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Abstract. We construct asymptotic expansions for the exponential growth rate (Lyapunov exponent)
and rotation number of the random oscillator when the noise is large, small, rapidly varying or slowly
varying. We then apply our results to problems in the stability of the random oscillator, the spectrum of
the one-dimensional random Schr6dinger operator and wave propagation in a one-dimensional random
medium.
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1. Introduction. The random oscillator equation.

(1.1) +f(t)y O, R,

with f(t) a given random process, arises in many contexts such as solid state theory
(cf. Lax and Phillips [20], Frisch and Lloyd [12], Halperin [14], Pastur et al. [28]),
vibrations in mechanical and electrical circuits (cf. Stratonovich [29], Van Kampen
[30]) and wave propagation in one-dimensional random media (cf. Klyatskin [17],
Papanicolaou [26]).

There is also a substantial mathematical theory concerning properties of the
stochastic process defined by (1.1), various approximations, the case when f(t) is white
noise, large behavior etc. (cf. Arnold [1], Friedman [10], Khasminskii [15], Arnold
and Kliemann [3], Blankenship and Papanicolaou [8], Goldsheid, Molanov and
Pastur [13], Molanov [23], Wihstutz [31]).

Two quantities associated with solutions of (1.1) are of particular interest. They
are the Lyapunov exponent A and rotation number a. When f(t) is stationary and
ergodic (plus other conditions reviewed in 2) they are defined by

(1.2) A -lim
1
log (ly(t)[2+ly(t)12) 1/2

t_oo

and

(1.3) a=lim
1 ((t)tan-1

The limits exist with probability one and do not depend on the initial values y(O) and
g(O) of the solution, provided that the latter do not depend on the random coefficient
f(.).
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Roughly, h determines the growth or decay properties of solutions of (1.1), in
particular, their sample stability, while a determines the asymptotic rate of rotation
of the unit vector (y(t), (t))/(y2(t)+2(t)) 1/2.

Although there are general theorems regarding the existence of the limits (1.2)
and (1.3) as well as some general properties (regularity with respect to parameters,
strict positivity of h etc.; cf. Molanov [23], Kotani [18], Arnold [2], Arnold and
Oeljeklaus [4], Kliemann and Arnold 16], for example), h and a cannot be computed
explicitly, except in some very special cases (see Loparo and Blankenship [21], Cohen
and Newman [9]). See also Arnold and Wihstutz [5].

Our purpose in this paper is to develop approximations for A and a under various
hypotheses about the random process f(t). For example, we consider the case where
f(t) =fo+ rfl(t) with fo a constant and fl(t) a stationary and ergodic Markov process
with mean zero and variance equal to one. We calculate the asymptotic behavior of A
and a when r tends to zero ( 4) and when r tends to infinity ( 5), plus some other
cases.

In 2 we formulate in detail the problem and introduce the framework in which
we carry out the asymptotic analysis. In 3 we show how suitably constructed formal
expansions are in fact correct asymptotic expansions. We do this in a somewhat general
way here in order to avoid repetition of details in the various cases we consider.

Section 4 contains the small noise analysis, 5 the large noise analysis and 6
several other cases including the white noise limit. In 7 we prove a central limit
theorem for the fluctuations associated with (1.2) and (1.3). We also give asymptotic
expansions for the variance of the limit Gaussian law.

In 8 we interpret our results in the context of stability theory. In 9 we discuss
their implications for wave propagation and spectra.

2. Formulation of the problem. We shall analyze (1.1) in the form

(2.1)

in which tr, p and 3’ are parameters and the values of y and ) are given at 0. The
noise :(.) is assumed to be an ergodic Markov process on a smooth connected
Riemannian manifold M (with or without boundary) with invariant probability ,(d:).
F:MR is a smooth nonconstant function such that F((t)) has finite mean. We
normalize things so that

(2.2) EvF((t))=f F()u(d)=O.

Clearly r measures the strength ofthe noise and we take it positive (since otherwise
we may replace F by -F). The parameter y is real and plays the role of energy or
frequency squared. The parameter p is real and positive and allows us to change the
rate at which the noise varies.

In system form (2.1) becomes

We introduce polar coordinates in a manner that depends on y. If y> 0 we write
y r cos o, )= r sin q, while for y < O, y r cos o, )= r sin o. This leads to
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the following equations for r and o.

Ion(r(t) ro exp q tp(-), s dr

and

where

(2.3)

tr.F(! sin 2q for 3’ > 0,
q(tp, st)

2v/-

-+2V] sin2q for y<0,

gF()-+ cos2 fory>0,

(a.4) h(,, )=
cos, + F(g) cos fory<0.

Let G denote the infinitesimal generator of (t). To streamline our calculations,
we will assume the following rather strong conditions. Much of what follows can be
done in considerably greater generality.

