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Abstract

This paper concerns two methods for reducing large systems of chemical kinetics equations, namely, the method of intrinsic
low-dimensional manifolds (ILDMs) due to Maas and Pope [Combust. Flame 88 (1992) 239] and an iterative method due to
Fraser [J. Chem. Phys. 88 (1988) 4732] and further developed by Roussel and Fraser [J. Chem. Phys. 93 (1990) 1072]. Both
methods exploit the separation of fast and slow reaction time scales to find low-dimensional manifolds in the space of species
concentrations where the long-term dynamics are played out. The asymptotic expansions of these manifolds (ε ↓ 0, whereε
measures the ratio of the reaction time scales) are compared with the asymptotic expansion ofMε, the slow manifold given
by geometric singular perturbation theory. It is shown that the expansions of the ILDM andMε agree up to and including
terms ofO(ε); the former has an error atO(ε2) that is proportional to the local curvature ofM0. The error vanishes if and
only if the curvature is zero everywhere. The iterative method generates, term by term, the asymptotic expansion ofMε.
Starting fromM0, the ith application of the algorithm yields the correct expansion coefficient atO(εi), while leaving the
lower-order coefficients invariant. Thus, after� applications, the expansion is accurate up to and including the terms ofO(ε�).
The analytical results are illustrated on a planar system from enzyme kinetics (Michaelis–Menten–Henri) and a model planar
system due to Davis and Skodje. © 2002 Published by Elsevier Science B.V.
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1. Introduction and summary of results

Many chemical reaction mechanisms in combustion [43,56,85], atmospheric science [72], enzyme kinetics [13],
and biochemistry [28] involve large numbers of species, multiple chains of chemical reactions, and widely disparate
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time scales. A typical model of hydrocarbon combustion, for example, may well involve several hundred species,
which participate in hundreds of reactions that proceed on time scales ranging from nanoseconds to minutes. The
size and complexity of these mechanisms has stimulated the search for methods that reduce the number of species
and chemical reactions but retain a desired degree of accuracy. Typically, thesereduction methodsselect a small
number of species, which are marked asreaction progress variables, and determine the concentrations of the re-
maining species as functions of the latter, either by table look-ups or by direct computation. The critical step in
these methods is, of course, the definition of the reaction progress variables, which may be actual concentrations of
selected species or combinations thereof.

Research into reduction methods has increased dramatically over the past decade, and several methods have been
proposed in the literature and implemented in computer codes. We mention the quasi-steady-state approximation
[71,81,90], the partial-equilibrium approximation [75], methods based on details of the chemistry [56,75], an
iterative method [16,61], the method of intrinsic low-dimensional manifolds (ILDMs) [40,41], the computational
singular perturbation method [19,20,29–32,36,44], a principal-component analysis [5,22,82], lumping techniques
[35], repro-modeling [80], an inertial-manifold approach [89], a dynamic dimension-reduction method [9,10], a
saddle-point method [7,8], a predictor-corrector method [7,8], an optimization method [57], and a global-eigenvalue
method [74].

In this paper, we focus on two reduction methods, namely, the ILDM method due to Maas and Pope [40,41]
and the iterative method due to Fraser and further developed by Roussel and Fraser [16,61]. Both methods have
been developed for and extensively applied to problems with slow manifolds that attract nearby initial conditions.
The long-time behavior of such systems is governed by the dynamics on the slow manifold, whose dimension is
generally much less than that of the total composition space, resulting in a considerable reduction of complexity.

Given the importance of slow manifolds, a central question for any reduction method is: How accurately does it
approximate a slow manifold? The present investigation answers this question for the ILDM method of Maas and
Pope and the iterative method of Fraser and Roussel.

