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Abstract

This paper discusses the mathematical analysis of a codimension two bifurcation determined by the coincidence of a
subcritical Hopf bifurcation with a homoclinic orbit of the Hopf equilibrium. Our work is motivated by our previous analysis
of a Hodgkin–Huxley neuron model which possesses a subcritical Hopf bifurcation (J. Guckenheimer, R. Harris-Warrick, J.
Peck, A. Willms, J. Comput. Neurosci. 4 (1997) 257–277). In this model, the Hopf bifurcation has the additional feature that
trajectories beginning near the unstable manifold of the equilibrium point return to pass through a small neighborhood of the
equilibrium, that is, the Hopf bifurcation appears to be close to a homoclinic bifurcation as well. This model of the lateral pyloric
(LP) cell of the lobster stomatogastric ganglion was analyzed for its ability to explain the phenomenon of spike-frequency
adaptation, in which the time intervals between successive spikes grow longer until the cell eventually becomes quiescent. The
presence of a subcritical Hopf bifurcation in this model was the one identified mechanism for oscillatory trajectories to increase
their period and finally collapse to a non-oscillatory solution. The analysis presented here explains the apparent proximity of
homoclinic and Hopf bifurcations. We also develop an asymptotic theory for the scaling properties of the interspike intervals
in a singularly perturbed system undergoing subcritical Hopf bifurcation that may be close to a codimension two subcritical
Hopf–homoclinic bifurcation. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The characterization of generic bifurcations is one of the major achievements of dynamical systems theory.
Bifurcation theory provides a substrate for interpreting observed qualitative changes in attractors and other limit
sets of dynamical systems. One of the crucial properties of a bifurcation is its codimension, roughly the minimal
number of parameters in a family of dynamical systems that contains the bifurcation in a persistent manner. Here,
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Fig. 1. Flow past the Hopf–homoclinic point.

we investigate a codimension two bifurcation that results from the confluence of Hopf bifurcation and homoclinic
bifurcation, each a codimension one bifurcation [6]. We were motivated to examine the questions addressed in this
paper by our studies of spike-frequency adaptation in neurons [5]. There are two issues that arose in that work that
prompted the more detailed mathematical study here.

In our numerical investigations of a model neuron, we observed subcritical Hopf bifurcations that appeared to be
accompanied by trajectories that were nearly homoclinic. Fig. 1 depicts a three-dimensional representation of such
a trajectory. We expected that the coincidence of Hopf and homoclinic bifurcations would not take place in generic
one parameter families of vector fields, prompting an investigation of the relationship between Hopf and homoclinic
bifurcations. The way in which we pursue that topic in this paper is to study the unfoldings of two parameter families
in which subcritical Hopf–homoclinic bifurcation occurs in a persistent manner. We demonstrate that, in accord
with our expectations, Hopf–homoclinic bifurcation does not occur in generic one parameter families. Nonetheless,
trajectories that appear to approximate Hopf–homoclinic bifurcation are readily produced by Hopf bifurcations even
when the systems are not close to homoclinic bifurcations in multiparameter families. We develop an explanation
for this behavior in this paper. Briefly, it is caused by transverse stability along the stable manifold of an equilibrium
point that has a (weakly) unstable manifold created by Hopf bifurcation. Large regions of the phase space are
attracted to a neighborhood of the stable manifold and flow along this stable manifold close to the equilibrium point
before they are repelled along its unstable manifold. We believe that this dynamical behavior is common [4], but that
the role of Hopf bifurcation in creating approximate homoclinic trajectories has not been highlighted previously.

The second issue that we address was more directly motivated by our desire to analyze data from neurons
undergoing spike-frequency adaptation. Spiking neurons generate repetitive action potentials, rapid increases of
membrane potential that can be interpreted as relaxation oscillations. In spike-frequency adaptation, the firing rate
of the action potentials slows and the period of the oscillations increases. In some circumstances, the firing terminates
spontaneously, a phenomenon that we call thedeath of periodicity. In bursting oscillations of neural systems, the
death of periodicity occurs repeatedly as the system oscillates between firing and quiescent epochs on a timescale
slower than that of the periodic action potentials. The death of periodicity can be modeled with slowly varying
dynamical systems in which one set of variables evolves on slower timescales than others. In the singular limit in
which the slow timescale is frozen, the slow variables become parameters. Qualitative changes along a trajectory,
like the death of periodicity, become bifurcations in the frozen system.

We want to identify the type of bifurcation underlying the death of periodicity of an observed time series.
The most prevalent data from neural systems are sampled records of membrane potential. The timing of action
potentials is evident in these records and the interspike intervals can be measured with a good degree of precision.
Rinzel and Ermentrout [9] observed that different types of bifurcations yield different asymptotic rates for the
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lengthening of interspike intervals. They noted this phenomenon in the context of homoclinic and saddle-node
in cycle bifurcations underlying the death of periodicity. We sought to quantify this observation and apply it to
data from neurons in the stomatogastric ganglion, when we observed subcritical Hopf bifurcation as an additional
mechanism responsible for the death of periodicity. This prompted our investigation of how the periods of long
periodic orbits in systems close to subcritical Hopf bifurcation depend upon the distance to the bifurcation. When a
system is close to both homoclinic and Hopf bifurcation, as appeared to be the case, we sought to determine parameter
regions in which proximity to Hopf bifurcation or to homoclinic bifurcation was more important in determining
the periods of long periodic orbits. We sought a uniform asymptotic expression for the length of periodic orbits
that are close to codimension two Hopf–homoclinic bifurcations, but we have only obtained partial results that give
non-uniform asymptotic expressions in different parameter regimes. The details of these results are complicated, but
the predominant conclusion is that a system must be much closer to homoclinic bifurcation than to Hopf bifurcation
in order for the homoclinicity to play a substantial role in lengthening the period of the periodic orbit.