(H) M is a compact manifold. G is a selfadjoint elliptic diffusion operator on
M with zero an isolated, simple eigenvalue.

It follows from G1 0, where 1 is the function identically equal to one on M, that the
invariant probability has constant density. Without loss of generality we assume that
u(d) is normalized so that

volume (M)= 1, and we write v(d)= d.
e pair ((t),(t/p)) is a diffusion process on SxM, S=unit circle, with

generator

(2.5) =+h(,/
The ergodic theo of L has been studied in detail by iemann and nold [16].
Under assumptions (H), L is hypoelliptic and has a unique (up to -periodicity)
smooth invariant probability p(, ) dd on SxM such that its marginal on M is
(d) d, and its suppo is C x M, where

S iff there is a eM with F()< /,
C

tsome inteal in [0, /2] otherwise.

A detailed treatment of the 2 x 2 system can be found in Arnold and iemann [3].
Under the above conditions the Lyapunov exponent I and the rotation number

defined by (1.2) and (1.3) exist and are given by

(. [ q(, )p(, aa
SxM
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and

(2.7) a Is’M h(q, sC)p(q, sc) dq d:.

Furthermore, A is the top Lyapunov exponent from Oseledec’s multiplicative ergodic
theorem (Oseledec [25]) and so A->_0. In the present case we actually have A >0
(Kliemann and Arnold [16]).

The invariant density p satisfies the Fokker-Planck equation

(2.8) L*p=p -- (h (q, )p) O.

The asymptotic analysis then reduces to the study of p in various asymptotic limits.
For once the expansion for p is known, it can be used in (2.6) and (2.7) to give the
expansion for A and a.

Figures 1 and 2 show level curves of A and a, resp., on the y, tr plane. These
diagrams are based on formulas (1.2) and (1.3). We have chosen F(:)= :,/9 1 and
:(t) (2/r) tan-1 r/(t), r/(t) Ornstein-Uhlenbeck process.

3. Expansions for the invariant probability and their convergence properties. The
form of the determining equation for p, eq. (2.8), and the form of the function h(o, )
given by (2.4) indicate that in nearly every case of interest, such as tr or tr 0, we
have a singular perturbation problem. In particular, although (2.8) has a unique smooth
solution under our hypotheses, it will in general not admit expansions in smooth
functions.

FIG. 1. Level curves of the Lyapunov exponent A on the % o" plane.
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FIG. 2. Level curves of the rotation number a on the % tr plane.

We develop now the formalism to handle singular expansions in a fairly general
way. All our results are obtained by using this formalism. For concreteness, we shall
model the general discussion after the case where p and 3’ are fixed and tr e- 0.

The operator L defined by (2.5) has the form

L Lo+ eL.
So we seek a solution of (2.8) which is

L*p =0.

If now f(, ) stands for some smooth function such as q(q, s) or h(q, ) (which may
depend on e), we want to find an expansion for

(f, p)= [ f(, :)p(tp, :) d d:.
SZxM

Suppose we have constructed a formal expansion of L*p 0 in the form

(3.1) p po+ epl + + eNpv +
so that

(3.2) Lo*Po-0, Lo*Pl+Ll*Po=0, ..., Lo*pN+LI*PN_I=0, ....
In (3.1) the Po, P," may be singular as they will be for example in the small noise
case for 3’ < 0. We want to show that we have the asymptotic expansion

(3.3) (f,p)=(f, po)+e(f,p)+"" + es(f,p)+
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To prove that (3.3) is correct we proceed as follows. With f a fixed smooth function
we construct an adjoint expansion for

with

L,F, =f

F Fo+ eF1 +" + eNFv.
It is not possible in general to construct such an expansion however. What can be
done is to find Fo, FI,’" ", FN such that

(3.4) (Lo+eL1)(Fo+" "+eVF)=f-(fo+" "+ef)+eV+lL1F.
Here fo,"" ",f are functions that do not depend on b and are chosen so that the
sequence of problems obtained from (3.4)

LoFo f fo,

LoFI + L1Fo
(3.5)

LoF + L1F-I fN
is solvable, i.e. the choice is made according to the Fredholm alternative. Assume that
the marginal of po+ epl +’" "+ep on M is v(:). By (3.1) and (3.2),

(Lo+ eL1)*(po+" "+ erVpv)= e"+lL* prv, N=O, 1,’’’.

Collecting the above and using (LF, p)= 0 we arrive at the identity

(f, p) [(f, po)+"" "+ e(f, p)]

(3.6) -e+I[(L1F, p)4-(LI(Fo4-""" 4- eNF), p)

-(L1F,po+’"" + epN)].

