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Abstract. The buckling of finite circular cylindrical shells with random stress-free
initial displacements which are subjected to lateral or hydrostatic pressure is studied
using a perturbation scheme developed in an earlier paper [1], A simple approximate
asymptotic expression is obtained for the buckling load for small magnitudes of the
imperfection. This result is compared with earlier results obtained for localized im-
perfections and imperfections in the shape of the linear buckling mode.

Introduction. It is generally recognized that the buckling loads of some elastic
structures are substantially reduced by the presence of nonuniformities in these struc-
tures. These nonuniformities or imperfections may be in the elastic or geometric prop-
erties of the structure. In [7, 8], Koiter developed a general theory of post-buckling
behavior and derived simple asymptotic formulae for the buckling load of a class of
elastic structures with imperfections in the shape of their classical (linear) buckling
modes.

In [5] Budiansky and Amazigo applied a reworked version [6] of Koiter's theory
in deriving an asymptotic formula for the buckling load of externally pressurized cyl-
inders. Furthermore they derived the range of values of a length parameter Z, introduced
by Batdorf [4], for which the cylinder is sensitive to imperfection in the shape of the
classical buckling mode. In a more recent study [3], Amazigo and Fraser derive similar
results for cylinders with localized or dimple imperfections and obtained the same
range of values of Z for imperfection-sensitivity.

It is clear that in general the imperfections in structures are stochastic rather than
deterministic. Here we assume that the imperfections are Gaussian and obtain an
asymptotic formula for the buckling load. The perturbation scheme used here was
developed in [1J. It is found that the range of values of Z for imperfection-sensitivity
remains the same and the loss in the buckling load for the three types of imperfections
parallels that obtained for columns on nonlinear foundations [1, 2],

Kdrmdn-Donnell equations. A cylindrical shell is characterized by its outward
radial displacement W(X, Y) and an Airy stress function F(X, F) where X and Y are
the cartesian coordinates in the axial and circumferential directions. The membrane
stress resultants Nx , NY , Nxy are given by Nx = F,YY , NY = F,Xx , and NXy =
— F,xy where ( ),Y = d( )/dY , etc. Introducing the effect of a stress-free initial outward
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normal displacement W(X, Y) into the Karman-Donnell theory for cylindrical shells
leads to the compatibility equation

^ V4^ - | W,xx + iS(W, W) + S(W, W) = 0 (1)

and the equilibrium equation

DS7*W + ^ F,xx - S(W + W, F) + V = 0 (2)

where E is Young's modulus, h and R are the shell thickness and radius respectively,
p is the external pressure, D = Eh3/12(1 — v2) is the bending stiffness, v is Poisson's
ratio, V4 is the two-dimensional biharmonic operator, and

S(P, Q) = PtX.\Q,YY + P,YYQ)XX ~ 2P, x yQ, X Y ■ (3)

We assume the usual simply supported boundary conditions, namely zero normal
bending moment, zero circumferential displacement; \V = pR2(l — \av)/Eh, NX =
— apR/2 at X = 0, L where L is the shell length. This leads to

W = Wxx =-- F = Fxx = 0.

The parameter a is introduced for convenience so that lateral and hydrostatic pressures
may be analyzed together, a = 1 if the pressure contributes to axial stresses through
end plates and a = 0 if pressure only acts laterally.

It is convenient to introduce the nondimensional quantities:

x = irX/L, y = nY/R, w = W/h, ^

X = PL2R/t2D, A = LV [12(1 - v2)}/nv2hR, f = (jiL/ttR)2,

H = n2h/R, K( f) = -A\ 1 + f)2,

where n is an integer.
Before buckling we assume, as is customary, that the cylinder is in a state of constant

membrane stress and that thus iv can be approximated by a constant. For thin shells
this approximation is good except near the ends of the shell where there is a small bound-
ary layer. Thus

F = — (XV2 + « Y2/4)Rp + ^0ry)2 f, (5)

W = pR2(l - \av)/Eh + hw.