We begin this paper with numerical computations from a three-dimensional example which illustrate some of
the dynamical phenomena we wish to discuss. Our purpose is twofold. First, we give a geometrical description
of the return map to the vicinity of the equilibrium point near the Hopf–homoclinic bifurcation, showing some of
its complexity and how it gives rise to chaotic sets and long stable periodic orbits. For a slowly varying system,
trajectories will typically track a family of stable periodic orbits until the bifurcation is reached, after which they
become quiescent. Second, we develop expressions for the time taken for trajectories to pass through the region
of the equilibrium near the Hopf–homoclinic bifurcation. We show that when the system is frozen at the Hopf
bifurcation, trajectories passing near the equilibrium point spend an amount of time inversely proportional to the
square of the distance,r1, to the stable manifold before escaping the region. If the system parameters are frozen at
some point before the Hopf bifurcation, the slow spiraling away from the equilibrium point becomes the dominant
feature. The travel time is then inversely proportional to the real part of the Hopf eigenvalue,µ0 (positive), but
modified by a logarithmic factor which depends onµ0 andr1. For frozen systems, the scaling of the spiking period
as 1/µ0 is a characteristic feature of this bifurcation. In case of a slowly varying system where the real part of the
Hopf eigenvalue,µ, decreases linearly with time, the travel time also depends ons, the rate of change ofµ and the
time remaining beforeµ reaches zero. We develop asymptotic expressions for the travel time relating the slowly
varying system to the frozen system and we also present justification for a simple functional form

f (r1)

g(r1, s) + µ
, (1)

which characterizes the lengthening of the travel time as the bifurcation is slowly approached. We argue that in a
generic system passing near a subcritical Hopf–homoclinic bifurcation in this manner, the variation in the distance,
r1, to the stable manifold is not as significant as the decrease in the real part of the Hopf eigenvalue with time.
Settingµ = −st2, wheret2 ≤ 0, the Hopf bifurcation will occur at time zero and the spiking period will show a
fractional linear dependence on|t2|. We claim that when the transition to quiescence is still a number of oscillations
away, the chief visible characteristic feature of the Hopf–homoclinic bifurcation is this fractional linear dependence
of the interspike intervals on the time remaining before the Hopf bifurcation is reached.

In the LP cell model which we analyzed in Guckenheimer et al. [5], we found that the subcritical Hopf bifurcation
seems to exist over a fairly wide range of physiologically realistic parameter values and can clearly affect the
adaptation in the length of the interspike intervals when the model cell is near this bifurcation and undergoing a
transition from an oscillatory mode to a quiescent one. For this case we used the following expression to describe
the increasing length of the interspike intervals:

Period= a + 1

b − ct
, (2)
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where,t ≤ 0, anda represents the (almost) constant amount of time taken for the trajectory to pass through the
region far from the equilibrium point and the form of the second term is justified by the fractional linear functional
form for the travel time of the trajectory through the region near the equilibrium point which we develop in this paper.
In the previous paper we had also identified two other transition mechanisms for which the period of oscillation
was unbounded as the transition was approached and developed asymptotic expressions for the lengthening of
the interspike intervals in each case. We found that it was possible to distinguish the model mechanism by fitting
the generated interspike interval data to each of these expressions. In particular, we found that (2) successfully fit
interspike interval data from both the model LP cell simulations and from experiments on the real LP cell.

The coincidence of supercritical Hopf and homoclinic bifurcations has been discussed by Hirsch and Knobloch
[7] and Bosch and Simo [2], but the phenomenology of that case is substantially different. The subcritical case, where
the equilibrium point gives birth to unstable limit cycles, was first studied by Belyakov [1] in 1974, who showed that
the homoclinic orbit of the equilibrium point bifurcates into two 1-pass homoclinic orbits of the nascent unstable
limit cycle as the Hopf bifurcation curve is crossed. In 1995, Deng and Sakamoto [3] confirmed and extended
this analysis to give a description of the system’s behavior in a two-dimensional parameter neighborhood of the
Hopf–homoclinic bifurcation. Deng and Sakamoto give a fairly comprehensive discussion of the existence of chaotic
and homoclinic trajectories of the subcritical Hopf–homoclinic bifurcation. The scaling properties of the cycles near
Hopf–homoclinic orbits are the main subject of this paper. They have not been analyzed previously.

2. A numerical example

We first illustrate some of the results we will later establish by analyzing a three-dimensional vector field designed
to have a Hopf–homoclinic transition:

ẋ = −x + A(y2 + z2) + Bx2
√

ε2 + y2 + z2,

ẏ = y((µ0 − st) − x + (y2 + z2) − C(y2 + z2)2) − ωz + Dx4,

ż = z((µ0 − st) − x + (y2 + z2) − C(y2 + z2)2) + ωy + Ey4.

This vector field has an equilibrium point at the origin, in a neighborhood of which it is approximated in polar
coordinates by

dx

dt
= −x,

dr

dt
= (µ0 − st)r − xr + r3,

dθ

dt
= ω.

t ≤ 0. (3)

(We shall study this system in Section 5.) The eigenvalues at the origin are−1 andµ ± iω and the eigenspaces
remain on thex-axis and the(y, z) coordinate plane. We investigate the system withs = 0 andµ0 ≥ 0 and with
s > 0 andµ0 = 0. Whenµ = µ0 − st is positive, the origin is a saddle with a stable real eigenvalue and a pair
of unstable complex eigenvalues. A subcritical Hopf bifurcation occurs whenµ passes through zero. The terms
involving A, B andC were added to propel trajectories away from the unstable eigenspace and inject them back
toward the stable eigenspace and the terms withD andE are symmetry breaking terms. The values of the upper
case constants were chosen so that all other equilibria in the system remained unstable and so that trajectories near
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Fig. 2. (A) Intersections withΣ1 for a near homoclinic trajectory; (B) interspike intervals for the same trajectory.

the unstable manifold of the origin would return close to the origin. To keep the square root term smooth at the
origin, ε was chosen as a small non-zero constant.

First, consider the frozen system,s = 0. There is no apparent analytic procedure for locating homoclinic orbits in
this system. We used the following strategy. A segmentγ of initial conditions lying approximately on the unstable
manifold near the origin was chosen and integrated forward until trajectories intersected a cross-section to the stable
manifold of the origin. Backwards integration of a trajectory starting near the origin along its stable manifold was
used to find the intersection of the cross-section with the stable manifold. When the parameterD is zero, thex-axis is
invariant for the flow and there are no homoclinic orbits. AsD varied, the image ofγ in the cross-section appeared to
cross the intersection of the stable manifold. Using a divide and conquer algorithm, we located parameter values and
initial conditions that appear to be close to a homoclinic orbit. The trajectory shown in Fig. 1 is the near homoclinic
orbit we identified for this system. The value ofµ0 for this trajectory is 0.001, so that the system is also very close
to the Hopf bifurcation curve. Trying to find a homoclinic orbit precisely at the Hopf bifurcation, i.e.µ0 = 0, is
computationally difficult. The non-exponential growth away from the equilibrium point (the termr3 in the equation
for ṙ) is so small compared to the term−xr, that more than 16 digits of precision is required in order to see the slow
expansion.

Our theory will predict that homoclinic orbits near a subcritical Hopf bifurcation sit inside chaotic invariant sets.
We computed intersections of a long trajectory with a cross-section,Σ1, for the same parameter values as a system
with an approximate homoclinic orbit. Fig. 2A illustrates that these intersections lie close to a curve that seems
to form a chaotic attractor. Fig. 2B shows a plot of the interspike intervals for the same trajectory. The interspike
intervals within this chaotic attractor are not monotone and vary substantially, which, we shall see, is in accord with
the theoretical predictions.

