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Abstract. It is known that when the Ginzburg-Landau parameter k = l/\/2 the one-
dimensional Ginzburg-Landau equations exhibit self-duality and may be reduced into a
pair of first-order ODE. The present asymptotic analysis initially focuses on infinite
samples of superconductors for which |/c— l/\/2| < 1. It is shown that when the value of
the applied magnetic field at infinity lies between k and l/y/2 a superconducting solution
exists. It is later shown, for arbitrary values of n, that no solution, other than the normal
state, can exist for applied magnetic field values that lie outside the above interval.

1. Introduction. Solutions for the one-dimensional Ginzburg-Landau equations,
which model superconductivity, have been discussed mostly from the point of view of
linear bifurcation theory. Millman and Keller [12] provided the framework for obtaining
the applied magnetic field for which the bifurcation from the normal state occurs. As
an example, they have discussed the one-dimensional case on a finite interval. Chapman
[5] provided several other examples, among them the one-dimensional case on an infinite
sample.

We shall subsequently refer to superconducting materials for which the Ginzburg-
Landau parameter k < l/\/2 as type I superconductors and to those superconductors
for which n > l/\/2 as type II. Chapman [5] demonstrated for the above-mentioned
example that when the applied magnetic field h is equal to k a superconducting branch
bifurcates from the normal state solution. This superconducting solution, for the lin-
earized Ginzburg-Landau equations, can exist only for h < n (h > k) for type II (type
I) superconductors. Chapman also showed, in a follow-up contribution [6], that the su-
perconducting solution is stable (unstable) for type I (type II) superconductors, demon-
strating that the value of what has been termed the upper critical field (at which the
solution ceases to be normal when the applied magnetic field is gradually decreased) is
exactly k.

Linear bifurcation theory is an effective tool, when seeking the value of the parameter
at which bifurcation occurs and the solutions themselves near the bifurcation. It cannot,
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however, predict highly nonlinear effects. For instance, we cannot be sure that no solution
other than the normal one exists when the applied field is larger than the upper critical
field (for type II superconductors). Furthermore, there is no guarantee that any solution,
other than the normal state, would still exist, if we decrease the applied magnetic field
further to values that are not close to the upper critical field.

In order to properly address the questions above, which all involve nonlinear effects, it
is necessary to discuss solutions of the nonlinear Ginzburg-Landau equations (in contrast
to linear bifurcation theory which investigates solutions of the linearized system). Such
a family of solutions can be obtained when the Ginzburg-Landau equations exhibit what
has been termed self-duality [1], [2], These solutions can be obtained, however, only for
a specific value of k, the Ginzburg-Landau parameter (i.e., k = l/\/2). In the present
work we look first at superconductors with k close to \j\f2. We shall be able to obtain in
this way the range of applied magnetic field values for which superconducting solutions
exist. Motivated by the results of this asymptotic analysis, we shall be able to prove a
nonexistence theorem valid for arbitrary values of k.

Consider a superconducting material given in an infinite domain. The magnetic field
H is taken to be directed along the z axis and the magnetic vector potential A to be
directed along the y axis. We assume that all functions depend solely on x, hence,
Hs — or simply, H = = A'2. (Since A2 is the only nonzero component of A
we shall subsequently denote it by A.) The Ginzburg-Landau equations may then be
written in their one-dimensional form [5]:

%- = - -0 + A2xf), (1.1a)
K

A" = tfA, (1.1b)

where is the superconducting order parameter (the gauge has been chosen so that ip
would be real). The boundary conditions satisfied by xjj and A are

if)' 0 as |x| —> oo, (1.1c)
A' —* h as |x| —> oo, (1.Id)

where h is the applied magnetic field at infinity. Note that at least one solution for (1.1)
always exists, namely

V - 0; A = hx + c. (1.2a,b)

We shall refer to (1.2) as the normal solution. Any other solution of (1.1) would be called
a superconducting solution. We shall be interested only in solutions for which ip > 0.