In the ILDM method, the Jacobian of the vector field is partitioned at each point of phase space into a fast and a
slow component, and bases for the corresponding subspaces are generated by means of a Schur decomposition. The
ILDM is defined as the locus of points where the vector field lies entirely in the slow subspace and is an approximation
of the slow manifold. The efficacy of the ILDM method is evident, for example, by the reduction achieved in the
prototypical example of a CO–H2–O2–N2 combustion model [38,41]. Disregarding only the production of NO, the
model comprises evolution equations for the enthalpy, pressure, and concentration of each of 13 species, making
for a 15-dimensional phase space, and a total of 67 chemical reactions. With the proper choice of the reaction
progress variable (CO2), a reduction to a one-dimensional ILDM can be achieved that retains a certain accuracy
after an initial transient [38,41]. Reduction to a two-dimensional ILDM gives a better approximation, albeit at the
expense of keeping track of two reaction progress variables and the storage of a correspondingly larger look-up
table. Refinements, applications, and evaluations of the ILDM method against direct numerical simulations can be
found in Refs. [1–4,11,12,37,39,42,47,58,68–70,73,86–88].

The iterative method was inspired by the phase space geometry of an enzyme kinetics model involving a fast
and a slow species, where the slow manifold is a curve in the phase plane. The method is derived formally from
the invariance equation—an equation that is satisfied on any trajectory of the dynamical system and, in particular,
on the slow manifold and extends naturally to multidimensional systems with (possibly) higher-dimensional slow
manifolds. The procedure is explicit if the force field is linear in the fast variable, and implicit otherwise; hence, it
generally requires the use of a nonlinear equation solver. The method has been developed further and applied, in
particular, to several problems of enzyme kinetics and metabolism in Refs. [17,48,59,60,62–65].

A natural framework for the analysis of these and similar reduction methods is provided by geometric singular
perturbation theory (GSPT) [15,24,27,66]. The presence of a fast and a slow time scale leads naturally to the
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introduction of a small positive parameterε measuring the ratio of the characteristic times. If, in the limit asε ↓ 0
(infinite separation of time scales), the system of kinetics equations has a slow manifold,M0, in phase space and this
manifold is asymptotically stable, then GSPT identifies a (usually nonunique) slow manifoldMε for ε sufficiently
small positive and gives a complete geometric and analytical description of all solutions in the vicinity of the slow
manifold, including how trajectories approach the manifold. By comparing the asymptotics of the slow manifold
Mε found by GSPT with the asymptotics of the low-dimensional manifolds generated by the ILDM method and
the iterative method we can evaluate the accuracy of these reduction methods for small values ofε (finite but large
separation of time scales). The evaluation leads to the following conclusions.

• ILDM method:
(i) The asymptotic expansion of the ILDM agrees with the asymptotic expansion of the slow manifoldMε up

to and including theO(ε) term, for all fast–slow systems. In general, however, theO(ε2) terms differ.
(ii) The error atO(ε2) is proportional to the local curvature of the slow manifoldM0. It vanishes if and only if

the curvature ofM0 is zero everywhere. (The “if” part was observed previously in Ref. [41].)
• Iterative method:

(i) The iterative method, if started fromM0, generates term by term the asymptotic expansion of the slow
manifoldMε. In particular,� applications of the iterative method generate an approximation to the slow
manifoldMε that is asymptotically correct up to and including theO(ε�) term, albeit with extraneous terms
atO(ε�+1).

(ii) The �th iteration leaves the terms atO(1) throughO(ε�−1) invariant. (This observation is important because
the lower-order terms have already been determined correctly in the preceding iterations.)

Remark. In Ref. [58], it is shown that the ILDM coincides with the slow manifoldM0 in the limit of infinite
separation of the fast and slow time scales (ε = 0).

Remark. In Ref. [7], it is shown that, for an elementary nonlinear example consisting of a planar linear system
plus one quadratic term, the error in the ILDM increases with increasing curvature.

Remark. The slow manifoldM0 can often be found analytically; otherwise, it can be obtained by one application
of the iterative method to the coordinate axis, see Refs. [16,61].