This identity is valid for N->_ 0 and leads to the following theorem.
THEOREM 3.1. Choose N >- 0 fixed. Suppose the formal expansion (3.1), (3.2) and

(3.4), (3.5) have been constructed and that po+ epl +’" "+ep has marginal v() on
M, and

(3.7) sup ILFI <= C < c.

Suppose further that Po, ",P and F1, ,F are such that the inner products on the
right of (3.6) are well defined. Then we have the estimate

I(f, P) (f, Po) e N(f, P)l
(3.8)

< N+I(C 4- I(LIFo+’’’ + eL,F), PN)l + I(L1F, Po+’’" + ep)l).

The proof follows immediately from (3.6) and (3.7). The important point of the
theorem is that the estimate on the right of (3.8) contains only objects that are known
explicitly from the constructions (3.2) and (3.5).

It is interesting to note that to estimate th error in the formal expansion (3.3) it
is not nough to have the expansion of the invariant density (3.1). It is necessary to
construct also an adjoint expansion such as (3.4) which leads then to the estimate (3.8).
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There is another way of obtaining an expansion for (f, p) that does not involve
the expansion of p. We will use this method in 5 and elsewhere. It works as follows.

Consider the problem

Lu =f- A.
For u to exist it is necessary that A be defined by

A (f, p).

Suppose we can construct Uo, u,. , u and o, #," ",# such that

Louo f-/Xo,

Lou + Ll Uo
(3.9)

Louu + LlUv- -tzN.

Suppose further that/Xo,/z1,’’",/xv do not depend on o. Then

Le(ue-uo-eU eNuN)
(3.10)

=f-A -f+ (/Zo+ e/z, +’’" + e/aN) e N+’ LlUq.

Taking the inner product of (3.10) with p yields the identity

(3.11) A (/Zo+ e/x,+’’ "+ e%N, v)+ezq+’(LlU,p).
Here we have used the fact that L*p 0, that the marginal ofp on M is v and that
the/z do not depend on qx

From (3.11) we immediately derive
THEOREM 3.2. Suppose the sequence ofproblems (3.9) can be solved and that

sup [L uu[ _<- C <.
Then

(A Pe) (Ct’O, //) + (/"t’l, //) """"" "+" EN ([’/"N, /’/) -{- 0( N+l).
4. Small noise analysis. We shall first consider the case e o’--> 0 and y > O. We

let p 1 for simplicity. Let

(4.1) C(t)= EF((t))F((O))

be the covariance function of F((t)) (recall (2.2)). By hypotheses (H) C(t)O as
t exponentially fast, so the power spectrum (spectral density) of F((t)),

(4.2) f(w) exp (-iwt)C(t) dt
1

cos wtC(t) dt,

is well defined and nonnegative for all w .
THEOREM 4.1. _For o" O, p 1 and y > 0 we have

A +
(4.3)

a -x/+- sin2x/-tC(t) dt+O(cr3)

where f(w) is the power spectrum of F((t)) defined by (4.2).
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COROLLARY 4.1. For o’- 0, p 1, y ’yl O-, ’)/1 > 0

(4.4)

h tr f(O) + 0(o-),
4y

a -x/v/-l+ cr3/21 tC(t) dt+O(tr2).
2T1

Proof. The invariant probability density p satisfies

G+ v/’ p- __0(F() )O"
0 (0

COS2p 0.

We seek an expansion p- Po+ trPl +’’’. Clearly Po satisfies

G+ v/- po=0.

Thus, Po is the density of the uniform distribution on SIx M, i.e.

1
(4.5) po(q, )

27r

For Pl we have the equation

Let g(t, , r/) be the transition probability density of (t). It is defined by the equation

O__g= Gg. > O. g(O. :. r/) 6.().
Ot

with 6,() the delta function atthe point r/ M. In terms of g we can solve (4.6) to obtain

pl(q, )=T sin 2(q +x/- t) g(t,s, rl)F(rl)drldt.

Higher terms in the expansion can be constructed readily but we stop here. With

q yyF() sin 2q

we see that (q, Po)= 0 and hence

h at - sin 2q sin 2(p + t) dq

"ffg(t,,)F()F(v)dd]+O(r3)
Taking into account that

C(t)=I It g(t, , "q)F()F(q) ddq
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is the covariance of F((t)) defined by (4.1), this can be simplified to give

A =y cos 2v/- tC(t) dt+O(cr3)

tr2 7r f(2x/-) + O(tr3).
4y

It is easy to see that if y goes to zero with tr so that y yltr, 71 > 0, then it is
enough to put y yltr in (4.3) to get

A rf(0) + O(tr2).

The details that lead to the verification of the error estimates in (4.3) and (4.4)
follow the general pattern of Theorem 3.1, so we omit them.

The expansion for p can also be used to obtain an expansion for the rotation
number c. The analogue of (4.3) is

’T’ Ioa=-x/--+--;-- sin 2x/- tC(t) dt+O(cr3).