Substituting for F and W in (1) and (2) and using (4) gives

V4/ - (1 + f)Vx + H( 1 + t)\hS(iv, w) + S(w, wl)] = 0 (6)

V4w - K(£)f,xx + w,zx + + HK(X)S(w + w, /) = w,rx + (7)

where V4 = (d2/dx2 + t;d2/dy2)2. The simply supported boundary conditions become

to = w,xx = / = /,« = 0 at x = 0, 7r. (8)
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The solution to the linearized version of equations (6) and (7) with w = 0 obtained
by Batdorf [4] is recorded here:

w = sin x sin y, / = — sin x sin y. (9)

The buckling load Xc (called the classical buckling load) is

X, = (f + f) '[(1 + f)2 - m)] (io)
and n in (4) is the integer that minimizes \c . Execution of this minimization on the
basis of the assumption that f varies continuously (see Batdorf [4] for a discussion of
the consequences of this assumption) gives

= 4(1 + r)7(3f + 1 + a), A2 = (1 + f)4(f - 1 + a)/(3f + 1 + a). (11)

Perturbation scheme. We consider the shell as having an initial stress-free dis-
placement of the form

w(x, y) = ew0(y) sin x (12)

where e is a small parameter characterizing the amplitude of the displacement. This
imperfection could be considered as the first term in a Fourier series expansion of an
arbitrary imperfection satisfying the boundary conditions (8). This term has the dom-
inant effect in the reduction of the buckling strength for imperfections of the form
um(y) sin mx for deterministic um(y). Here w0(y) is assumed to be a sample function
from an ensemble of twice-continuously-differentiable zero-mean, stationary Gaussian
random functions with known autocorrelation function R00(z). Thus

(wo(y)) = 0, (w0(y + z)w0(y)) = R00(z) (13)

where the angular bracket (■ • •) denotes ensemble average. We are thus dropping the
requirement of periodicity in the circumferential coordinate y and requiring — <
y < °=. This is equivalent to the previous assumption that f be a continuous variable.
The power spectral density S00(u>) of w0 is defined by

-Sc
i r.(«) = 2~ J Roo(z) exp (— iwz) dz. (14)

(Unless otherwise specified the limits of all integrals are — =°, <®.)
We consider X to be prescribed and satisfy the inequality 0 < X < Xc , and expand w

and / in powers of e, namely

(15)

Substituting for w, f into (6) and (7) using (12) and equating powers of t gives the
following sequence of equations:

Li(Ji , m>i) = 0 ^
L2(Ji , toi) = X(|aw0 — fW) sin x

L1(f2 , w2) = — (1 + tfH{%S(wi , Wt) + S(w0 sin x, wt) j ^

L2(U , w2) = , /.) + S(w0 sin /,)}
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L,(/3 , w3) = -(1 + f)2i/{<S(w! , w2) + S(w0 sin x, w2)}

L2(f3 , W3) = -Ki^mSiWi , /2) + S(iv2 , /,) + S(wo sin z, /2)}

etc., where

Li(fi , w,) = V4/, - (1 + f)2w,-,„ J = 1,2, - -

L2(Jj , w,) = V4w,- - K(£)ii,xx + X(§me,,« +

(18)

(19)

and prime denotes differentiation with respect to the argument. The boundary con-
ditions (8) become

Wi = w,,xt = /,- = = 0, j = 1, 2, • • • . (20)

Let A2 be the average of the mean square of the deflection:

A2 = - f (w\x, y)) dx. (21)
7T Jo

Substituting for iv using (15) leads to

A2 = e"An + 2e3A12 + e4(2A13 + A22) + 0(e5) (22)

where

A,y = - f (Wi(x, y)Wj(x, y)) dx i, j = 1, 2, • • • . (23)
7T J o

We anticipate that AI2 = 0 (see Eq. (47)). Since we seek asymptotic formulae valid
for e —0 and hence X —> Ac~ we also anticipate the result (see Eq. (61))

A22/A13 —> 0 as X —> \c~. (24)

Thus (22) reduces to

A2 — e2An + 2e4A13 as ^ \~. (25)

Now the A,,s arc functions of X and Eq. (25) gives a relation between A2, X, and t. The
buckling load is thus obtained by maximizing X with respect to A2. As noted in [1],
setting rfX/rfA2 = 0 in (25) fails to yield the buckling load because the series (25) does
not converge for A2 greater than the critical mean square.