We also computed the interspike intervals of trajectories of various frozen (s = 0) systems at differing dis-
tances from the Hopf bifurcation (differing values ofµ0). We observed that the relative variation of return times
to a cross-section for each trajectory was much less than in the case where the system was very close to the
Hopf–homoclinic transition. As the value of the parameterµ0 approached zero, the return time grew at a rate
roughly proportional to 1/µ0, which, corresponds with the bounds on the return times we develop in Section 5.2.
Fig. 3 is a log–log plot of the computed return times to the cross-sectionΣ1 as a function ofµ0. The slope of the
points is very nearly minus one and the vertical shift on the axis corresponds well to the proportionality factor in
the bounds that we will develop ((22) and (23)), given that the the distance to the stable manifold,r1, for all of these
trajectories is very small, about 10−7 and wherex1 = 1 andr2 ≈ 1.
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Fig. 3. Log–log plot of the return time for different values of the Hopf parameter, showing the 1/µ0 dependence.

Finally, we investigated the slowly varying system (s 6= 0, µ0 = 0) as it crossed the Hopf bifurcation near
the Hopf–homoclinic point. Fig. 4 shows a typical trajectory with lengthening interspike intervals as the Hopf
bifurcation is approached and a transition to quiescence near the Hopf bifurcation (t = 0). Fig. 5 shows a plot
of the interspike intervals for several such trajectories with different values ofs. The data points for each of the
trajectories, less the final three spikes, were fit to curves of the form

ISI = a + b

c − st
, (4)

where again,a represents the assumed constant amount of time required to traverse the region far from the equilibrium
point and the second term corresponds to the simple functional form, (1), which we establish in this paper for the
travel time through the region near the equilibrium. Since the value ofr1 was nearly the same (about 10−7) for all of
these trajectories and did not vary substantially with each subsequent pass, the functional form (1) predicts that the
parametersa andb should be nearly the same for each curve, whilec may show some variability withs. Further, in
Section 6 we show that the numerator,b, should be approximately ln(r2/r1). The maximum likelihood estimates
of the parameters for these six trajectories are given in Table 1 and verify the above two predictions (takingr2 ≈ 1).

Fig. 4. A typical trajectory of the slowly varying system displaying spike-frequency adaptation and a transition to quiescence.
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Fig. 5. Interspike intervals for several trajectories slowly approaching the Hopf bifurcation. The six curves, from top to bottom, correspond to
trajectories with values ofs equal to 2× 10−4, 4× 10−4, 6× 10−4, 8× 10−4 and 10× 10−4, respectively.

The fitted curves are overlaid on the data points in Fig. 5. As can be seen the fits are extremely good, but their
extension to the last three spikes (shown as dotted lines) indicates that the last three spikes occur sooner than the
curves would predict. As we shall see in Section 6, this is exactly what we would expect.

Even though we observed monotonic increases in the period for this slowly varying system, the complex dynamics
near the Hopf–homoclinic transition may create deviations in the interspike intervals from a smooth convex curve.
A trajectory may follow a succession of stable periodic orbits of the frozen system, “jumping” from one to the
next as saddle-node bifurcations of these periodic orbits are encountered or it may be in a chaotic attractor with
returns whose distance from the equilibrium do not vary monotonically. The details of these variations are likely
to depend sensitively upon the particular model we study and parameter values within the model. Nonetheless, the
general scaling of interspike intervals as a fractional linear function of the time remaining until the Hopf bifurcation
is reached, should hold despite this variability.

3. Subcritical Hopf–homoclinic bifurcation

Let Xλ be a smooth vector field depending on the two-dimensional parameterλ. We list below several hy-
potheses that we make about the familyXλ. When these hypotheses are satisfied, we say thatXλ has a generic
Hopf–homoclinic bifurcation.

Table 1
Optimal least square parameter values for fits to Eq. (4) for the data in Fig. 5

s(×10−4) a b c

2 4.6836 15.6635 0.0181
4 4.6628 15.7961 0.0270
6 4.7292 15.7966 0.0330
8 4.6765 15.9325 0.0411
10 4.7349 15.9139 0.0459
Mean 4.6974 15.8205 0.0330
Standard deviation 0.0325 0.1085 0.0111
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Fig. 6. Bifurcation diagram for the vector fieldXλ. ξ is curve of subcritical Hopf bifurcations giving birth to unstable limit cycles in the region
µ < 0, andη is the curve of homoclinic bifurcations. The Hopf–homoclinic bifurcation occurs at the pointph.

1. There is an equilibrium pointpλ that varies smoothly withλ.
(a) There is a simple pair of complex eigenvalues,µ(λ) ± iω(λ), such thatµ(λ) passes transversally through

zero (i.e.,∇λµ 6= 0) along a curveξ in the parameter plane andω(λ) 6= 0.
(b) There is a simple eigenvalueν(λ) < 0 such thatν(λ) is larger (has smaller magnitude) than the real parts of

all other eigenvalues exceptµ(λ) ± iω(λ).
(c) The Hopf bifurcation is subcritical. There is a family of periodic orbits of saddle-type that exist forµ(λ) < 0.

Near the stable equilibrium pointpλ, the stable manifold of these periodic orbits bounds the domain of
attraction ofpλ. In the parameter regionµ ≥ 0, the equilibrium pointpλ has a two-dimensional unstable
manifold on which trajectories diverge frompλ.

2. In the parameter regionµ ≥ 0, there is a curveη on which the vector fieldXλ has a homoclinic orbitσλ for pλ.
(a) The curve approachespλ in the direction of the eigenvectorν(λ).
(b) The curveη meets the curveξ transversally atph. The intersection point is called the Hopf–homoclinic point

and we designate the value ofλ at this point byh.
(c) In the product of the parameter and phase spaces, the stable and unstable manifolds of the equilibrium surface

pλ intersect transversally as the parameterλ crosses the curveη transversally.
(d) Along the homoclinic curveη, Xλ satisfies an “inclination” property, namely, that there is an invariant

subbundle of the tangent bundle ofRn along the homoclinic orbit that approaches the three-dimensional
subspace spanned by the eigenvectors ofν andµ(λ) ± iω(λ).

The bifurcation diagram forXλ is shown in Fig. 6.
There are three phenomena that occur in generic subcritical Hopf–homoclinic bifurcation that we discuss:

1. the existence of chaotic invariant sets;
2. the existence of long, stable periodic orbits;
3. scaling properties for the return of trajectories to the vicinity ofpλ.
Our analysis is based upon geometric study of the return maps for a cross-section to the flow pastpλ. As has become
customary, we decompose the return map into a composition of two maps, one representing flow nearpλ and the
second representing a global return. We shall make unsubstantiated approximations in our discussion that simplify
the analysis.