The conclusions of this paper show that the ILDM method finds a highly accurate approximation of the slow
manifoldMε, and this approximation may be sufficient in many applications. However, if an even higher order of
accuracy is required, for example if the curvature correction is significant, then the conclusions listed above suggest
that the desired further accuracy might be obtained by using an appropriate number of applications of the iterative
method. In addition, there are important numerical issues, such as stability and computation time, that one needs
to take into account when selecting a method for a given problem. Davis and Skodje [7] discuss a number of these
issues in the context of a comparison between the ILDM method and three other methods. They find that higher
accuracy can be obtained for some systems by applying either a predictor-corrector method or a modified Fraser
scheme. Moreover, they often use the ILDM as the first approximation, or initialization, for these other schemes.
Since issues associated with implementation are beyond the scope of the present paper, we refer to the literature
cited above for a discussion of these important issues.

This paper is organized as follows. In Section 2, we review the general framework of fast–slow systems of ordinary
differential equations (ODEs) and recall the asymptotic expansion of the slow manifold. In Section 3, we define
the ILDM and indicate briefly how it is computed. We present the asymptotic expansion of the ILDM for planar
fast–slow systems (one fast and one slow variable) in Section 4 and for general fast–slow systems (n fast andm
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slow variables) in Section 5. The results are summarized in Corollary 5.1. In Section 6, we describe the iterative
method of Fraser and Roussel. We discuss its asymptotics in Section 7. The results are summarized in Corollary
7.1. We illustrate the analytical results with two planar examples, namely the Michaelis–Menten–Henri (MMH)
mechanism of enzyme kinetics (Section 8) and an example due to Davis and Skodje (Section 9). In Section 10 we
remark on several generalizations and discuss some remaining issues.

2. Fast–slow systems of ODEs

We consider reaction mechanisms in homogeneous media, where the concentrations of the chemical species
depend on time only. The concentrations evolve on two distinct and widely separated time scales. The slowly
evolving concentrations are the entries of the vectory, the remaining concentrations the entries of the vectorz; the
former hasm components, the lattern (m,n ≥ 1). The separation of time scales is measured byε, an arbitrarily small
positive parameter. The limitε ↓ 0 corresponds to infinite separation. The reaction mechanism is thus modeled by
a system of ODEs:

y′ = εf (y, z, ε), (2.1)

z′ = g(y, z, ε). (2.2)

The unknownsy andz are functions oft with values inRm andRn, respectively;′ denotes differentiation with
respect tot ; andf andg are smooth functions with values inRm andRn, respectively. We assume thatf andg, as
well as all their derivatives, areO(1) asε ↓ 0.

Remark. The system of equations (2.1) and (2.2) is, of course, an idealization of the complex systems that occur in
chemical kinetics. The model is adopted here because it is suitable for mathematical analysis. We claim, however,
that it also captures the essential elements of any reaction mechanism whose long-term dynamics evolve on slow
manifolds and offers a paradigm for the analysis of reduction methods. The validity of our conclusions extends
therefore well beyond the idealized system of equations (2.1) and (2.2). We comment on the implications for more
realistic systems in Section 10.

The independent variablet is called thefast timebecause it defines the time scale on which the fast variables
evolve, and the system of equations (2.1) and (2.2) is labeled thefast system. While the fast time scale is appropriate
for the study of the transient dynamics, the long-time dynamics are more naturally studied in terms of theslow time
τ = εt . On the scale ofτ , the system of equations (2.1) and (2.2) assumes the form

ẏ = f (y, z, ε), (2.3)

εż = g(y, z, ε). (2.4)

Here,˙ denotes differentiation with respect toτ . We refer to the system of equations (2.3) and (2.4) as theslow
system.