When k = 1 /a/2 (1.1) exhibit what has been termed self-duality, so that for h = l/sj2,
solutions of (1.1) are also solutions of the following pair of first-order ODEs:

y/2A'= 1-V2, (1.3a)

\/2ip' = -ipA. (1.3b)
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[There may be, of course, different solutions for (1.1).] A family of solutions can be found
for (1.3)

*=/""    (L4)
Jip2(0) V2ip2{ip2 - c - logip2)1/2

where c may be any number greater than 1. Chapman [5] plots ip and A' versus x for
various values of c. It is easy to show that the value of ip2{0) increases as c —> 1. For
c = 1 (1.4) does not satisfy anymore (1.1c) and (l.ld) but instead satisfies different
boundary conditions for x —> oo and x —> — oo, i.e., while the boundary condition at
x —> oo remains unaltered, we must have ip = 1, ^4 = 0 as x—> —oo.

In the next section we provide an asymptotic approximation for superconducting so-
lutions of (1.1) for 0 < \k — l/V^I < 1- Motivated by the results of Sec. 2 we prove in
Sec. 3 that superconducting solutions of (1.1) cannot exist when the applied magnetic
field h does not lie between k and 1 /y/2. In the last section we examine the significance
of our results to time-dependent analyses.

2. Asymptotic solutions near self-duality. We first define a new parameter

£=l-2 (2.1)

and rewrite (1.1) in the form

(2 + e)ip" = ip3 — ip + ipA2, (2.2a)

A" = ip2A, (2.2b)
V/ — > 0, (2.2c)

|x| —>oo

A' > h. = —— + h\£. (2.2d)
|s|-»oo \/2

Our goal is to approximate the solution of the above problem for e 1. Since for e = 0
the solution is known [and is given by (1.4)] we introduce the expansion

ip = ipo + £ipi + £2ip2 + 0(e3), (2.3a)

A = Aq + sA\ + £2 A2 + O(s^). (2.3b)

As was pointed out in the preceding section, we have a family of solutions for the case
e = 0. We expect, however, in view of the results of linear bifurcation theory [5], to have
a unique superconducting solution for £ ^ 0. Thus, we expect that the O(e) balance
would be solvable only for a specific ipo, or equivalently, in view of (1.4), for a specific
value of c. The O(e) balance

2V4' = (3^ - 1 + A2)^ + 2^0A0A1 - <, (2.4a)

^1 = "00^1 + 2'0o^oV'i! (2-4b)
ip' > 0, (2.4c)

|x|—^CX)

A' ♦ hx (2.4d)
|x|—>oc
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is a fourth-order linear system with nonconstant coefficients. In order to solve (2.4) we
introduce the following pair of functions:

f = A'--j=( 1-V2), (2.5a)

g = V2ip' + ipA. (2.5b)
Using the above definitions we can rewrite (2.2a) and (2.2b) in the alternative form

\[2g' — y/2 ftp — Ag = —etp", (2.6a)
/' - i>g = o. (2.6b)

Upon expanding / and g into power series of e,

/ = /o + e/i + e2h + C(e3), (2.7a)

/ — 9o + 92 + 0(e3) (2.7b)

and noticing that, as a result of (1.3), /o and go must identically vanish, we obtain the
following fourth-order system which is equivalent to (2.4):

A[ + V2i>oVi=/i, (2.8a)
\/2xj>[ + tpiAo + ipoAi = g\, (2.8b)

y/2g[ - V2fitp0 - AQgi = -ip'0', (2.8c)

fx ~ o9i = 0. (2.8d)
In view of (2.8a) and the asymptotic behavior for large x of tpo [utilizing (1.4) it is easy

to show that ip0 ~ 0(e~x~/A)\, f\ must satisfy the following boundary value problem:

/" - rth = (2-9a)
h  (2.9b)

| a: |—>oo

Integrating the product of (2.9a) with Aq between x and oo (x > 0) we obtain

fl\ 1,2
i i2M)

Hence, for x > 0, f\ is expressible in the form

1 f°° h f°° 1/, = - /l(j J ipldx+-^=A0J ~^dx. (2.11)
For x < 0 we simply have f\(x) = f\(—x).