The difficulty is overcome by reversing the series (25) to get

«2 = ai(X)A2 + a2(X)A4 + 0( A6) (26)

where the a, are obtained by substituting (26) into (25) and equating powers of A2.
Performing this elementary operation gives

«i = 1/Au , a2 = —2A,3/Au3. (27)

We truncate the series (26) at the A4 term to get an approximate load-deflection relation-
ship. Now maximizing X with respect to A2 using (26) and (27) gives the buckling equation

8e2A13(X)/A„(X) as 1 (28)

as an approximate relation between the buckling load X and the imperfection amplitude
parameter e. We now seek asymptotic expressions for AU(X) and A13(X) valid for e —» 0
and X —> X ~
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Solution of first-order perturbation equation. The solution of (16) and (20) can be
written in the form

Wiix, y) = u^y) sin x, ft(x, y) = <fn(y) sin x (29)

and substitution of (29) into (16) leads to

f ~T~2 — 1) 4>i + (1 + f) «i = 0,i,J ' (30)
(i2 \ 2

f ^2 — lj Ml + K<t> 1 + X(—haUi + fMi") = X(i«w0 — f»o").

Thus <t>i and are linearly related to w0 and are therefore stationary Gaussian random
functions (see, for example, [10]). It is shown in Appendix A that (wi(?/)) = 0 and that

Su(co) = X2(| a + fco2)2(l + k>2f)4Q2(co)$o„(co),

&*(«) = ~*2(i« + f"2)2(l + f)2(l + ut;)2Q\u)Soo(u), (31)

£♦(«) = X2(|a + rco2)2(l + f)4Q2(co)(S00(<i)),

where

Q(«) = !(i + «2f)2[(i + w2f)2 - x(|a + fw2)] — if(i + r)2) , (32)

<S„(co) = ~ J Ru(z) exp (—z'coz) dz (33)

with

Ru(z) = {ui{y + z)ui{y)). (34)

Suj, and St are defined by expressions similar to (33).
Substitution for wx in (23) using (29) gives

An = 2<Wi\v)) = hRu(0) = | / du. (35)

Let

Bm = J F(<jo)[Q(co)]m dco m > 2, (36)

where F(u>) is any smooth integrable function analytic in the strip |Im co| < a for some
a with F(±l) 7^ 0. It is shown in Appendix B that

_ r(m - l)(2rw - 3)! F(l) + f(-l) , . _
m ~ 22m~2[(m — l)!]2 '[P(1)]1/2[(XC — X)gf(l)]™~1/2 ' c' K '

where

p(°>) = r (38)
(co2 — l)f + 1(1 + f) — [(co2 — l)f + 2(1 + f)]

(co2 — l)f + 2(1 + f) — \c

and

g(co) = (1 + co2f)2(|a + fco2) (39)
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Use of this result gives
a. >-vi j- ^~II/2

(40)
_ \\Spoil)

^11
ija + r)(i + r) 1/2

4f(X. - X)3/2 L 4(1 + f) - fx J
Noting that (w02) is independent of X and hence 0(1) as X -> X„~ and {u2) =
0[(XC — X)~3/2] by (40), we conclude that u^y) + w0iy) ~ u^y) as X —> \c~.