The fast system (2.1) and (2.2) and the slow system (2.3) and (2.4) are, of course, equivalent as long asε > 0, but
they approach different limits asε ↓ 0, that is, as the separation of the fast and slow time scales becomes infinite.
The fast system reduces to

y′ = 0, (2.5)

z′ = g(y, z,0), (2.6)
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which is essentially a single equation for the fast variablez with y as a parameter. The slow system, on the other
hand, reduces to

ẏ = f (y, z,0), (2.7)

0 = g(y, z,0). (2.8)

The first equation describes the motion of the slow variabley, and the second equation is an algebraic constraint
that forces the motion to take place on the zero set ofg.

Our focus is on systems for which the zero set ofg is represented by the graph of a function. That is, we assume
that there exists a single-valued functionh0, which is defined on a compact domainK = [0, Y ]m in Rm, such
that

g(y, h0(y),0) = 0, y ∈ K. (2.9)

The zero set ofg thus defines amanifold,M0, in phase space,

M0 = {(y, z) ∈ Rm+n : z = h0(y), y ∈ K}, (2.10)

to which the motion of the reduced slow system is confined.
Our analysis requires a second assumption that holds for many, though not all, of the systems in which re-

ductions have been sought, namely, that each point(y, h0(y)) onM0 is anasymptotically stable fixed pointof
Eq. (2.6). The assumption guarantees that the eigenvalues of the matrixDzg(y, h0(y),0) all have negative real
parts.

Remark. The two assumptions are justified in most enzyme kinetics and some combustion and atmospheric chem-
istry problems. In certain more complex reaction mechanisms, however, they may need justification. Toward this
end, we observe that, in those cases where reduction methods are expected to be effective,h0 can be found lo-
cally by the implicit function theorem (since the second assumption guarantees that the matrix(Dzg)(y, h0(y),0)
is invertible for eachy ∈ K), and GSPT can be applied to each local portion. In the absence of singularities,
these local functions can be pieced together to form a smooth global function over the entire domain under
consideration.

Under the above conditions, standard asymptotic theory (see, for example, Refs. [6,15,24,34,45,49,79]) guarantees
that, whenε is positive but arbitrarily small, there exists aslow manifoldMε that is invariant under the dynamics of
the system of equations (2.1) and (2.2), has the same dimension asM0, and lies nearM0. All nearby solutions relax
exponentially fast toMε, and their long-term evolution is determined by an associated solution on the slow manifold
itself. The manifoldMε is usually not unique; typically there is a family of slow manifolds, all exponentially close
(O(e−c/ε) for somec > 0).

Theorem 2.1 (Fenichel, asymptotically stable slow manifolds).For any sufficiently smallε, there is a functionhε
that is defined on K such that the graph

Mε = {(y, z) : z = hε(y), y ∈ K} (2.11)

is locally invariant under the dynamics of Eqs.(2.1)and(2.2).The functionhε admits an asymptotic expansion

hε(y) = h0(y)+ εh(1)(y)+ ε2h(2)(y)+ · · · as ε ↓ 0, (2.12)
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where the coefficientsh(�) : K → Rn are found successively from the equation

(Dzg)h
(�) =

�−1∑
i=0

(Dh(i))f (�−1−i) −
�∑
j=2

1

j !
(D
j
z g)

∑
|i|=�
(h(i1), . . . , h(ij ))

−
�−1∑
k=1

1

k!

�−k∑
j=1

1

j !
(D
j
z (∂

k
ε g))

∑
|i|=�−k

(h(i1), . . . , h(ij ))− 1

�!
(∂�ε g) (2.13)

for � = 1,2, . . . , with h(0) = h0. Here, the functions f and g and their derivatives are evaluated at(y, z = h0(y),
0), and it is understood that a sum is empty when the lower bound exceeds the upper bound. In particular, h(1) and
h(2) are given by

(Dzg)h
(1) = (Dh0)f − gε, (2.14)