Clearly, f\ is continuous at x = 0. However, to be a valid solution of (2.9) f[ needs
to be continuous at x — 0 as well. Equivalently, since fi is even, we may require f[ = 0.
This requirement leads to the following solvability condition:

2 .V2 f0 dxhi = —V 2 • (2-12)
4 r30 V-n rjr

Jo (A'0)2 UX

The right-hand side of (2.12) is a function of c, or alternatively of ^o(0) = tp- As will be
subsequently demonstrated [cf. (2.22)], if (2.12) holds, solutions for (2.4) can be found.
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Hence, (2.12) serves as both a necessary and sufficient condition for the solvability of

(2.4).
When ip <C 1 the approximations

ipo = ijje-x2/4 + 0(ij?), (2.13a)

A'o = ^ + °W (2.13b)

may be substituted into (2.12) to obtain

h, = -^= + 0&2). (2.14)

Since by (2.1) k = 4= — 4\/2£ + 0(e2), it follows that

h = k + 0(ip2, e2)

which is in accordance with the results of linear bifurcation theory [5].
By (1.3a) and (1.4) A'0(x,rt) is a decreasing function of ip. Therefore, hi must be an

increasing function of tjj. We conclude that a solution to (2.4) can exist only when

 7= < hi < 0.
4\/2

For type I (type II) superconductors we may express the above condition in the alter-
native form k < h < l/\/2 {1/V2 < h < k). While the lower bound for hi is expected in
view of linear bifurcation theory results [5], the upper bound cannot be detected by any
linear theory since it involves highly nonlinear effects. It is, however, intuitively expected
since for h = \/\/2 the free energies of the superconducting state and the normal state
are equal.

Figure 1 displays the dependence of ip on — 4\/2/ii according to (2.12). It can be seen
that as hi —> — —> 0 and that as hi —* 0, tp —> 1. A monotonic dependence of ip
on hi is observed.

Once the derivation of the relation (2.12) between the applied magnetic field and the
leading-order solution is complete, the energy of the solutions may be approximated.
The Ginzburg-Landau equations (1.1) are the Euler-Lagrange equations associated with
the energy functional

E = J f2 +g2 + (v/2 — 2 h)A' + ^h2 — + e(ip')2 dx (2.15)

reflecting the difference between the energy of (ip,A) and the normal state (1.2). For
the critical case k = l/%/2, h = l/\/2 the energy vanishes identically. For nearly critical
cases it is of 0{e).

Introducing the expansion

E^eEi+0{£2) (2.16)

together with (2.3) and (2.7) we obtain

Ei =
/OO

\\f2hiipl + (^o)2] dx. (2.17)
-OO
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Integration by parts then yields

Ei = /oo 1v/2/ii^o + tV>o(1 - V'o)
-oo L ^

0 independen

/OO

{ipl)ndx.
-OO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—4y/2hi

Fig. 1. Variation of ip, the maximal superconducting order parame-
ter, with —4y/2hi, representing the applied magnetic field

dx. (2.18)

We shall first demonstrate that E\ > 0 independently of h\'s value. Define

In =

Then,

/— 1 I\ 1 I\
1 4/^ Vg(l - ipl)-2dx > 4^=1/„

and hence by (2.18), we obtain
-vOO

AEi > ' V IZ^n=1±n
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Application of Holder's inequality (with p = n/(n — l),q = n) yields

T <" T~^ T^/n . T 7"l/n
h S h in+l, in S ln+i h ■

Hence, ^In < hln+i from which positivity of E\ follows.
Recalling that e is positive for type I superconductors and negative for type II, and

that the energy of the normal state vanishes, we conclude that (ipQ,Ao) can serve as
a global minimizer for E only for type II superconductors. This is, however, a highly
expected result since, in general, superconducting solutions were found to be stable only
when k > l/y/2 [6].

Dorsey [9] approximated the energy of the solution for the asymptotic problem, when
ip —» 1 and A —> 0 as x —> —oo, near self-duality. The energy of such a solution
has been termed "the surface tension" since it presents the surface energy of a nor-
mal/superconducting interface. We shall now demonstrate the relation between Ei and
Dorsey's [9] approximation.

We first derive an upper bound for ipo- Observing that Aq > ^4q(0);e for x > 0 we
substitute in (1.3b) to derive the following crude estimate:

ipo < exp | —jt1 - mW} >

from which we find

fJo
ipodx < -

2tt 1/2

(2.19).l-Vg(O)
Next, it is easy to show that on some finite interval 0 < x < I, for sufficiently small

values of 1 — V'o(O), we have

^ K
(1-^2)2 - [1_^2(0)]2

where K is independent of V'o(O). Hence,

kiJJ 0/0 (l-V'o2)2 - [1 -V^g(O)]2
Combining (2.12), (2.17), (2.19), and (2.20) we then have

dx > y- (2.20)

lim E\
h-*0 /OO

{tp'ofdx. (2.21)
-oo

Comparison with [9] reveals that E\e tends, as hi —► 0, to be twice the approximated
value, near self-duality, of the surface tension. The numerical calculation in [9] then finds

lim Ei = 0.388.
h i—>0

We conclude this section by obtaining the next order term, demonstrating that our
asymptotic scheme works for higher-order terms as well. To this end we first obtain the
general solution of (2.4)