Second-order perturbation equations. As noted in the above paragraph, we may
drop the w0 terms in (17) and (18) in comparison with Ui terms. Thus (17) becomes

Li(/2 , w2) ̂  -|(1 + tfHSiw! , ivt),

UiU , w2) - imHSiw, , /,).
Substituting for and /i using (29) gives

Li(/2 , w2) ~ 1(1 + f)2//(ui"wi + w/2) - f(l + £)2Hiul"ul - u2) cos 2x ^

L2if2 , w2) %KHiufa" + u/fa + 2w1>/) — kKHiurf/' + u/fa — 2m/<#>1') cos 2:c.
The solutions of these equations with the boundary conditions (20) can be obtained,
as shown by Budiansky and Amazigo [5], in the form

(«":!)- .1, (iS)--
Substituting this form into (41), and noting that, for p even, cos px = — ^2 [4m/
wip2 — m2)] sin mx, gives

, vm) = (1 + f2)(-PmMl"Ml + TmMl'2),

M2<m>(^m ,0 = —KPmiui"4>i + ufa") + 2TmUlfa',
(43)

where

P„ = 8H/[7rm(m2 — 4)], Tm = 4(m2 — 2)H/iizmim2 — 4)], (44)

v) = \s4ji- ™2)2*iy) + (1 + f)2™V2/),dy2

v) = Km2\p +

(45)
v.

Now from the definition (23) of A12 and expressions (29) and (42) for Wi and w2
respectively,

A12 = h(ui(y)Viiy))- (46)

It is shown in Appendix C that (Uiiy)v„iy)) = 0; hence

Ai2 = 0. (47)

The use of (42) in the definition (23) of A22 gives

A22 = | E (vJiy)). (48)

* Unless otherwise specified, all summations are taken over all odd positive integers.
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A complete derivation of (vm2(y)) is lengthy and its presentation would obscure the
main trend of this paper. In Appendix C a typical term in A22 is evaluated asymp-
totically to show that

A22 = 0((\c - X)"3). (49)

Third-order perturbation equations. As noted in the derivation of the second-orde
equations, we may drop the w0 terms in (18) to get

Li(f3 , w3) = -(1 + tfHS(w! , w2), ^

L2(U , w3) = -KU)H{S(Wl , j2) + S(w2 ,/,)}•

We now substitute for iv, , /j , w2 , /2 using (29) and (42). The solution to the resulting
equations can be found in the form

(l) ' (x'm) 8in 1 +(xm) Bi" "■ <51)
The equations for xi and /»i are

M,w{x, , K) = -(1 + r)2 E PJyffiJ' + mV'O

— 2(1 + f)2 ^ XmUi'vm',

M2a\xi , ^h) = — K({) + m2u,"\pm + 4>iVm" + m24>i"vm)

— 2K(t;) E Xm(u/ \pm' + <t>

where M"/" and M2W are defined in Eq. (45) and

Xm = 4mH/x(m2 - 4). (53)

We have not exhibited the equations for hm and xm , m > 1, since our primary interest
is in the asymptotic evaluation of A13 and the use of (51) and (29) in the definition
(23) gives

A,3 = hiuMJhiy)). (54)
In Appendix D we exhibit the calculations leading to the underlined term in the

following expression for A13 :

Aia = — \ X) ff Ui("i '"2 ;m) + /2(CO! ,W2 ; m) + ■ • • + J7(co, ,co2 ; m)] dwt dw2 , (55)

where

IM ,co2 ; m) = K[KQ^\ai)Hmw{ai + co2) + (1 + + «,)]

• [fiU(«i)&(w2) + <Su(wi)'Su^1(w2)][ — Pm(wi2 + 1022) + 27'„,COiOJ2]

■[m2Pm0i22 + Pm(03! + co2)2 — 2Xmco2(Wl + co2)],

I2(co, ,«2 ; m) = (1 + f)2[if01n,(W|)H.,,)(ai + oo2) + (1 - f)2Q,<2)(co.)Qm(2)(co, + co2)]

• W&(co2)[-P,„(co,2 + + 2T„w1w2]