Our first approximation is to assume that the analysis of the Hopf–homoclinic bifurcation can be carried out in
a three-dimensional submanifold tangent to the eigenspaces ofν andµ(λ) ± iω(λ) at the equilibrium. In other
words, we assume that “strong stable” directions are ignored. Fig. 1 shows a typical trajectory (projected to a
three-dimensional manifold) in the parameter regionµ(λ) ≥ 0. The vector field has a normal form in a neighborhood
U of the equilibrium pointpλ that is approximated by the following equations in cylindrical coordinates:

ẋ = νx, ṙ = µr − bxr + ar3, θ̇ = ω. (5)

By property (1c),a > 0 so that the Hopf bifurcation is subcritical. Without loss of generality, we also assume
b > 0 andω > 0. We choose two cross-sectionsΣ1 andΣ2 to the homoclinic orbitσh in U, Σ1 lying in a plane
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with x constant asσh approachesph andΣ2 lying in a plane withθ constant asσh leavesph. Note that the vector
field is almost tangent to theθ direction nearph’s unstable manifold, so the cross-sectionΣ2 makes a large angle
with the vector field (see Fig. 1). Our second approximation is to assume that the correspondence map that follows
trajectories fromΣ1 to their intersection withΣ2 is replaced by the map associated with the system of equations
above.

We remark that the term−bxr above is related to the transverse stability of the stable manifold ofp. If b is large
relative to|ν|, numerical computations show that large regions of initial data come close top because they are drawn
towards its stable manifold faster than the trajectories approachp along its stable manifold. This behavior cannot
persist all the way top whenp is unstable, but the effect is sufficiently dramatic that large regions of parameter
space near the Hopf–homoclinic point appear to give approximately homoclinic orbits. Therefore, we have included
analysis of this phenomenon in our approximation of the flow past the equilibrium point.

4. Geometry

We now discuss the geometric form of the correspondence mapT1 from Σ1 to Σ2; see Fig. 7. We claim that the
image of a circler = c0 in Σ1 will be a curve inΣ2 for which thex coordinate decreases monotonically and the

Fig. 7. Geometry of the correspondence mapsT1 andT2. The upper left panel is mapped byT1 to the upper right panel, which in turn is mapped
to the lower left byT2 and finally to the lower right byT1 again. The curveβ in Σ1 and its image inΣ2 are drawn as a dashed curve. In the top
panels, the regionA and its image underT1 are shaded, while in the bottom panels, two regionsRi and their images underT1 are shaded. See
text for description.
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r coordinate increases monotonically with the time of passage. This can be seen by noting that the equation forθ

in (5) completely decouples givingθ(t) = θ(0) + ωt and leaving the other two equations independent ofθ . All
points on the circler = c0 in Σ1 have identical initialx andr values which means that the circle will remain a
circle under the flow until one of the trajectories reaches the lower boundary,r = ρ of Σ2. After this, the remaining
trajectories will intersect withΣ2 beginning with those that had smaller values ofθ(0) than the first trajectory.
The monotonic dependence of this intersection curve is then assured by the fact thatẋ is always negative anḋr
is positive by the timeΣ2 is reached. Leta = (c0, θ0) be the point of discontinuity ofT1 on the circler = c0,
i.e. the initial point of the trajectory which first reachesΣ2. As we approach the origin along the rayθ = θ0, the
return time increases and we reach additional points of discontinuity for the mapT1. This is necessarily the case
since the ray froma is mapped to a vertical line inΣ2 which must reach the lower boundary,r = ρ, before the
ray reaches the origin. Letb = (c1, θ0) be the first such point. We assert that the mapT1 has the geometry depicted
in Fig. 7 on the diskr ≤ c0, denotedD. Let A be the annulusc1 ≤ r ≤ c0. As r decreases fromc0 to c1, the
point of discontinuity forT1 along each circle rotates, tracing out a curveβ that makes one full rotation aroundA
while connecting its two boundary components. ThusT1(A) is discontinuous alongT1(β), with the limiting values
of T1 alongβ lying at ρ and the maximum value ofr in T1(A) ⊂ Σ2. The portion of the diskD not within A

is mapped to a region betweenT1(A) and the lineΣ2 ∩ Wu(p). Note that since the minimum passage time,tm,
of T1 is large,T1(D) is very thin in thex direction, with distance from the unstable manifold ofp bounded by
|x(0) exp(νtm)|.

Next consider the correspondence mapT2 from Σ2 to Σ1. This map is regular andγ = T2(Σ2 ∩ Wu(p)) is a
smooth closed curve inΣ1. For parameter values with a homoclinic orbit,γ passes through the origin.T2 maps
T1(D) onto a closed ring inΣ1 with the curveγ as one boundary. Since the width ofT1(D) is so small, we can
approximateT2T1(D) by its projection ontoγ .

We finally describe some of the chaotic dynamics and stable periodic orbits associated with the Hopf–homoclinic
bifurcation. The analysis is identical to that used to describe the formation of homoclinic tangencies for discrete
diffeomorphisms (Guckenheimer and Holmes [6]). Extendβ to beT −1

1 (ρ) ∩ D. The extended curveβ is a spiral
emanating fromW s(p)∩Σ1. If γ comes close enough toW s(p)∩Σ1, T2T1(D) is a thin strip that intersectsβ many
times, partitioningT2T1(D) into many subsets. There is one central subsetC with the property thatC together with
the segment cut fromβ does not enclose the origin. Each remaining subsetRi cuts out a segment ofβ so that the
union of the two does enclose the origin.T1 then maps each segmentRi to a narrow strip stretching acrossT1(D)

in Σ2 and the composite mapT2T1 takes eachRi into a strip that spirals once aroundT2T1(D). The stretching
increases lengths along the direction ofγ . OnRi ∪ Ri+1, T2T1 forms ahorseshoewith chaotic trajectories [6].T1

maps the central segment,C, to a curved strip returning toT1(β) in Σ2, while the composite mapT2T1 has a critical
point onC, so thatT2T1(C) is folded alongT2T1(D).