This is because (h, Po)=-/- and (1, p2)=0. With 7 Titr, 71 >0, we obtain the
analogue of (4.4)

a -v/-v+ tr3/-1-- tC(t) dt+O(cr2). 1
271

We pass next to the case y < 0. With p- 1 again the equation for the invariant
probability has the form

0 F 0__(cos2 Cp,,) O.L*p Gp--- (v/-y cos 2op,)-

In the case y < 0, (2.4) can vanish. To first order in tr the equilibrium points do not
depend on : and are Oo 7r/4 and ql 37r/4. The first one is stable, the second one
unstable. These considerations lead us to the conclusion that the first approximation
Po ofp which satisfies

should be

0
Gpo-z---(x/-Zy cos 2qpo)= 0

po(q, :) 3o(q).

The equation for Pl in the expansion p Po+ trpl +’" takes the form

F0 4--F Oq0 (cos2 q6o(q)) 26o()"(4.7) Gp-(-y cos 2pl)

We look for p in the form

(4.8) p=y,(()6o( ).

Using the fact that for any smooth function a() we have the identity

(a6o)’= -a’(o)6’ + a(o)6"o o
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we see that (4.8) solves (4.7) provided that rl(:) satisfies

F()
(G-2x/) rl--y.

Therefore

1
r,-2--(G 2-)-’F.

This is well defined since 2/-zy > 0 and the inverse operator is the resolvent of G.
It is necessary to construct one more term in the expansion to get nontrivial results.

Thus we must find P2 such that

0 Fr 0

Gp2-7-(v/7- 2, cos 2p2)-V O
Using the identity

(cos2 ,,S o).

aqo) a po)6o 2a’(qo)6o+a(qo)6o

we find P2 in the form

P2(q, sc) r21(sc)6{oo(q) + r22(sc)6o(q),

(4.10)
,/-d-#=77,+g,(0) + O(o-/).

From the behavior of the flow (t) defined by (2.5) we know that a must be zero for
y<0.

The proof of the validity of (4.9) and (4.10) is patterned after the Theorem 3.1.
In fact, the present expansion with 3’ < 0 is a model case for the application of the
theorem. We have thus obtained the following results.

where r21 and /’22 are given by

1
(O-2)-’Frl,r21
/-7

1
r22 24z-

G 4-)-’ Fr,.

Collecting the above results and using them in (2.6) with q given by (2.3) for Y < O,
we get the following expansion for O,

e_4C(t) d + 0(3).(4.9) =y+
Here C(t) is again the covariance of F((t)) defined by (4.1). Note that the coefficient
of g2 in (4.9) is negative. This is so because 7 is negative and the integral is positive.
The latter fact follows from its resolvent interpretation and the selfadjointness of G
which implies that C (t) is positive.

When y gYl, Y < 0, we obtain the correct expansion by simply setting
in (4.9). This gives -+ c( a +
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THEOREM 4.2. For 0---> 0, /9 1 and 2, < 0 we have

0"2 Io, V-+--y e--’/-v ’C( t) dr+O(0"3),

0
where C (t) is the covariance function ofF((t)) defined by (4.1).

COROLLARY 4.2. For O, p 1, 1, 1 < 0

X + f(0) + O(3/),
4y

0
where f(w) is the power spectrum of F((t)) defined by (4.2).

$. Large noise analysis. We shall now consider the case and

To and y fixed, put again p 1 for simplicity.
The function F() is smooth and bounded on M. Let

rain F := rain F() F() max F() =: max F
#M M

where rain F<0<max F since F() d=0.
THEOREM 5.1. For o, y To+ y, p 1 and

(5.1) max F <,
we have

d d G(log(- F() cos ))+
4 - F() cos

M

Proo Note first that we can choose o 0 without loss of generality. We shall
follow the procedure described in Theorem 3.2 and shall try to solve the equation

u=f-, =(p, fl,(.2)

where (cf. (2.5))

(L G + -/+ F(’) cos2 --.

We are interested in the cases f=q and f= h given by (2.3) and (2.4), hence

F(:)
f-2 sin2 qo

and

F(:) )f -v/-+ cos2 r ho.

For Yl > max F we have ho(, )<0. We will construct the first two terms in the
expansion of

G+x/ ho u x/ qo- A,
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where

We obtain

1

(5.3) ho-- qo,

(5.4) hoz--+ Guo

and

(5.5) o (,o, )

as described in Theorem 3.2.
A simple calculation gives

uo=-log 1-cosq

which is well defined in view of assumption (5.1). Similarly/Zo is defined by

1 / ho) Guo dq
/Xo (1/ho)

which is the solvability condition for (5.4). Now

hence

’= dq_ 27r

ho 43/1 F(:)’

1 4 FIo:G(lg(1-(F//1) cs2P))
tXo =--4-- 1

3/3/1 1 F/ 3/) cos2 P
From (5.5) we get the first approximation to A

Ao- d d:, G log 1
1-(F()/3/1) cOS2 ( 3/1

We repeat the analysis for the rotation number after replacing qo by ho to obtain our
result. The proof of the order of magnitude of the error terms follows from Theorem
3.2 by a cumbersome, but elementary calculation.