• [??J2Pm0J22 + Pm(ui co2)2 — 2Xma)2((o1 + w2)],
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/,(CO, ,co2 ; m) = -Krn2Pm(Pm + T^WQ^MSM)
■[2KHmw(0)SM + (1 + f)2ffroa>(0)<S„(co2)],

/4("i ,co2 ; w) = — Km2P„(Pm + Tm)wl2w22Q^1\^i)Su4,(wl)

■[2KQmw(0)SM + (1 + r)2Qm<2>(0)<S„(w2)],

/,(«, = -(1 + f)2™2P„ + TJco.VQ^V,)^!)
•[2XQma)(0)S„,(cO2) + (1 + f)2Qm<2>(0)<S„(aj )],

J.oCO. ,co2 : m) = tf(l + f)2Q1a)(co1)Qm(2>(co1 + co2)S„(Wl),Su,(a>2)

•[-Pm(u2 + co22) + 2T,„co1co2][?n2Praco22 + jP„(CO, + co2)2 — 2Xmco2(coi + «2)],

/7(co, ,co2 ;m) = K2Q1a,(co1)Qma)(co1 + co2)[S„,(co1)S„,(co2) + SM)SM

•[-?„(&)/ + CO22) + 271,„co1co2][w?2P mco22 + -Pra(co, + C02)2 — 2iX„co2(coi + C02)],

and

Qrau>(co) = (co2f + m2)2Qm(co), m = 1, 3, 5, ■ • • ,

Qmm( co) = -m)rn2Qm(co),

#ma>(co) = [(<o2f + m2)2 - Hham2 + rco2)]Qm(co), (56)

Hj2\co) = -(1 + f)2™2Qm(co),

Qm(co) = {(rco2 + m2)2[(fco2 + m2)2 - X(iam2 + fw2)] - (1 + fl^W!4}"1.

Pm , Tm , and Xrn are given by (44) and (53). Note, by comparing (32) and (56), that
Q i(«o) = Q(co).

We consider the double integral

J(r, s) = // F(ui , co2)Qr(w,)Q"(u2) dco dw2 , r, s > 2,
(57)

J (lw2Q'(coi) J Qr(coOF(coi , co2) dco2

where F is smooth and integrable. Repeated use of the asymptotic result of Appendix B
gives

Ta(2s-2)!(2r-2)![f(—1, -1) + F(-1, 1) + F(l, -1) + F( 1, 1)]
A ' ~ 22r+2s"2[(r _ 1)1 (s _ 1)!]2P(1)[(\C - \)g(l)]r+—1

(58)
P(co) and g(co) are defined by (38) and (39) respectively.

The result (58) is used to evaluate the expression for Ai3 asymptotically. The lengthy
but straightforward calculations give

3tT2(1 + f)0a + rtX4Xe)Soo2(l) / n /rnl
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where the imperfection parameter b is defined as in references [5] (note that Eq. (58)
of [5] contains misprints) and [3] by

b 24f2 Ml V [1 + 2m\l + r)~2]2
I — V XcQa + f) \32 7T2 m2(m2 — 4)2(m4 — §a\cm2 + A2)

_ 4 A (m2 + 4r)2[4^2(l + r)"4 - 11 + 4A2m2(l + f)"2 + h<x\m2 + 4rXc\
t2 m-ifa.-.. m{(m2 + 4f)2[(m2 + 4f)2 - %<x\cm — 4fXe] + A2m4} /

(60)
Comparison of (49) and (59) leads to

A22/A13 = 0((XC - X)) as X —> (61)

which confirms the anticipated result.
We substitute for An and A13 using (40) and (59) into the buckling equation (28)

to get

Xc(l + £")(§« + f)(1 - X/Xc)5/4 « 2|_"^ ;x;y]'/4[87[Ym] (-b)l/\\/K (62)

for 6 < 0. The shell is thus imperfection-sensitive (i.e. X < Xc) for b < 0. This was found
to be the case for modal imperfections [5] and localized dimple imperfection [3].