(Dzg)h
(2) = (Dh(1))f + (Dh0)((Dzf )h

(1) + fε)− 1
2(D

2
z g)(h

(1), h(1))− (Dzgε)h(1) − 1
2gεε. (2.15)

Furthermore, hε ∈ Cr(K) for any finite r, and the dynamics of the system of equations(2.1)and(2.2)onMε are
given by the reduced equation

ẏ = f (y, hε(y), ε). (2.16)

Proof. The theorem is a direct restatement of [24, Theorem 2] for the special case in whichM0 is asymptotically
stable. It also follows directly from Nipp [49, Theorem] and is a special case of the Fenichel theory [15]. The
asymptotics of the slow manifoldMε are given explicitly, for example, in Refs. [45,50]. �

Remark. In many instances—for example, in the MMH reaction mechanism discussed in Section 8 and various
combustion problems—the reduced slow systemẏ = f (y, h0(y),0) has an asymptotically stable fixed point at
(y0, h0(y0)), say. In such cases, the reaction scheme has a global attracting equilibrium. Under the hypotheses made
above, the system of equations (2.1) and (2.2) has a fixed point at(y0,ε, hε(y0,ε)), and the slow manifoldMε is its
weak stable manifold.

Remark. While we have used it here only for the case of attracting manifolds, the Fenichel theorem and Theorem
2 in Ref. [24] hold for the more general case of fast–slow systems of ODEs for which the manifoldM0 is normally
hyperbolic—that is, where there can be both fast stable (exponentially contracting) and fast unstable (exponentially
expanding) dynamics in the directions transverse toM0. In the more general case, the matrix(Dzg)(y, h0(y),0)
hass eigenvalues with a negative real part andu eigenvalues with a positive real part, the fast variablez decomposes
into au-dimensional and ans-dimensional component withu+ s = n, and the dynamics of all solutions nearMε

are governed by the Fenichel normal form [25]. The asymptotics ofMε remains unchanged.

Remark. The papers of Tikhonov [79] and Levin and Levinson [33,34] present the original theory of persistence of
asymptotically stable manifolds (see also Ref. [53]). The theory of persistence of normally hyperbolic manifolds can
be found in the monographs of Fenichel [14,15] and Hirsch et al. [23]; see also Ref. [84]. Other relevant references
are [45,49] for singularly perturbed systems of ODEs with asymptotically stable slow manifolds and [24,66] for
singularly perturbed systems of ODEs with general normally hyperbolic slow manifolds. An introductory exposition
of GSPT is given in Ref. [27].

Remark. The Fenichel theory [15] has been used in the important work of Stiefenhofer [78] to study the quasi-
steady-state approximation in the context of fast–slow systems of ODEs modeling reaction kinetics. The main results
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of Ref. [78] are: (i) the identification of the essential assumptions underlying the quasi-steady-state approximation
of Schauer and Heinrich [67], (ii) a clear geometric interpretation of the quasi-steady-state approximation in terms
of the leading order asymptotics of the slow manifoldMε, and (iii) a geometric interpretation of how the slow
system enslaves the fast system.

Remark. A numerical procedure for finding asymptotically stable slow manifolds in fast–slow systems, which is
stable and highly accurate for small values ofε, has been given by Nipp [50].

3. The ILDM method of Maas and Pope

The ILDM method starts from the slow system, Eqs. (2.3) and (2.4), takes the local vector fieldF and the
associated JacobianJ , and reduces the latter at each point to a fast and a slow component. The vector fieldF and
its JacobianJ are

F =
(
f

ε−1g

)
, J =

(
Dyf Dzf

ε−1Dyg ε−1Dzg

)
, (3.1)

whereDyf is them × m matrix of partial derivatives∂fi/∂yj , Dzf them × n matrix of partial derivatives
∂fi/∂zj , Dyg the n × m matrix of partial derivatives∂gi/∂yj , andDzg the n × n matrix of partial derivatives
∂gi/∂zj .