THEOREM 5.2. For cr--> oo, 3/= 3/0+ 3/1 p- 1 and

3/1 < min F

we have a =-0 and

A dx/F() 3/1 -JI- d G(log sin ( + b(:))) + O
1

M M b(:)

Here b(:)=tan-1 (4-3/1+ F(:)/x/-3/1).
Proof. We put again 3/0 0 and follow the procedure of Theorem 3.2. We want

to solve equation (5.2) again with L now given by

((5.6) L= G+x/ cos 2p+ cos2

0o
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The two functions f that we want to use in the right-hand side of (5.2) are

f= q x/-Z-Yl +
2--] sin 2p q qo

and

F() )f= h x/ x/-Z-yl cos 2q + cos2 ho.

Now the rotation field ho(p, ) vanishes at two points in the interval 0 -< p <= r. But
since the invariant density p of ((t), :(t)) will build-up in C xM where C is an
interval in (0, 7r/2), only the stable zero given by

/

b(:) =tan- .X/-y + F(), M,

has to be taken into account.
We now go to the construction of the expansion taking first f qo so that we

have

(G+ x/- ho --)u x/- qo- ho.

This time we let h v/- ho+h+(1/v/-)h2+ The analogue of (5.3), (5.4) is

Oiloho -7-- qo- la,o,

ho
0u__!+ Guo br

with/Zo and/-/.1 independent of p. We will then have

ho (/Zo, ,) and h (/zl, ,).
Since

we determine/Zo by

Hence

Clearly

0___(
0q

ho86(e)(q)) 0

2

6,()(p)qo(, ) dp =/Xo(

/Zo(:) qo(b (:), s) x/- 2’, + F().

Uo o(qO -/Xo) dq,

and the integral is well defined. We have

f sin 2p -sin 2b
Uo cos 2q- cos 2b

* cos (,+)
dp

sin (q+ th)
-log sin (p+ b (so)).

Combining the above we obtain the expression

h= / dsc x/- yl+ F(s)+/ d: G(log sin (q+ (:)))



440 L. ARNOLD, G. PAPANICOLAOU AND V. WIHSTUTZ

The order of magnitude of the error term follows from a direct application of Theorem
3.2.

Examples. (i) For :(t)-Brownian motion on M= SI=[-1/2,1/2] we have G-
1/2 dE/d2, with periodic boundary conditions. The above theorems give for
7-" 70 -" 710" P "-1 the following estimates:

For 71 < min F

1

for max F < 71

(ii) The results in Theorem 5.1 and 5.2 are also true for so(t) a stationary dittusion
process on an interval M (a,/3) c given by a stochastic differential equation with
smooth coefficients

d= a() dt + b() dW.

We assume b(:)> 0 in M and that the boundaries are natural. The generator is

1 d 2

G= a(:) +: b(:)2

dg:--

the invariant probability density (:) satisfies G*,- 0, and our function F is chosen
so that

E,F((t))=i F(sC)(:) dsc=0.

Then for 71 < min F

C-0

and for max F < 71

if

M

We should point out that the case o-- oo, 7 70+ 71o" with min F_-< 71N max F
is somewhat more involved and has been treated only formally so far. We have found
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that for arbitrary To, 3/1 E R

(5.7) A v/-6 I, d 4(F()- ,,)++ o(4-),

(5.8t -4- I, d 4(F() r,)- + o(4-),

where

x if x->0, { 0 if x->0,
x+=

0 if x<0,
x_=

-x if x<0.

The expansions (5.7) and (5.8) have been confirmed by numerical simulations.
Figures 3 and 4 show A and a, resp., as functions of tr for the case p 1, 3’ yltr

and y1=-5, -1, 0, 1, 5. We have chosen F(:)=sc, sc(t)=(2/r)tan-1 r/(t), r/(t)=
Ornstein-Uhlenbeck process solving dr/= -1/2r/dt + dW.

6. Fast, slow and white noise analysis. We recall from (2.8) that the invariant
probability density p in the definitions of the Lyapunov exponent and rotation number

-5.

-i.

Oo
I’ |.

4.00 6.00 8.00 t0.00

FIG. 3. Lyapunov exponent A as a function of or for 7= /1 o-, A =-5, -1, 0, 1, 5 (the latter not visible).

o00 .00 4.00 6.00 B.O0
I.. ..I

t0.00

0.