= Ci K°1 + C2 H°] + M . (2.22)
yij IVo. .Vi h_ _Vip_
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The first term on the right-hand side appears very often when applying perturbation
expansions (cf. [11]). The functions v and ipih appearing in the second term are defined
as follows:

1,2

l (A'")2 ^ (2'23a)

i>ih = -

1o

V'o
■vip'o (2.23b)

.V2A'0
The last term on the right-hand side of (2.22) is a particular solution of (2.4) and is
expressible in the form

A\p = (ui + u2v)A'0, (2.24a)

(2'24b)

in which

Ui — — I " i ^ (2.24c)

U2 =

y/2AoA?afi

V2vA0A'0fi (2.24d,
Jo V'o

In the same manner in which we have obtained (2.9) we obtain the following boundary
value problem for fa:

?2 - ^0/2 = (V>i5i)' + -^ipol^Mi + Aigi - (2.25a)

fa  > 0. (2.25b)
|x|—>OC

Note that, unlike /1, fa is not necessarily even. We therefore obtain two solvability
conditions: The first one ensures continuity of faa,tx = 0,

/OO
[A0(ipi9iY ~ ipo(V2fiipi + Aigi - rp")] dx = 0, (2.26)

-OO

and the second condition guarantees the continuity of f2 at x = 0,

/ {/ {A°^l9lY ~ ^0(^2/1^1 + Aigi -ip")\0dx"^ dx'

+ / —

wherein

/°° 1 T 1-jT (^ifi)'+ -^l>o(V2fiil)X +A1g1 -V")
(2.27)

dx' = 0,

[u]e(x) = i[u(x) +U(-X)],

[u]e(z) = |[w(ar) - w(-^)]

are, respectively, the even and the odd part of the function u.
Substituting (2.22) into (2.26) we note that the contribution of the second and the

third terms on the right-hand side of (2.22), which are both even, to the left-hand side
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of (2.26) vanishes. We are therefore left with the condition

/OO
[AoWoaiY - <(V2M'0 + a'o9i - 43))] dx = o.

-oo

It is not difficult to show that the above condition is satisfied for arbitrary C\. By
invoking symmetry conditions once again, it is readily seen that (2.27) is satisfied for
arbitrary C\ as well. Hence, C\ remains undetermined. This indeterminacy is highly
expected in view of the translational invariance of (2.2), i.e., if i^{x) is a solution then so
is rp(x + C\e) for any C\ and since

i){x + C\e) = tjj(x) + Ci£ip'(x) + 0(e2),

C\ must be arbitrary.

3. Nonexistence of solutions. In the preceding section we have demonstrated for
type I (type II) superconductors that superconducting solutions may exist only for n <
h < l/\/2 (l/\/2 < h < k). However, this result was derived only for k values such that
|k — l/v^l < I- In the following we wish to demonstrate that the validity of this result
may be extended to arbitrary values of k. More explicitly, our goal would be to prove
the following claim.

Theorem 1. Suppose that n < l/y/2 (k > 1/V2) and either
a. h > l/\/2 (0 < h < l/v/2)

or
b. 0 < h < k {h > k).

Then no solution of (1.1), for which 0 < V f°r all x, can exist.

The case h = 0 has been excluded, since ip = 1, A = 0 is then a solution.
Our first step would be to state the following lemma [8].

Lemma 1. Any solution of (1.1) has the following properties:
a. A' > 0 Vrr,
b. — 1 < ijj < 1 \/x.
c. Suppose that for some xo we have: ip(xo) > 0, ip'(x0) < 0. Then,

ip{x) >0 Vx > xq => ip'(x) <0 Vx > xq-

d. ip < e~Kx2 for some positive K, and hence A' ~ h + 0(e~Kx2) as |x| —> 00.

Note that the arguments invoked by Chapman et al. [8] to show that V must be
positive are not valid in our case because the boundary conditions at —00 in the problem
they study are different than ours. Furthermore, ip is n°t necessarily positive in our
case. The results of linear bifurcation theory [5] clearly indicate that solutions, for which
ip < 0 on some subsets of the real line, must exist. However, since solutions for which
ip is negative are not of any practical interest (and since they were found unstable by
linear stability analysis [6]), we shall confine the discussion to the "physical" solutions
for which if> is nonnegative.