By assumption, the real part of each eigenvalue ofJ is negative. The sum of the eigenvalues is equal to the trace
of J , which isO(ε−1) asε ↓ 0, and their product is equal to the determinant ofJ , which isO(ε−n) asε ↓ 0.
The eigenvalues ofJ fall therefore into two groups: one group ofm eigenvalues withO(1) negative real parts and
another group ofn eigenvalues withO(ε−1) negative real parts. The eigenvectors associated with the first group
span theslow subspace, those associated with the second group thefast subspace. The Maas and Pope algorithm
defines the ILDM as the locus of all points(y, z) where the vector fieldF lies entirely in the slow subspace.

The algorithm uses a Schur decomposition [76, Section 6.3] ofJ ,

J = QNQ′ (3.2)

withQ unitary (QQ′ = Q′Q = Im+n, ′ denoting the transpose) andN upper triangular,

Q = (QsQf ), N =
(
Ns Nsf

0 Nf

)
. (3.3)

The dimensions ofQs andQf are(m + n) × m and(m + n) × n, respectively;Ns is anm × m upper triangular
matrix,Nf ann × n upper triangular matrix, andNsf anm × n full matrix. The eigenvalues ofJ appear on the
diagonal ofN in descending order of their real parts, from least negative at the(1,1) position to most negative at
the(m + n,m + n) position. This particular ordering is accomplished in Ref. [41] by means of a modification of
Stewart’s implementation of the Schur algorithm [77] and in Ref. [38] by means of a standard Schur decomposition
followed by a sequence of Givens rotations [18, Section 5.1].

The firstm Schur vectors—that is, the columns ofQs—form an orthogonal basis for the slow subspace, while the
remainingn Schur vectors—the columns ofQf—form an orthogonal basis for the orthogonal complement of the
slow subspace. The vector fieldF is entirely in the slow subspace if it is orthogonal to the orthogonal complement
of the slow subspace, that is, if

Q′
f F = 0. (3.4)
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This equation defines the ILDM, the latter being an approximation of the slow manifoldMε. We analyze its
asymptotics (asε ↓ 0) in the following sections.

Remark. The matrixQ′
f corresponds toQTL, the numbern to nf , and the summ+ n to n in Ref. [41].

In the numerical implementation of the ILDM method for general, closed, adiabatic, and isobaric reaction mech-
anisms, the system of equations is closed by supplementing the ILDM equation, Eq. (3.4), by a set of parameter
equations. The parameter equations fix the enthalpy, pressure, and element composition. In addition, the reaction
progress variables are treated as parameters. Each fixed set of parameters yields one point of the ILDM, and the entire
ILDM is obtained by sweeping over the admissible set of parameter values. As noted in Ref. [41], the parameters
can generally be chosen so the ILDM is at least defined piecewise, and, most important, the choice of the parameter
equations does not influence the construction of the manifold.

In Eqs. (2.1) and (2.2), the enthalpy, pressure, and conserved quantities have been neglected. In this case, the
parameter equations fix the values of the slow variablesy, and the ILDM is obtained by sweeping over all points
y ∈ K.

4. Asymptotics of the ILDM—planar case

We first restrict our attention to planar fast–slow systems, Eqs. (2.3) and (2.4) withm = n = 1, for which the
computations are relatively straightforward and the asymptotic analysis more transparent. We address the general
case in Section 5.