While the presence of a horseshoe identifies chaotic trajectories ofXλ, it does not tell us what sort of at-
tractors we are likely to encounter. We note that the flow past the equilibriump is volume contracting since
the divergence,ν + 2µ − 2bx + 4ar3, of the approximating vector field is negative whenr is small (we are
assumingµ is small, i.e. close to the Hopf bifurcation). This implies that the return mapT2T1 of Σ1 will be
area contracting. This leads us to expect that there will be chaotic attractors for some parameter values and sta-
ble periodic orbits for others. If a parameter is varied so that the distance fromγ to the origin decreases, then
the fold ofT2T1(C) sweeps aroundT2T1(D) (i.e. T1(C) stretches down acrossT1(D), see Fig. 7) until the cen-
tral segment becomes tangent toβ, creating a new pair of subsetsRi and a new central segment. This process
creates new periodic orbits, some of which are stable at their creation as described in Section 6.6 of Gucken-
heimer and Holmes [6]. The return mapT2T1 hashomoclinic tangenciesand the theory of Newhouse [8] im-
plies that there are parameter values for whichXλ has wild hyperbolic sets and infinitely many stable periodic
orbits.
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5. Travel time past the equilibrium point

In this section we develop asymptotic expressions for the travel times of trajectories returning to the vicinity of
pλ, asλ varies slowly across the Hopf bifurcation curve,ξ , near the Hopf–homoclinic point,h.

Instead of using the cross-section,Σ2, on whichθ is a constant, here we shall redefineΣ2 to be a cylindrical shell
at a fixed radius,r2. This allows us to ignore theθ component completely and restrict our analysis to the half-plane
consisting of the stable direction,x and the radial direction,r, tangent to the center manifold of the equilibrium
point. We are primarily interested in how the travel time will vary over successive passes through the neighborhood
of pλ as the Hopf bifurcation curve is slowly approached, however, we are also interested in obtaining an expression
for the travel time when the real part of the Hopf eigenvalue,µ, is fixed. Since the mathematics is initially the same
for both cases, we begin by writingµ = µ0 − st. Then, by settings to zero,µ becomes a constant and whenµ0

is set to zero withs > 0, µ will decrease linearly with time until the Hopf bifurcation curve,ξ , is crossed at time
t = 0, after which the equilibrium point will give birth to unstable limit cycles in thex = 0 plane. Thus the model
in the(x, r) plane becomes

dx

dt
= νx,

dr

dt
= (µ0 − st)r − bxr + ar3, t ≤ 0, (6)

where the constantsa, b ands are positive,ν is negative andµ = µ0 − st is non-negative. Scaling the variables and
constants as

x̂ = b

−ν
x, r̂ =

√
a

−ν
r, t̂ = −νt, ŝ = s

ν2
, µ̂0 = µ0

−ν

yields the dimensionless system (from which we drop the hats for notational convenience):

dx

dt
= −x,

dr

dt
= (µ0 − st)r − xr + r3, t ≤ 0. (7)

We consider trajectories of system (7) starting at timet1 at the cross-sectionΣ1 (defined byx = x1) and ending at
time t2 ≤ 0 at the cross-sectionΣ2 (defined byr = r2); see Fig. 8. Ift2 = 0, then the trajectory represents in some
sense the last possible passage through the region of interest since, for positivet , the equilibrium point becomes
stable and attractive. For a single trajectory, we label the points at the intersections with the cross-sections as

Σ1 : x(t1) = x1, r(t1) = r1, (8)

Σ2 : x(t2) = x2, r(t2) = r2, (9)

Fig. 8. Phase plane for system (7).
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wherex1 > x2 > 0 andr2 > r1 > 0. The first differential equation in (7) is independent ofr and thus decoupled
from the second. Solving this first equation with either initial conditions (8) or (9) gives

x(t) = x1e−(t−t1) or x(t) = x2e−(t−t2), (10)

respectively. Since by definition the same trajectory satisfies both (8) and (9), we may invert the two equations in
(10) to obtain the following expressions for the timet :

t = t1 − ln

(
x

x1

)
= t2 − ln

(
x

x2

)
. (11)

This inversion allows us to viewx as the independent variable. By the chain rule we have

dr

dt
= dx

dt

dr

dx
= −x

dr

dx
,

so that our system of equations reduces to

dr

dx
=
(

st − µ0

x
+ 1 − r2

x

)
r,

t = t2 − ln

(
x

x2

)
,

r(x1) = r1,

x2 ≤ x ≤ x1, (12)

where the constantx2 is defined byr(x2) = r2.
We are concerned with obtaining estimates for the traversal time,P , from the cross-sectionΣ1 to the cross-section

Σ2, that is, estimates forP = t2 − t1. From (11), this time is given by

P = t2 − t1 = ln

(
x1

x2

)
.

In particular, we shall be interested in determining the behavior ofP as−t2 decreases whiler1 is close to zero, that
is, as the distance to the Hopf bifurcation decreases while the initial point of the trajectory remains close to the stable
manifold,r = 0, of the equilibrium point. Our analysis shall take the following course. First we shall obtain some
inequalities forP in terms of an integral involving the unknown trajectoryr(x). We shall then use these inequalities
to obtain upper and lower bounds forP in the casess = 0 ands 6= 0 and finally we shall investigate the functional
form of P when the initial time is sufficiently distant from the bifurcation to allow enough time for the trajectory
to make multiple passes through the region near the equilibrium point.

5.1. An integral inequality for the travel time

Formally integrating system (12) gives∫ r2

r1

dr

r
=
∫ x2

x1

(
st2 − µ0 − s ln(x/x2)

x
+ 1 − r2

x

)
dx,

ln

(
r2

r1

)
= (st2 − µ0) ln

(
x2

x1

)
+ s

2

[
ln

(
x1

x2

)]2

+ x1

(
x2

x1
− 1

)
−
∫ x2

x1

r2

x
dx

= (µ0 − st2) P + s

2
P 2 − x1

(
1 − e−P

)
−
∫ x2

x1

r2

x
dx. (13)
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DefiningK as

K =
∫ x1

x2

r2

x
dx, (14)

Eq. (13) may be written as

K = ln

(
r2

r1

)
+ x1

(
1 − e−P

)
+ (st2 − µ0) P − s

2
P 2. (15)

We now turn our attention to estimates forK. Sincer < r2 on (x2, x1), it is clear that

K <

∫ x1

x2

r2
2

x
dx = r2

2 ln

(
x1

x2

)
= r2

2P. (16)

Further, since dr/dx < r, it follows that if r(x1) = r1 then r(x) > r1e(x−x1) for x < x1. Consequently, the
minimum value obtained byr on [x2, x1] satisfies

rmin > r1e(x2−x1) = r1 exp
(
−x1

(
1 − e−P

))
> r1e−x1,

where we have used the fact thatx2/x1 = e−P < 1. Therefore, a lower bound forK is given by

K >

∫ x1

x2

r2
min

x
dx >

∫ x1

x2

r2
1e−2x1

x
dx = r2

1e−2x1P. (17)