Concluding remarks. We exhibit the asymptotic results found for various kinds of
imperfections. In each case, the imperfection is in the form

W(x, y) = tw0(y) sin x.

The classical buckling load Xc is

Xc = 4(1 + f)2/(3f + 1 + a)

and the relations between the buckling load X and the imperfection amplitude parameter
e for sufficiently small t are as follows:

(i) Modal imperfection [5]: w0(y) = sin y:

(1 - X/Xc)3/2 = (—6)I/2eX/Xc . (63)

1/2

(ii) Dimple imperfection [3]: [w>0(2/)| < M exp ( — a\y\), M, a > 0:

(2 fr)1/2e WD | X/Xe ,1 - X/Xc = (64)

where ffi0(l) = J' w0(y) exp (■iy) dy.
(iii) Random imperfection (Eq. (62)): w0(y) random, stationary, Gaussian:

1/4/

f ■
(1 - X/X)5/4 « 2 x«(i + r)(«/2 + jp

_ 4(1 + f) — |XC j

4/'^\I/2
[j) (-6)1/2e[^00(l)]1/2X/Xc , (65)

where <S00(1) = (l/2ir) J R00(z) exp (—iz) dz and R00(z) = (w0(y + z)w0(y)).
It should be noted that the result (65) breaks down if aS00(1) « SUo(u) for w Si 1.

Under this circumstance buckling may no longer be provoked by >S00(1). Higher-order
perturbations are thus necessary.
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Formulas (63)-(65) are fairly simple expressions for determining the buekling load
X for a large class of small-amplitude imperfections. Numerical values are obtained
for X by assigning values to f, calculating Xc by (11), Batdorf's length parameter Z =
Tr2A/y/\2 by (11) and b by (60). Graphs of 6/(1 — v2) vs. Z are given in [5].

We observe that the structure is imperfection-sensitive (b < 0) to modal, dimple,
and random imperfections for the same range of values of Z. The loss in the buckling
strength is of order e2/3 for modal imperfections, e for dimple imperfections and «4/5
for random imperfections.

Appendix A: Power spectral density of ut. The coupled equations for <£, and m, are

M,"'(<£, , Mj) = 0, -co < y < <x>,
(66)

, «,) = \QaiVo - fw0"),

where M/v and M2n) are defined by (45). Let the Green's functions G(y — ?y,) and
T(y — ?/i) satisfy the equations

M«\T, G) = 0, M«\T, G) = 5(7/ - ?/,)■
Then taking Fourier transforms leads to

G(w) = f G(z) exp (icoz) dz = (1 + ao2f)2Q(w). (67)

The expressions for the Green's functions are omitted since they are irrelevant to the
analysis. The solution to (66) may be written as

U,(y) = X f G(y - y,)[hctwn(y,) - f«>„"(?y,)] dy, . (68)

We use this result in (37) to get

R"(z) = X2 JJ G(y + z - y,)G(y - ?/2)<f2«wn(?/i) - "(?/.)] ■ [joWoW]) cft/2 • (69)

Now 7?no(?yi — 7/2) = (wo(?/i)"'o(?/2)) and by appropriate differentiation

(wn"(yi)w0(y2)) = (w„(yl)w0"(y2)) = 7?,,„"(?/, - ?/2)

etc. Thus

#"(z) = X2 JJ G(y + z - y,)G(y, - y2)

•[Ja2/?„oOy, - ?y2) - «f^oo"(?y, — ?y2) + f2J?oIV(2/, — ?y2)] <•'?/. ffy2 .

By introducing the power spectral density *S„0(oo) defined by (33) and using properties
of Fourier transforms we obtain

RJz) = X2 J (i« + f)2GXo>)S00(o) exp (iuz) do>.