FIG. 4. Rotation number a as a function of trfor y= /lo’, Yt =-5, -1, 0, 1, 5 (the first two not visible).
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in (2.6) and (2.7) satisfies

(6.1) L*p =0, L=IG+ h(q, ) O__.
p

Therefore p is the solution of

with

o
Op (php =o

ph
q cs2 q’ Y > 0,

F()p4- cos 2q + pr----_y COS
2

(,, y < 0.

The analysis of h and a as p--> 0 (fast noise case) or p--> oo (slow noise case) reduces
immediately to previously studied cases. Fast noise corresponds to
proportional to r ( 4). Slow noise corresponds to o- large with y proportional to r ( 5).

For fast noise, the p-> 0 limit, we simply replace in Corollaries 4.1 and 4.2,
by p, yl by y, F by o-F and h and a by ph and pa, resp. We obtain, taking into
account the form of q in (2.3), the following results.

THEOREM 6.1 (fast noise limit). For p-> O, o-fixed we have:
(i) For

O’27r
A p-y f(O) + O(p2),

-4-+ o(p).

(ii) For y < 0,
2

* =x/+p-)(O)+O(p2),
or=O,

where f(oo) is again the power-spectrum of F((t)).
For slow noise, the p-->oo limit, we make the same replacements as above in

Theorems 5.1 and 5.2. The results are as follows.
THEOREM 6.2 (slow noise limit). For p-> oo, r fixed we have:
(i) For y > max F,

A de d G(log (y-F() cos2 ))+
p 4 M y F({) COS

2

a fM d F() + O(),
(ii) For y < r min F,

A d /o’F()- y+- d G(log sin (q + 4()))

where

_, ,/F()
4 (:) =tan

m=()
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It is clear from the above that no new information about h and a is obtained by
changing the speed of fluctuation of the noise. This is because we are dealing with
quantities that are determined by the invariant probability alone.

Another interesting limit is the white noise limit which corresponds to p-O,
o" 6/,ffi, 6 > 0, y fixed. This time we introduce polar coordinates y r cos q, .9
r sin q that do not depend on y. We obtain

where

r(t) ro exp q q(z), sc dr,

h(q, )= -(sin2 q+ y cos2 q) + o’F(:) cos2 q,

q(q, ) 1/2(1 ), + rF(:)) sin 2.

The infinitesimal generator for ((t), (t/p)) is L given in (6.1) with p e 2 and r= 6/e
we have L* Pe 0, where

1 1 0
Le =--fiG+-6F()e cs2 -- (sin2 p+ ’ cs2 ) 0q"

To compute expansions for he =(q, Pe) and ae=(h, pe) for e-0 we follow the
expansion scheme of Theorem 3.2 and expand the objects in equation Leue =fe- he
with fe qe or he. We omit details of the calculation and immediately state the result.

THEOREM 6.3 (white noise limit). Let p - O, tr 8/v/-, 5 > 0 and y fixed. Then

+0(p), +0(),

where and are the Lyapunov exponent and rotation number, resp., of the white noise
equation

-fi+ 6x/2crf(O)rl(t)y= yy, rl(t) white noise.

The quantities h and are given by

Here

q() arf(0) cos: cos2 + sin 2q,
2

kT(q) =-627rf(0) cos2 q sin2- (sin2 q + cos2 q),

is the unique invariant density of

62"n’f(O) d d ___dL=
2

cs2 q -- cs2q- (sin2 q + y cs2 q)
dq’

and f(w) is the power spectrum of F((t)).
The white noise case was treated by Khasminskii [15]. The number h, which

depends on 3’ and 6, was investigated by Kozin and Prodromou [19] and for small 6
by Auslender and Mil’shtein [6]. We know that in our case > 0 (Kliemann and Arnold
16]). The rotation number was investigated in detail by Friedman and Pinsky 11 ].
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7. Central limit theorem for A and t. The Lyapunov exponent A and rotation
number a given by (2.6) and (2.7) are of course the limits

A=limllo’(- ())-.
q q(s), ds,

a limllo ( sc())h o(s), ds,

with probability one. It is of interest to obtain a central limit theorem for the fluctuations

1 Io’( (()))- q (s), A ds

and

as -> o.
More generally, for a smooth function f(, :) such that

(7.1) 0 f f(q, sC)p(q, sc) dq ds
SxM

we would like to determine the asymptotic behavior of

(7.2) - f q(s), ds.