In the planar case, the vector fieldF and its JacobianJ are

F =
(
f

ε−1g

)
, J =

(
fy fz

ε−1gy ε−1gz

)
. (4.1)

The eigenvalues ofJ are

λs,f = 1

2
(ε−1gz + fy)±

√
1

4
(ε−1gz + fy)2 − ε−1(fygz − fzgy), (4.2)

where the upper (lower) sign is associated withλs (λf ). Thus,

λs = fy − fzgy
gz

+O(ε), λf = ε−1gz +O(1) as ε ↓ 0. (4.3)

The derivatives off andg, which are evaluated at(y, z, ε), are allO(1) asε ↓ 0. The (nonnormalized) slow
eigenvector is

vs =
(
λs − ε−1gz

ε−1gy

)
, (4.4)

and there is a corresponding fast eigenvectorvf . The vectorvs spans the slow subspace,vf the fast subspace. The
vectorsvs andvf are not necessarily orthogonal. To determine the points(y, z) in the phase plane where the vector
fieldF lies entirely in the slow subspace, we work with the orthogonal complement of the slow subspace, which is
spanned by the row vector

v⊥s = (ε−1gy, ε
−1gz − λs). (4.5)
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The locus of all points in the phase plane where the vector fieldF is in the slow subspace coincides with the set of
all points(y, z) whereF is orthogonal tov⊥s , that is, where

fgy + g(ε−1gz − λs) = 0. (4.6)

This equation defines the ILDM.

Remark. A Schur decomposition of the matrixJ gives the vectorsqf = vf /|vf | andq⊥
f = v⊥f /|vf | directly. The

algorithm must be modified to find the vectorsqs = vs/|vs | andq⊥
s = v⊥s /|vs |, as described in Section 3.

Theorem 4.1 (Planar case).The equation for the ILDM, Eq. (4.6),admits an asymptotic solution in the form of a
power series expansion,

z = ψ(y, ε) = ψ(0)(y)+ εψ(1)(y)+ ε2ψ(2)(y)+ · · · as ε ↓ 0. (4.7)

The functionsψ(0), ψ(1), andψ(2) are defined by the equations

ψ(0) = h0, (4.8)

gzψ
(1) = fh′

0 − gε, (4.9)

gzψ
(2) = fψ(1)′ − f

2

gz
h′′

0 + (fzψ(1) + fε)h′
0 − 1

2
gzz(ψ

(1))2 − gzεψ(1) − 1

2
gεε. (4.10)

Here, h0 ≡ h0(y) is defined by the equationg(y, h0(y),0) = 0, ′ denotes differentiation with respect to y, and the
functions f and g and their derivatives are evaluated at(y, h0(y),0).

Proof. Assume thatz = ψ(y, ε), whereψ is given by the power series expansion (4.7). Then

f (y, ψ(y, ε), ε) = f + ε(fzψ(1) + fε)+ ε2(fzψ
(2) + 1

2fzz(ψ
(1))2 + fzεψ(1) + 1

2fεε)+ · · · , (4.11)

where in the right memberf and its derivatives are evaluated at(y, ψ(0)(y),0). Similar expansions hold forg and
the derivatives off andg. The leading term in the expansion ofλs follows immediately from Eq. (4.3):

λs = λ(0)s +O(ε), λ(0)s = fy − fzgy
gz
, (4.12)

where the derivatives off andg are similarly evaluated at(y, ψ(0)(y),0). We substitute the various expansions
into Eq. (4.6) and equate the coefficients of like powers ofε.
O(ε−1). The ILDM equation, Eq. (4.6), gives

(ggz)(y, z = ψ(0)(y),0) = 0, (4.13)

which is satisfied ifψ(0) = h0. This result confirms Eq. (4.8).
O(1). From the equation for the ILDM, Eq. (4.6), we obtain

fgy + (gzψ(1) + gε)gz = 0. (4.14)

Here, we have used the identityg ≡ g(y, h0(y),0) = 0. The same identity implies that

gy + gzh′
0 = 0, (4.15)

so Eq. (4.14) reduces to

(gzψ
(1) + gε − fh′

0)gz = 0. (4.16)
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The assumption of attractive manifolds implies thatgz < 0, so Eq. (4.9) follows.
O(ε). From the equation for the ILDM, Eq. (4.6), we obtain

f (gyzψ
(1) + gyε + (gzzψ

(1) + gzε − λ(0)s )h′
0)− (fzψ(1) + fε)gzh′

0

+ (gzψ(2) + 1
2gzz(ψ

(1))2 + gzεψ(1) + 1
2gεε)gz = 0. (4.17)