Our next step would be to prove the following symmetry property.
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Lemma 2. Any solution of (1.1) for which i/j > 0 Vx is symmetric, i.e., V'(0) = 0 <;=>
A(0) = 0.

Note that the choice x = 0 is arbitrary in view of the translational invariance of (1.1).
Proof. Suppose for a contradiction that there exists a solution (tpi,Ai) of (1.1) for

which A-i(0) = 0,V4(0) < 0. Then, the pair (^2,^2) defined by faix) — xpi(-x),
A2{x) = —A\(—x) is also a solution of (1.1) for which tp'2 > 0.

Following [8] we define

(A')2; R = A2

and use the Hamiltonian relation

+ (A')2 - + </>2 - i'2A2 = h2 (3.1)

together with the identities

,9 du
V = dR'

. ,9 Ru ( d2u \ ^w=-g(w) to'R>0

to obtain the equation

R (d2u \ du 1 I 1 / du \ du du
^\dR2) + dtf = u{2\dRj ~dR+ dR

Define u\ = (A[)2,U2 = (A'2)2; hence, ipl = ^-,^2 = IZr- Obviously «i(0) = ^2(0),
^■(0) = ^ff(O), and «i(oo) = 1x2(00). However, since Vi(0) < 0 and 1P2W > 0> ui and
u2 satisfy initially different equations. Explicitly, u\ satisfies the equation

R1'2 d2ux ' '     * * ' 1 V2
k dR2

whereas u2 satisfies

i?1/2 d2U2

^TJr2

1 (du 1 \ 2 du\ ^du\ , ,
! S ~*R+R4R+h I I } (3.2)

- 1 du2\2 du2 du2 2
-~ldR ~dR+RdR+h -.H"2. (3.3,

While (3.2) is valid for any positive value of R, (3.3) remains valid as long as ip'2 > 0. In
.2

view of Lemma Id, at some Ro > 0 we must have = 0. Setting $ = u2 — u\, for
0 < R < Rq we have > 0; hence, since $(0) = ^ = 0 both $(i?o) and jfi(Ro) must
be positive.

Following [8] once again, we write the equation for <3?, for R > Ro, in the following
form:

R (d2U\ d2u2 \ d2& c?<I> 1
K2\~dR2 + 1R2 J dR? + ("' 'dR + um

1 f du2 \2 du2 du2 ,
2\dR ~dR+RdR+hl ^* = 0.dR
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The precise form of the coefficient (• • •) is irrelevant here, since, recalling that

d2ui d?u2 . . „+ <0 for R > 0,
dR2 dR2

1 1 f du2\2 du2 i ^du2
"j 2 \dR) dR dR

du2 _ R (d2u2\2 du2
~dR ~~ a? \~d& ) ~dR>

we see that <I> cannot have a positive maximum for R > Ro, which clearly contradicts
<3>(oo) = 0.

It is now clear that A(0) = 0 =£- ip' = 0. Suppose now that tjj' = 0 but ^4(0) < 0. By
Lemma la, at some xq, A must vanish. By Lemma lc, ^'(xq) must be negative, which is
impossible as we have just proved. If ,A(0) > 0 and ip' = 0 we apply the transformation

ip{x) —> i/>(—x); A(x) —> — x)

and proceed as before. □
It is interesting to note here that when studying (1.1) on a finite interval, nonsymmetric

solutions can exist [3], [4] though the problem is symmetric. The arguments applied in
the proof of Lemma 2 are not valid on finite intervals since the problem is not translation
invariant there.

Lemma 2 allows us to prove the following result.

Lemma 3. Consider the function

G = — +ipA.
K

For type I (type II) superconductors, G must be nonpositive (nonnegative) Vx > 0.

Proof. It is easy to show that G satisfies the relation

G" - V>'kA+ — G'- 2/c2t/>2 — kA— + kA'
tp

G = (1 - 2K2)ip3A.

Obviously for type I superconductors, G cannot have a positive maximum, whereas for
type II it cannot have a negative minimum. The lemma is now proved since by Lemma
2, G(0) = 0 and by Lemma Id, G(oo) = 0. □

An immediate consequence of Lemma 2 is that when k = 1/%/2, G must identically
vanish. Hence every solution of (1.1) must be a solution of (1.3).