Under our hypotheses (H) (see 2) equation

(7.3) Lu f
has a solution u e L:(S1X M, pd d) whenever f e L(S x M, p do d) and (7.1) is
satisfied. It is easy to see (see Bhattacharya [7] or [26], for example) that (7.2) converges
in distribution to a Gaussian random variable with mean zero and variance V given by

(7.4) V= V(f) -2(fu, p) -2 f fup do d.
SxM

The asymptotic variance V can also be expressed as

= e(t) t,

R(t) being the covariance function off(q(t), (t/O)). The latter expression is nonnega-
tive because it is 2r times the power spectrum of R(t) at zero frequency.

We deal briefly with the question of when V 0 in our situation.
PROPOSITION 7.1. Let M be an analytic manifold (such as the torus or the sphere)

and let F() be an analytic function on M with values in . Then
(i) V(q A 0 if and only ifF() =- const if and only if A O.
(ii) V(h a 0 if and only ifF() =- const.

Proof. (i) Let V(q-A)=0 and assume F(:)const. Then (q(t), (t/p)) has a
smooth positive density for all t_-> To (see Kliemann and Arnold [16]). A reasoning
similar to the one used by Bhattacharya [7], pp. 192-193, yields q-= A. This can happen
if and only if F(:)--(3’-1)/tr which contradicts our assumption F(:) const. Thus
V(q A 0 entails F(sc) --- const.
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Conversely, if F()=const then p(o, :) is a product density, and V(q-h)=0
can be directly checked.

The fact that F const if and only if h > 0 in the analytic situation was proved
by Kliemann and Arnold [16].

(ii) is proved analogously. Iq

Note that in case F const (y 1)!r the function q h is a nonconstant periodic
function and yet V(q-h)=0. This is an exceptional case of the kind given by
Bhattacharya [7, Remark 2.4.2].

We will not try to calculate expansions for V(q- A) and V(h-a) in all cases for
which this was done for h and a. Instead we shall outline one case, the one where
r0 and y>0 ( 4).

We use the formula (7.4) for V, and the equation (7.3) we must solve is

( rF(’) )Ou’ ’F(,)sin2q_AC,u- -4-+ c
0 2

where A is given by (4.3) in expanded form. Once this is solved asymptotically, then

V -2 u F() sin2 A pdd
SxM

gives the variance of the normal law for the fluctuations in the Lyapunov exponent.
If we look for u in the form u Ul+ 2u+" and use (4.3), we obtain

F() dev -2 ,. u,(, )2
sin2 a+ 0(),

where u solves

u, 2V sin 2q.

This gives (compare the proof of Theorem 4.1)

V -](24-) + 0(,),

with f defined by (4.2).

8. Applications to stabili. A lot of effo has been devoted to the stability analysis
of the damped linear oscillator with random restoring force

(8.1) + 2fl + (1 +F(( t)))y 0,

where B and are real constants (see e.g. Mitchell and Kozin [22], Arnold and
iemann [3]). Of course, if we put y exp (-Bt) then satisfies an equation of the
form (2.1)

(8.2) -if+ F((t))y yy
with =-F, = 1- 2 and, for simplicity, p= 1. Consequently, the Lyapunov
exponents A of (8.1) and of (8.2) are related by

(8.3) x x (, ) -# + X(r, ).
(8.1) can sere as a prototypical example since it exhibits a wealth of interesting
phenomena such as destabilization and stabilization.
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A stability diagram containing the level curves of h (/3, o-) in the (/3, tr) parameter
plane is shown in Fig. 5. We have used F()= :, (t) Ornstein-Uhlenbeck process.
The line h 0 is the dividing line between the parameter region of instability (h > 0)
and stability (h < 0). We will briefly translate and interpret some of our findings for
h in this context.

Let C(t) and f() be again the covariance function and power spectrum of
F((t)), resp.

(i) Small noise. Forg 0 and 2< 1 (underdamped case)

2+ 0(3),(8.4) h=- 4(1-fl2)
in particular, for/3 0,

a

For (r+0 and/32> 1 (overdamped case)

a -/3 +/f12_ l_,Io exp (-2/2-1 t)C(t) dtcr2+ O(r3)"
4( 2 1)

This means that in the underdamped case small noise is destabilizing since a positive
quantity is added to the deterministic value =-/3. In contrast to this, small noise is
stabilizing in the overdamped case since some positive quantity is subtracted from the
deterministic value A -/3 + //3:- 1.

o
-1 .$ -1.0 -O.& O.S 1.0 .S i.0

S.O

.1 .0

.

.| .0

O.J 0.6

0.0

-1.0 -1.0

-q . -1 .0 -0.$ 0.0 O.G .0 . .0

FIG. 5. Stability diagram for the damped oscillator (8.1). The diagram shows level curves of the Lyapunov
exponent A, in particular the line A 0 which separates the region of stability and instability.
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(ii) Asymptotic form of the line A(fl, 0-)=0. For small 0- and /3 (8.4) yields for
A 0 approximately

40"2
rf(2)

For large 0" and/3 we put/3 x/i-5’ c with 5’ Yl0", yl < 0, and try to match the
leading terms in (8.3) with given by (5.7) which gives

4’yl E/(F() y,)+.