Thus Su(ui) = X2(fa + tfG2(u)Sm(w). Substituting for G using (67) leads to

s«(e>) = x2(§<* + ,02(1 + utYQ2( :«)M»). (70)
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We take the ensemble average of Eq. (68), interchanging averaging and integration,
to get

r
(Uriy)) = X j G(y - 2/i)[|a<tf0(j/i)> - f(«'o"(?/)}] dy.

Since iv0 is a zero-mean stationary Gaussian random function, (iv„(y)) = 0, (io„"(y)) = 0;
hence (ui(y)) — 0. A similar calculation gives (4>,(y)) = 0 and expressions (32) for
£v(co) and s0(co).

Appendix B: Asymptotic evaluation of an integral. Let Bm = f F(w)Qm(co) do>,
m > 2, where F is any smooth integrable function analytic in the strip |Im «| < a
for some a with F{± 1) ^ 0 and

Q(f.o) = {(1 + C02f)2[(l + co2f)2 - X(Ja + fa,2)] - K(1 + r)2}"1.

It can be shown by using (11), and (4) for K({), that

= (w2 - l)2P(co) + (X„ - x)ff(«)Qw)
where P(co) and g(a>) are defined by (38) and (39). Thus

B. = / Pt) [(c°2 ~~ 1)2 + (Xc ~ X) P§] dw-

There are poles of order m of [(o>2 — l)2 + (X„ — X)(</(co)/P(«))] m in the upper half-
plane given by

= ±1 + (t/2)[(X. - X)<7(1)/P(1)]I/2 + 0((XC - X)).

Note that g and P are even functions. Since F(w)/Pm(co) is analytic for |Im (co)l < a
for some a, the integral can be shifted in the complex co plane to give

B„
r+io' >(«) (" 2 ,

= p>j L(co ~1} + (x< ~x) j

+ 2iri [residue of integrand at a>i , a>2].
where §(XC — X)</(1)/P(l) < at < a. With a1 fixed, the integral is bounded and hence
0(1) as X —> Xc~. Evaluating the residues yields

t> , . t-Q ~ l)(2w ~ 3)!  F(— 1) + F(l)  nu
22m~2[(m — l)!]2 '[<?(l)r-1/2[P(l)],/2(Xc - X)'""I/2 aS W

Appendix C: Solution of second-order perturbation equations. The second-order
perturbation equations as given in (43) are

,vm) = -® < f < 0°

,vm) = <*>„(*/)

where M/™' and M2(m) are defined by Eqs. (45) and

*.(y) = (1 + V'CTm"), (?3)
^m(y) = KP m(ui' r<f>x + Mi</>i") + 2T,nUi'4>i'.
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The solution for vm in (72) may be written in terms of Green's functions Gj'u(y — 2/0
and Gj2)(y - 2/0 as

vm(y) = f Gmn)(y - 2/0*»(l/0 dy, + J Gj2\y - dyt (74)

where the Fourier transforms Qm<v(u) and Q„,<2)(co) of Gm<l) and Gm(2) are given by
Eq. (56). Similar integrals can be written for ipm(y). Here the Green's functions
Gm{1)(y - yi), Gj2)(y - 2/0, 0mu>(2/ - 2/0, Vm(2,(y - y2) satisfy the pairs of equations

M1<",(fi„<1,) Gma>) = 0, M2M(nm(1\ Gj") = 8(y - 2/0

and

M1<m)(i2m<2>, G„<2)) = 5(2/ - 2/0, Af2<m)(i2m<2), Gro(2>) = 0

with the condition Gm(,), 12ra(,), G„U)', S2m(l>/ —> 0 for |z/| —> <».
Recalling that Ui and <f>, are linear functions of a zero-mean Gaussian random function

w0 , we note that

(u1(yl)ul(y2)ul(y3)) = 0, (ul(y1)ul(y2)<t>l(y3)) = 0

for any values of 2/1 , 2/2 , 2/3 (see, for example, [9]). Appropriate differentiation of these
equations leads to

(w/'(2/0^2 (2/2)wi (2/3)) = 0, (wi(2/Owi'(w2)0i'(2/3)> = 0.

