

expansion of the flux ratio in Eq. (40), since our main interest is in the resistance of the

curved vessel. Unfortunately the algebraic labor increases rapidly. Without too much

difficulty it is possible to show that the 0(e3) contribution to the flux ratio is zero. The

0(e3) longitudinal momentum equation is

VrW3 = r~1(/w2+f2w1 +/3w0)r + r~2(few2 + fefwl + f„f2w0) 9

+Pn + fPn ~ f3 + whc (50)

Application of Green's theorem again gives the relation

Q3 = JJ w2dA = — J J vv0 V jW3dA. (51)
A A

The only term that contributes to the integral is the p3( term on the right-hand side of Eq.

(50). All the other terms vanish by their angular symmetry. p3 can be determined by

integration of the 0(e3) transverse momentum equations (42a, b) with the result

1 ii«
p3(r,d,£) = — cos 6{3ri - r) + Z>3(£)- (52)

The 0(£4) continuity equation again shows that Q3 is independent of |. Substitution of

Eq. (52) into (51) thus shows that dD3/d£ must also be independent of £. The boundary

conditions

p3(r, 0,0) = p3(r, 0,1) = 0 (53)



can be satisfied with

in which case

provided that

STOKES FLOW IN A TORUOUS VESSEL 333

Z)3 = 0 (54)

Q3 = 0 (54)

^|(0) = ^(1) = 0. (56)

If the geometrical conditions of Eq. (56) are not satisfied, then the boundary conditions

cannot be satisfied. This indicates that the problem becomes singular at this stage of

approximation. The situation can be remedied by introducing edge layer expansions near

£ = 0 and 1 that satisfy Eq. (53) and asymptotically match to Eq. (52). Here we will

assume Eq. (56) holds.

The 0(e4) term for the flux ratio is nonzero. At this order we have as before

= ll W*dA = ~ H W0?TW4dA (57)
A A

where

V'/2w4 = r~1{fw3 + f2w2 + /3w1 + /4w0} r

+ r " 2 { /flw3 + ffew2 + f 2few1 + f 3few0 } 9

+ 2r'\rfu2)ri + wr~1(fv2)e( - wm

-/4 + f2Pii+ fPn+ Pit (58)

Eq. (58) is the 0(e4) longitudinal momentum equation. The right-hand side of this

equation is known except for terms involving p4 and w3. The latter can be found by

straightforward solution of Eq. (50). Here we shall only note that vv3 containsn terms with

the angular dependence of 1, cos 6, cos 36. Only the cos# terms contribute to the flux

integral in Eq. (53). The 0(e4) transverse momentum equations are

-PAr = fP3r + ~ 20 + W2rf (59)

- Pa0 = fPlS ~ r + rf®2r + ^20f (60)

Elimination of S23 by cross differentiation gives the equation for pressure

VrA= -r~l{rfp3r)r-r-2(fPw)e- V>2{

+ r r ~(f®2r) 0}

d 21 37 15 , 21 2
~T(" (~ 96 + i6r + 3T cos29)' (61)

The particular solution corresponding to the first two terms of the right-hand side of Eq.

(61) and an unknown function of £ from the homogeneous solution contribute to the flux

integral. This unknown function can be found by requiring that Q4 be independent of £.

Finally, after a considerable amount of algebra we obtain the extension of Eq. (40).



334 r s. CHADWICK.

®= 1 + e' A /'rf£ - e'{ Wt /„' *4 dl "2mW "'dl

+ m£(%) (62)

IV. Discussion of results. The main effects of curvature on the flow field will now be

described. Figure 2 shows contour plots of the axial velocity field. The computation uses

the first three terms of the asymptotic expansion for w. In this figure the flow is toward

the reader, so that the flow is turning to the left. The location of maximal axial velocity is

displaced toward the inside wall by the influence of curvature. The direction of this shift is

opposite to that in flows with large Dean number as in Collins and Dennis [8], and

consistent with other reported shifts for small perturbations from Poiseuille flow as in

Dean [3], Murata, et al. [6] and Wang [5]. The appearance of a secondary peak on the

outer side for increasing curvature is quite unexpected and has not previously been

reported.

In the present theory, secondary flow is generated by the rate of change of curvature

and not by the centripetal acceleration terms that are neglected in Stokes flow. Here the

secondary flow is weaker in the sense that it appears at 0(e2) and not to the first order in

Dean number for small but finite Dean number with constant curvature. Dean [3], Figure

3a shows the projection of pathlines onto the transverse plane as computed from Eq. (48).

The strength of the transverse drift is zero at the crests and troughs of a sinusoid, and

maximal at the nodes. The direction of the drift is sketched in Fig. 3b for a centerline

having the shape of a sinusoid. Though the magnitude of the transverse drift is quite

small, typically a few percent of the axial velocity for the types of buckled vessels seen in

the microcirculation, the transit times of cellular components could be significantly

altered.

The ratio of volume flux carried by the tortuous vessels to that of a straight one having

the same centerline length is the relative conductance, and is given by Eq. (62). For

constant curvature Eq. (62) reduces to that given by Chadwick [1] based on an expansion

(a) « = 1/4. (b) fk = 1/2. (c) (K = 3/4.

Fig. 2. Contours of axial velocity.
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(a) projection of pathlines onto cross sectional plane. (b) direction of drift.

Fig. 3. Transverse drift.

of the exact Stokes flow solution obtained in toroidal coordinates. Eq. (62) extends that

relation to include the effect of curvature change. For small enough curvature the sign of

the 0(e2) term of Eq. (58) indicates that curvature tends to reduce the resistence, although

the magnitude of this change is hardly significant physiologically. The tendencey for

reduced resistance was also reported by Murata et al., but their coefficient is smaller by a

factor of two, evidently due to a typographical error. They reasoned this effect can be

explained in terms of the shift in axial velocity towards the inner wall (cf. Fig. 2a),

resulting in a decreased flow path for the mean axial flow. They then argued that this

could have been anticipated by invoking minimum energy dissipation for flow at low

Reynolds number. We would like to point out that this theorem does not imply a

decreased mean flow path length due to curvature even for flows with negligible inertia.

The corresponding problem in two dimensions, Van Dyke [2], provides a counter example

at 0(e2), as does the present problem when carried to 0(e4), implying a tendency for

increased resistance or increased mean flow path length at larger curvature. The direction

of this tendency is shown by the increasing prominence of the secondary peak shown in

the axial velocity contours in Fig. 2. An important effect of variable curvature is that ek

can exceed unity for physiologically relevant geometries. The domain of validity of Eq. 62

should be improved by recasting the series into its reciprocal form, which as the advantage

of keeping the relative conductance positive for large values of ek. For the case k

0 cos 27r£, having mean square curvature Kq, the reciprocal form of Eq. (62) predicts

a decrease in relative conductance of 9.0%, using the physiologically relevant values

ek0 = 5/3, and k0 = 7. While this case requires the centerline to have a slight torsion to

accomodate the transverse dimension, this result suggests that a model experiment would

be worthwhile to verify what appears to be a physiologically significant increase in

resistance for the sinusoidal mode of buckled microvessel.
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