An elementary calculation shows that

(8.5) g(v,) ,/(F()-

has exactly one zero at /, rain F < / < 0, and g(y) is negative for Yl < /1 and positive
for Yl > /1. Thus the curve A 0 is, for large 0" and/3, asymptotically described by the
parabola

(-/,)-’3

(iii) Asymptotic form of the line A (3, 0-)= rain for fixed. We saw that in the
overdamped case (f12> 1) A (fl, ) first decreases if increases. We ask for the which
is best possible, i.e. which minimizes the value of

For large and fl try again fl #1-y with yl < 0 and find the minimum of
(8.3) along this cue, i.e. the minimum of

This gives

(E/(F() /)+)2

Y,( Y, + (E,,/(F( s) /tl)+)2)

provided /1 < ’1-- unique zero of function (8.5). In other words for each 1 < ’1 the
parabola 0" (-yl)-fl 2 intersects the A min curve at 0-0. The corresponding/3 value
is uniquely determined from ’Yl by

, + (Ex/(F() y,)+)-"
The minimum value of A is for large/3 and 0- therefore approximately equal to

4--’y E/(F() ]/1)+42__ 1.Xmin (--/3 -+"4/2 1) 4--1
The first term is again the Lyapunov exponent of the undisturbed system, while the
second term is the optimal stability gain accomplished by applying noise with intensity
o o().

9. Applications to wave propagation an spectra. The primary reason the rotation
number is of interest in connection with equation (2.1) is because of its relation to the
integrated density of states for (2.1) when it is considered as an operator in L(-,)

Consider the operator H on the inteal [-l, l] with y(-l)= y(l)= O. Call this operator
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H and let N(y) 1/21 number of eigenvalues of HI less than y. It is well known that
under our present hypotheses

N(3,) lim N(y)

exists with probability one. Moreover we have the relation

(9.2) U(y)
1

--()

where a(y) is the rotation number of (2.1) given by (2.7) (of. Molanov [23], [24],
Kotani [18]). Relation (9.2) is a consequence of the Sturmian theory for (9.1) that
compares different solutions with regard to the location of their zeros.

To the extent that we have analyzed the behavior of a in different asymptotic
limits, we have also analyzed the integrated density of (9.2). The expansions given
here illustrate primarily the simplicity with which they can be obtained and at the
same time proved to be correct.

The Lyapunov exponent plays a very significant role in the follow up of the
theorem of Gol’dshied, Molanov and Pastur 13] which states that the operator H in
(9.1) has only point spectrum with probability one. Molanov [23] has shown that the
corresponding eigenfunctions decay exponentially and the decay rate is the Lyapunov
exponent. Thus, the Lyapunov exponent ls the reciprocal of the localization length in
the one-dimensional Schr6dinger equation with random potential.

The Lyapunov exponent controls also the exponential decay rate of the energy
transmission coefficient of a slab ofrandom medium. We explain briefly this application.

Let u(x) be the wave amplitude at x of a wave travelling in a one-dimensional
random medium. Instead of using the notation (9.1) we write the wave equation in
the usual notation

(9.3) u,,+k2n2(x)u=O
in which n(x) is the assured random, refractive index of the medium which occupies
the interval 0 < x < L. We denote by k the wave number of the waves in vacuum. We
assume that outside the random slab u(x) is given by

f e ikx --t- R e -ik’, x < O,
T e ik(x-L), X > L.

We then require that u(x) and u,(x) be continuous at x 0 and x L. The complex-
valued random variables R and T are the reflection and transmission coefficients, resp.
They depend of course on the random refractive index n(x), the wave number k and
the slab width L. Since (9.3) is real, we always have conservation of energy flux

ITI2+IRI--- 1.

Now it is not difficult to show (Papanicolaou and Keller [27]) that under the
hypothesis that

with F and sc as in 2, we have

lim
1

z,oo
lg TI2 -2A,
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where A is the Lyapunov exponent associated with the random oscillator

(9.4) j;+ k2(l+ trF(
This can be verified by using the fundamental solution matrix of (9.3) to obtain a
suitable expression for IT[2.

Clearly h h (k) in (9.4) and its behavior for both k 0 and k is of interest.
The behavior for k- 0 (and p- 1) is given by Corollary 4.1. In the current notation
we have that

A(k)=kEtrEf(O)+O(k4) for k->0.

The large k behavior is given by Theorem 5.1. For tr min F>-1 (which can always
be achieved for small enough tr) we have for k

where

x/l+ trF(sr
1 + trF(:) cos2 q

G(log (1 + trF(:) cos2 ))

is a positive constant.
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