Proof of Theorem 1. We shall consider only type I superconductors. The proof for
type II superconductors is almost identical. We first prove part (a) of the theorem.

Suppose for a contradiction that although h > l/\/2, a solution (ip,A) exists for (1.1).
Following [7] we define the function

F = V2 - 1 + V2A'.
By Lemma 1 we have

G' > K(ipF + AG). (3.4)

The Hamiltonian relation (3.1) may be represented in terms of the functions F and G in
the form

F{il? - 1 - V2A') -2G - i>A) = -2 fh2 - i
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Since G(0) = 0, ip < 1, and A! > 0 we must have F(0) > 0, and hence, by (3.4), G'(0) > 0,
which clearly contradicts Lemma 3.

We now prove part (b) by invoking informal arguments. We first note that by Lemma
Id, when x —> oo, ip is approximately, up to an exponentially small error, a solution of

ip" — n2[(hx + a)2 - l\ip = 0 (3.5)

in which a = lima;_00(J4 — hx). We seek an asymptotic approximation for the solution
of (3.5) as x —> oo. To this end we set the WKB expansion [13]

ip = exp{u>i + w2 + u>3 H } (3.6)

wherein wn ~ o(wn-i). Substitution into (3.5) yields

12 fl-K
Wi = T^unx , W2 = —nax, W3 = ;— logo;,z h

from which we obtain

G=(-^ + 0(x'2)),''

Obviously h must be greater than k. otherwise Lemma 3 is violated once again. □
We note that in both cases, for h > l/\/2 and for h < k (for type I), Lemma 3 is

violated. However, in the first case the negativity of G is violated near x = 0, whereas
in the latter one it is violated as x —► 00.

4. Concluding remarks. In the following we comment on the significance of the
previous results to time-dependent analysis.

The linear stability of the solutions to (1.1) has been studied by Chapman [6] in the
case ip ^ I- His results clearly show that superconducting solutions are stable for type
II superconductors and unstable for type I. Expecting that these results would be still
valid for solutions for which tp is not necessarily small, it seems plausible that for type
I superconductors, the solutions obtained in Sec. 2 are not of any practical importance
since they are unstable. On the other hand, we expect to have stable solutions for
type II superconductors when l/\/2 < h < n. Our energy calculations support this
assumption: the superconducting solutions were found to have lower (higher) energy
than the normal state for type II (type I) superconductors. The results of Sec. 3 clearly
show that such "mixed state" solutions do not exist when either h < 1 /\/2 or h > k.
Linear stability analysis [6] shows that for h > k the normal solution (1.2) is stable;
however, for 0 < h < l/\/2 no stable solution of (1.1) exists. In the latter case, the
long-time solution of the time-dependent Ginzburg-Landau equation cannot be steady.

If we look at the leading-order solution of (2.2), ipo we see that as hi —> 0, ip —»
1. Looking at Chapman's [5] plots of ipo we see that as ip becomes closer to 1 the
domain in which tpo is very close to 1 becomes larger. This domain constitutes a purely
superconducting region around x = 0. In addition, two transition layers and two normal
regions, as x —> ±00, exist. The solution inside the purely superconducting region is
(almost) ip = 1, A = 0. In the normal region it is approximately (1.2) and the transitions



ONE-DIMENSIONAL GINZBURG-LANDAU EQUATIONS 367

layer, formed around x = ±a:o(/ii) (at which ip = 1/2 say), approximately satisfies the
following boundary conditions:

-0 —> 1, ^4. —>■ 0 as sign(a?o)a: — xq —> — oo,
ip' —> 1, A' —i> as sign(xo)a; — x$ —► oo.

The qualitative features of the solution of (1.1a) and (1.1b) together with the above
boundary conditions, have been thoroughly discussed in [8]. For type II superconductors
when h > 1/\f2 we expect that the transition layers would save as wavefronts propagating
towards ±oo. The velocity of propagation should be determined by the free-boundary
model obtained by Chapman [7].

For large but finite intervals we expect that the solution would reach a steady state
when the wave fronts hit the edges. Yet, the solution is expected to be of a completely
different nature than the solutions obtained in this work or from any linearized solution
[12]. It is more likely to be wholly superconducting in the bulk of the material, whereas
near the edges a boundary layer is expected. Such a solution was provided in [10].
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