Substituting inequalities (16) and (17) into (15) gives the relationship

0 < r2
1e−2x1P < K = ln

(
r2

r1

)
+ x1

(
1 − e−P

)
+ (st2 − µ0) P − s

2
P 2 < r2

2P. (18)

5.2. Estimates for the frozen system

In the case thats = 0, the system is said to be frozen. Ifµ0 is zero, then the system is frozen at the Hopf
bifurcation, whereas ifµ0 is positive, the system is frozen at some fixed distance from the Hopf bifurcation curve.
With s set to zero, system (12) becomes

dr

dx
=
(−µ0

x
+ 1 − r2

x

)
r, r(x1) = r1, x2 ≤ x ≤ x1, (19)

wherex2 is defined byr(x2) = r2. Consider the system

dr̂

dx
= −µ0r̂ + r̂3

x
, r̂(x2) = r2, (20)

where, compared with (19), the termr, which is positive, has been dropped from the differential equation and the
starting point has been set as the intersection of the trajectory with the cross-sectionΣ2 rather than withΣ1. Since
dr̂/dx < dr/dx, it follows immediately that̂r(x) < r(x) on (x2, x1); see Fig. 9. Assuming for now thatµ0 6= 0,
we may solve (20) to obtain

r̂2(x) = µ0

(1 + (µ0/r2
2)) (x/x2)

2µ0 − 1
.
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Fig. 9. Trajectories of system (19) (solid line) and (20) (dashed line).

Using the facts that ln(x1/x2) = P andr̂2(x1) < r2
1, we get

r̂2(x1) = µ0

(1 + (µ0/r2
2))e2µ0P − 1

< r2
1, (21)

which implies

P >
1

2µ0
ln

(
1 + (µ0/r2

1)

1 + (µ0/r2
2)

)
. (22)

Further, sincêr(x) < r(x) we may substitutêr for r into (14) and integrate to obtain

K >
1

2
ln

[(
1+µ0

r2
2

)(
x

x2

)2µ0

−1

]
−µ0 ln

(
x

x2

) ∣∣∣∣∣x1
x2

>
1

2
ln

[(
1+µ0

r2
2

)
e2µ0P −1

]
−µ0P−1

2
ln

(
µ0

r2
2

)
,

where we have again used ln(x1/x2) = P . Since 1− e−P < 1, from (15) we have

K < ln

(
r2

r1

)
+ x1 − µ0P,

which we now combine with the above inequality and re-arrange to give

P <
1

2µ0
ln

(
1 + (µ0/r2

1e−2x1)

1 + (µ0/r2
2)

)
. (23)

In the limit asµ0 → 0, the bounds (22) and (23) approach

P >
1

2

(
1

r2
1

− 1

r2
2

)
, (24)

P <
1

2

(
e2x1

r2
1

− 1

r2
2

)
, (25)

respectively. (These last two bounds can also be obtained from system (20) in the same manner as (22) and (23) by
assumingµ0 = 0 initially.) The bounds forµ0 6= 0 show that when the real part of the Hopf eigenvalue is fixed away
from zero, the travel time between the two cross-sections is proportional to 1/µ0 modified by a logarithmic factor
involving µ0. The logarithmic factor’s influence is determined by the relative sizes ofr1 andr2. Considering the
lower bound (analysis of the upper bound is similar), this factor increases to ln(r2/r1), in the limit asµ0 becomes
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Fig. 10. Dependence of the logarithmic factor on the Hopf eigenvalue and the distance to the homoclinic trajectory. The dashed curves indicate
the places at which the logarithmic factor reaches the indicated percentage of its limiting value.

large. If r1 is close tor2, then the logarithmic factor is small but varies considerably in relative size withµ0. If r1

is much smaller thanr2, then the factor is larger but displays less relative variance withµ0. This analysis is shown
in Fig. 10, where we have plotted the value of the logarithmic factor as a function ofµ0 for various values ofr1 (r2

fixed at 1). Overlaid on the plot are several percentile curves which show the location where the logarithmic factor
reaches 50, 80, 90 and 95% of its limiting value. Notice that whenr1 is small, the logarithmic factor is relatively more
constant for smaller values ofµ0. As a consequence, the travel time dependence for near homoclinic trajectories
(r1 small) will be nearly proportional to 1/µ0 and will only deviate substantially ifµ0 is very small.

5.3. Estimates for the varying system

Here, we are concerned with analyzing system (12) in the caseµ0 = 0 ands > 0 so that the real part of the Hopf
eigenvalue crosses from positive to negative at time zero. In the previous section, where the system was frozen,
we obtained bounds forP by estimating the unknown trajectoryr(x) with a known trajectory,̂r(x), which was the
solution to a differential equation similar to that satisfied byr(x). In the varying case, it is more difficult to come
up with a similar differential equation that is solvable and which allows us to isolateP from the other parameters.
Instead, in this section, we replacer(x) with a constant function to obtain our results.

The inequalities of (18) were obtained by replacingr(x) in K with either a lower bound,r1e−x1, or an upper
bound,r2. Using the fact that 0<

(
1 − e−P

)
< 1 and settingµ0 to 0, the two inequalities of (18) become

− s

2
P 2 + (st2 − r2

2)P + ln

(
r2

r1

)
< 0, (26)

0 < − s

2
P 2 + (st2 − r2

1e−2x1)P + ln

(
r2

r1

)
+ x1. (27)

Both of the above quadratic functions ofP have exactly one positive real root and represent parabolas opening
downward. We are only interested in positive values ofP , thus inequality (26) gives

P >
1

s

(
(st2 − r2

2) +
√(

st2 − r2
2

)2 + 2s ln

(
r2

r1

))
, (28)

while (27) gives

P <
1

s

(
(st2 − r2

1e−2x1) +
√(

st2 − r2
1e−2x1

)2 + 2s

(
ln

(
r2

r1

)
+ x1

))
. (29)
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In the limit ass approaches zero, these bounds give

P >
1

r2
2

ln

(
r2

r1

)[
1 − 1

2r4
2

(
ln

(
r2

r1

)
− 2t2r

2
2

)
s + O(s2)

]
, (30)

P <
e2x1

r2
1

ln

(
r2

r1

)[
1 − e4x1

2r4
1

(
ln

(
r2

r1

)
− 2t2

r2
1

e2x1

)
s + O(s2)

]
, (31)

which converge asr1 → 0 in the regionss < 1/ ln(r2/r1) ands < r4
1/ ln(r2/r1), respectively. We see then that as

s approaches zero, these bounds onP do not approach the bounds obtained for the frozen system. Inequalities (30)
and (31), whose leading terms are of the order ln(r2/r1) andr−2