Thus multiplying Eq. (74) by Ui(y) and taking ensemble average gives

(wi(2/K(2/)) = 0.
We exhibit the calculation of a typical term in A22 given by (48). Consider the con-

tribution, A say, to A22 obtained by the multiplication of the underlined term in (73)
by itself:

A = lZ(l + f)4^2( / Gj2\y - 2/0m."(2/0mi(2/0 dVl (75)

Now

^ J Gmi2)(y - 2/0V(2/0wi(2/0 dy, ^

= JJ Gj2\y - yi)Gmw{y - y2)(ul"(y1)ul{yl)ul"(y2)ul{y2)) dyl dy2

= JI Gj2\y - yi)Gmw{y - y2)

■\[RU"(0)]2 + Ru(y, - y2)Rj\Vl - y2) + \RJ'(Vl - y2)]2} dy, dy2 ,

since Ui is a Gaussian random function, and hence

(u1"(y1)u1(y1)ul"(y2)u1(y2)) = {ui"{yl)ul{yl)){ul"{y2)ul{y2))

+ <Mi"(2/Omi"(2/2))(wi(2/Owi(2/2)>

+ (Ui"(yi)ul(y2))(ui(yi)u1"(y2)). (76)
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By introducing the power spectral density and using properties of Fourier transforms,
the last double integral can be reduced to

[Q.(,,(0)]s J co2»S„(co) dcoj + JJ "22(wi2 + W22))S„(c01)»S<,(c02)[Qm<2)(c0i + W2)]2 dwi dcc2

where Su and Qm'2' are defined in Eqs. (31) and (56) respectively. These integrals are
special cases of the integrals of (36) and (57). The use of the asymptotic results (37)
and (58) gives each integral as 0((XC — X)-3). Thus, by (75), A = 0((XC — X)~3). Similar
calculations, made for all other terms in the expression for A22 , lead to

A22 = 0((K - X)"3). (77)

Appendix D: Derivation of a typical term in A13. Eqs. (52) are the differential
equations for xi(y) and h^y). These equations have the same differential operators as
in (72) with m = 1; hence the solution for h, can be written in terms of the Green's
functions of Eq. (74). We shall exhibit the derivation of only one term in the expression
for A13 since the calculations are lengthy and repetitious. The underlined term in (52)
gives rise to the following term in the expression for fh(y):

-(1 + r)2 T,Pm{ G^iy - yduMvJ'iyJ dy2 .

From Eqs. (74) and (73) for vm , we consider only the contribution to h^y) from the
underlined term in (73). This contribution is

(1 + f)4 JJ Gi2\y - yi)Gj2)"(y1 - y2)u1(yiyul"(y2)u1(y2) dyl dy2 .

Since by (54) A13 = ^{uy{y)hl(y)), the above expression contributes a term, A13
say, to Aia given by

A13 = |(1 + f)4 PJ JJ Gi2\y - y2)G„i2)"(y1 — y2)(u1(y)u1(yl)ul"(y2)ul(y2)) dyl dy2.

The use of a result similar to (76) leads to

Ajy = |(1 + f)4 ZPJ JJ Gt(2)(y - y2)Gmw"{Vl - y2)

■ \Ru{y - yi)Ru"(0) + RJ'{y - y*)R»(yi - y2) + R,{y - y2)Ru"{yi - 2/2) | dy1 dy2 .

The double integral can be expressed in terms of the power spectral density >S„(a>) defined
by (33) and the Fourier transform Qmi2)(w) of Gm{2)(co). Thus

A13 = 1(1 + f)4

• P™ JJ ("1 + u2)2(tiii2 + w22)Q1<2)(w1)Qi'2'(co1 + vJS.MS.M dw 1 dw2 .

This is the term in (55) which is underlined in the expression for /2 following Eq. (55).
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