1 ln(r2/r1), provide only a wide bracket around the
frozen system bounds whose leading terms are bothr−2

1 . In Appendix A we address this issue by replacingr(x)

with the solution of a similar differential equation which, although it does not allow us to isolateP explicitly, does at
least allow us to obtain Taylor series expressions for the bounds onP which uniformly approach the frozen system
bounds ass approaches zero, however, our main goal is to obtain a simple closed form estimate for the behavior
of P and its dependence on the time remaining until the Hopf bifurcation,−t2. By the mean value theorem for
integrals, there is a constant,R (depending onr1, r2, x1, s andt2) such that the integralK is equal toR2 ln(x1/x2).
Clearly,r1e−x1 < R < r2. Although in generalR depends ont2, it can be shown that the variation ofR2 with t2 is
bounded below by the linear function

R2 > R2
0 +

(
1 − R2

0

r2
2

)
st2, (32)

whereR0 is the value ofR when t2 = 0. Further, numerical calculations reveal that the variation ofR2 with t2

decreases ass becomes small. In our numerical example from Section 2, whens was less than 10−4, R2 showed
almost no variation witht2; whens = 10−4, R2 varied nearly linearly witht2 with a slope of about 2× 10−5; and
for larger values ofs, the variation ofR2 with t2 was nonlinear but bounded below by the estimate given above. In
any event, using similar analysis as above, we get

P ≈ 1

s

(
(st2 − R2) +

√(
st2 − R2

)2 + 2s

(
ln

(
r2

r1

)
+ θ

))
, (33)

where 0≤ θ ≤ x1. We shall use this estimate to obtain a simple closed form forP(t2) in the next section.

6. Variation of the travel time over multiple passes

In the framework of this section, the Hopf bifurcation curve is crossed at timet = 0 andP represents the time
taken for the trajectory to pass through the nearby region,U , of the equilibrium point, leaving this region by crossing
Σ2 at timet2 ≤ 0. We now assume that after leaving the regionU , the trajectory quickly travels around and re-enters
U by crossingΣ1 again (see Fig. 1). It is easy to see from Fig. 8 that asr1 decreases to zero, trajectories entering
at (x1, r1) will crossΣ2 with smaller values ofx2. The same effect (x2 decreases) is also caused by increasingt2

to zero. This latter fact is seen by analyzing system (12) where, ift2 increases to zero, the termstr/x, which is
negative, will become smaller in magnitude atΣ2, indicating that the slope, dr/dx, of a trajectory passing through
(x2, r2) will be more positive, and thus, for it to have started at the same point(x1, r1), x2 must necessarily be
smaller. SinceP = ln(x1/x2), asx2 decreases (r1 decreases ort2 increases) the trajectory will spend more time
within the regionU . Since these systems show a substantial contraction toward the stable manifold, the value of
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r1 will be very small even when the system is still a considerable distance from the Hopf bifurcation curve. Thus,
even ifr1 increases from one pass to the next, this increase is small and the subsequent decrease inP is more than
balanced by the increase inP caused byt2 increasing. Assuming thatP increases with each pass throughU , it
follows that if P > −t2 for any given pass, then that pass will be the last complete passage throughU before the
Hopf bifurcation occurs. In analysis of data from the LP cell model (and also of experimental data from the real
LP cell), a single oscillation is identified by watching when the cell crosses a particular voltage threshold. This
corresponds to a trajectory of our model system crossing the sectionΣ2. The period of each oscillation is set as the
time from the previous crossing to the current one. Consequently, at most one oscillation will be detected which
satisfiesP > −t2 and this oscillation will be the final one before the transition to quiescence occurs.

Since we wish to determine howP changes over several successive passes throughU , we are interested in the
regime

P ≈ −t2

M
, (34)

whereM roughly corresponds to the maximum number of remaining oscillations. For example, ifM = 3 then once
P gets as large as−t2/3, we would expect to see only two or three more oscillations. Combining (34) with the
approximation ofP (33), we get the approximate inequality

(st2 − R2) +
√(

st2 − R2
)2 + 2s

(
ln

(
r2

r1

)
+ θ

)
≈ −st2

M
,

which becomes√(
st2 − R2

)2 + 2s

(
ln

(
r2

r1

)
+ θ

)
≈ −

(
1 + 1

M

)
st2 + R2 ≈

(
1 + 1

M

)
(−st2 + R2)

implying

2s

(
ln

(
r2

r1

)
+ θ

)
≈
(

2M + 1

M2

)
(−st2 + R2)2. (35)

The estimate (35) gives a relationship between the magnitudes of the two terms under the radical sign in the
approximation forP given by (33). If we defineA = R2 − st2 (note:A > 0) andB = 2s ( ln(r2/r1) + θ), then the
estimate (35) says thatB ≈ (

2M + 1/M2
)
A2 and (33) may be written as

P ≈ 1

s
(−A +

√
A2 + B). (36)

We now use a Taylor series to give

−A +
√

A2 + B =
∞∑

n=1

(−1)n [(2n − 3) (2n − 5) · · · (−1)] Bn

2nn!A2n−1

≈ B

2A

( ∞∑
n=1

(−1)n [(2n − 3) (2n − 5) · · · (−1)] (2M + 1)n

2n−1n!M2n

)
. (37)

This series is convergent providedM ≥ 1 + √
2; Fig. 11 shows the convergent value for the sum as a function of

M. At M = 1 + √
2, the sum is approximately 0.8284 and asM becomes large, the sum approaches 1. It follows
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Fig. 11. Convergent values of the sum in (37).

then that provided there are three or more oscillations before the transition to quiescence, the traversal time through
the region near the Hopf–homoclinic bifurcation is approximately given by

P ≈ C
ln(r2/r1) + θ

R2 − st2
, (38)

whereC is a number between 0.8284 and 1. We argued in the previous section thatR2 is nearly independent of
t2 when s is very small and is roughly linearly dependent ass becomes a bit larger. Even if the dependence is
approximately linear, it can be absorbed into thest2 term in (38) by a redefinition ofs. The bound (32) shows that
this linear dependence has slope less thans so that the effect on (38) is a value ofs perhaps smaller than the true
speed of approach but in all cases still positive. ThusP has a fractional linear dependence ont2 with P increasing
ast2 increases toward zero.

In a slowly varying system which passes close to a Hopf–homoclinic bifurcation, the homoclinic curve,η, could
in general be crossed zero or more times before the Hopf bifurcation curveξ is crossed (see Fig. 6). Nonetheless,
with probability 1, any trajectory starting from a random initial point before the Hopf bifurcation will, at each
intersection withΣ1 have a positive value ofr1. That is, the trajectory will not coincide with the stable manifold of
the equilibrium point. Generically we expect that at each intersection of a specific trajectory withΣ1, the value ofr1

will not be significantly altered and thus the terms involvingr1 in (38) can be replaced by constants. Consequently,
with each pass throughU , the magnitude oft2 will be decreasing and the traversal time,P , will behave like the
fractional linear function 1/ (b − ct) over a relatively large time range before the final few oscillations prior to the
transition to quiescence. If we now add a bounded constant,a, representing the time taken for the trajectory to loop
around outside ofU from Σ2 back toΣ1, we obtain the expression (2) which we used in [5] for fitting to interspike
interval data from trajectories influenced by this bifurcation.

7. Concluding remark

This paper was motivated by the seeming appearance of near homoclinic orbits arising as a consequence of
subcritical Hopf bifurcation. Our analysis explains why this occurs: large regions of the phase space of a system
undergoing subcritical Hopf bifurcation flow close to the stable manifold of the bifurcating equilibrium point. We
believe that this phenomenon is quite general and present in many other applications besides the neural models
studied in this paper (see, for example [4]). The attractor that appears subsequent to subcritical Hopf bifurcation
is often a long periodic orbit, though if one is in the immediate vicinity of the Hopf–homoclinic codimension 2
bifurcation, chaotic attractors of Silnikov type are possible. Our results give estimates for the size of these regions.
Outside the parameter regions close to homoclinic bifurcation, we demonstrate that the period of the periodic orbits
is approximated by a fractional linear function of the distance from the bifurcation. This asymptotic estimate gives
a criterion that can be used to identify the occurrence of subcritical Hopf bifurcation in time series data.
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Appendix A

To obtain estimates on the traversal time which uniformly approach the frozen system estimates ass → 0, we
consider the system

dr̃

dx
= −

(
s (P − t2)

x
+ r̃2

x

)
r̃ , r̃(x2) = r2. (A.1)

Notice that ass → 0, this system collapses to ther̂ system (20), analyzed in Section 5.2. Comparing system (A.1)
to system (12), sinceP − t2 ≤ −t ≤ 0, it follows thatr̃(x) < r(x) on (x2, x1). Qualitatively, the trajectorỹr(x)

is related tor(x) in the same way aŝr(x) is in Fig. 9. The differential equation in (A.1) is separable and we may
integrate it directly,∫ r̃

r2

dr̃

(s(P − t2) + r̃2)r̃
= −

∫ x

x2

dx

x
,

1

2s(P − t2)
ln

(
r̃2(s(P − t2) + r2

2)

r2
2(s(P − t2) + r̃2)

)
= − ln

(
x

x2

)
,

which re-arranges to give

r̃2 = s(P − t2)

((s(P − t2)/r2
2) + 1)(x/x2)2s(P−t2) − 1

. (A.2)

Sincer̃2(x1) < r2
1 it then follows from Eq. (A.2) that

F := r2
1 − s (P − t2)

((s(P − t2)/r2
2) + 1)e2sP (P−t2) − 1

> 0, (A.3)

where we have used the fact thatx1/x2 = eP . We now write the traversal time,P , as a Taylor series ins,

P =
∞∑

n=0

Ans
n, (A.4)

substitute this expression intoF (the left side of the inequality (A.3)), expand the resulting expression forF as a
Taylor series ins and solve for the coefficientsAn which causeF to vanish. To determine whether the resulting
Taylor series forP is an upper or lower bound, we must determine whether an increase or decrease inP will give
F > 0 for smalls. Since, as we have already noted, system (A.1) approaches system (20) ass → 0, we may use
the results from the analysis of (20) fors = 0. In particular, from inequality (21) we get

lim
s→0

F = r2
1 − 1

(1/r2
2) + 2P

,

so thatF increases asP increases and thus the Taylor series is a lower bound forP . The first three terms of this
series are given in Table 2(A).

An upper bound forP may be obtained by substituting the expression forr̃2 given by (A.2) intoK (14). Since
r̃(x) < r(x) on (x2, x1), we have

K >

∫ x1

x2

r̃2

x
dx. (A.5)

Using the expression for̂r2 (A.2) and the antiderivative∫
dz

z (azp + b)
= 1

pb
ln

(
zp

azp + b

)
,
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the right side of inequality (A.5) integrates giving

K >
1

2

(
ln

(
((s(P − t2)/r2

2) + 1) (x1/x2)
2s(P−t2) − 1

(s(P − t2)/r2
2)

)
− ln

((
x1

x2

)2s(P−t2)
))

.

Again, usingx1/x2 = eP , we get

K >
1

2
ln

(
e2sP (P−t2)((s(P − t2)/r2

2) + 1) − 1

(s(P − t2)/r2
2)

)
− sP(P − t2) ,

while from Eq. (15), since e−P < 1, we have

K < ln

(
r2

r1

)
+ x1 + st2P − s

2
P 2.

Combining the above two inequalities, multiplying by 2 and exponentiating gives(
e2sP (P−t2)((s(P − t2)/r2

2) + 1) − 1

(s(P − t2)/r2
2)

)
e−2sP (P−t2) <

(
r2

r1

)2

e2x1e2st2P−sP 2
,

which simplifies to

G := s (P − t2)

r2
1

e2x1e−sP (P−2t2) − s (P − t2)

r2
2

− 1 + e−2sP (P−t2) > 0. (A.6)

We again writeP as a Taylor series ins (A.4), substitute this expression intoG, expand the resulting expression for
G as a Taylor series ins and solve for the coefficientsAn which causeG to vanish. As before, to determine whether
the resulting Taylor series forP is an upper or lower bound, we must determine whether an increase or decrease in
P will give G > 0 for smalls. To order one ins, G is given by

G = s (P − t2)

(
1

r2
1

e2x1 − 1

r2
2

− 2P

)
+ O(s2).

Since the termss (P − t2) and(1/r2
1)e2x1 − (1/r2

2) are both necessarily positive, it follows that for smalls, G goes
from positive to negative asP increases. Thus the Taylor series forP represents an upper bound, the first three
terms of which are given in Table 2(B).

In the lower bound forP , Table 2A, the ordersn term has a factor ofr−(4n+2)
1 , while the upper bound, Table 2B,

has the same factor for then-even terms and a factor ofr−4n
1 for then-odd terms. Thus, both series are convergent

provideds < r4+ε
1 , whereε is any positive number; and all terms of ordersn with n > (2/ε) will vanish asr1 → 0.

For example, the first three terms, as given above, provide a good approximation to the asymptotic limit ifs < r
4+ε1
1 ,

whereε1 > 1/2. Note also that ass → 0, these estimates approach those obtained for the frozen system.
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