Here, we have used Eqs. (4.8) and (4.9) and the identity (4.15). The same identity also results in a simplification of
the expression (4.12) forλ(0)s ,

λ(0)s = fy + fzh′
0. (4.18)

Furthermore, differentiating Eq. (4.16) with respect toy, we find

gyzψ
(1) + gyε + (gzzψ

(1) + gzε)h′
0 + gzψ(1)′ = fh′′

0 + (fy + fzh′
0)h

′
0. (4.19)

With Eqs. (4.18) and (4.19), Eq. (4.17) simplifies to(
gzψ

(2) + 1
2gzz(ψ

(1))2 + gzεψ(1) + 1
2gεε − fψ(1)′ +

(
f 2

gz

)
h′′

0 − (fzψ(1) + fε)h′
0

)
gz = 0. (4.20)

Sincegz < 0, Eq. (4.10) follows. �

In the following section, we will generalize Theorem 4.1 to the multidimensional case (Theorem 5.1) and compare
the asymptotics of the ILDM with the asymptotics of the slow manifoldMε (Corollary 5.1).

5. Asymptotics of the ILDM—general case

The definition of the ILDM, Eq. (3.4), is based on a partition of the Jacobian, Eq. (3.2), into a fast and a slow
component at each point of phase space and a Schur decomposition to generate bases for the corresponding fast and
slow subspaces. Practical implementations of the Schur decomposition rely typically on the method of deflation
[18, Chapter 7]; hence, the eigenvalues are generated in the order of descendingabsolute valuesof their real parts.
This procedure yields a unitary matrix of the formQ = ( Qf Qs ). The columns ofQ are then reordered, for
example by a sequence of Givens rotations, as in Ref. [38].

Although this procedure is practical for numerical computations, it is not amenable to analysis. We start therefore
from the standard Schur decompositionbeforereordering,

J = QTQ′, (5.1)

where

T =
(
Λf Λ

0 Λs

)
(5.2)

with Λf ann× n upper triangular matrix,Λs anm×m upper triangular matrix, andΛ ann×m full matrix. The
diagonal elements ofΛf are theO(ε−1) eigenvalues ofJ , and the diagonal elements ofΛs are theO(1) eigenvalues
of J . The structure of the unitary matrixQ is

Q =
(
Q11 Q12

Q21 Q22

)
, (5.3)
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whereQ11 is anm× nmatrix,Q12 anm×mmatrix,Q21 ann× nmatrix, andQ22 ann×mmatrix. The columns
of (

Q11

Q21

)
and

(
Q12

Q22

)

form an orthogonal basis of the fast subspace and its orthogonal complement, respectively.
Since the fast and slow subspaces are not necessarily mutually orthogonal, the orthogonal complement of the fast

subspace does not necessarily coincide with the slow subspace, and a further operation is needed to identify a basis
for the slow subspace. This operation consists of solving the Sylvester equation

ΛfX −XΛs = −Λ (5.4)

for then×m matrixX. With the definition

Y =
(
In X

0 Im

)
, (5.5)

we obtain ablock diagonalizationof J ,

J = (QY)Td(QY)−1, (5.6)

where

Td =
(
Λf 0

0 Λs

)
, (5.7)

QY=
(
Q11 Q11X +Q12

Q21 Q21X +Q22

)
, (QY)−1 =

(
Q′

11 − XQ′
12 Q′

21 − XQ′
22

Q′
12 Q′

22

)
. (5.8)

Thus,QY reduces the matrixJ to its fast and slow components, and the condition that the vector fieldF given in
Eq. (3.1) must lie entirely in the slow subspace is satisfied if

(Q′
11 − XQ′

12)f + ε−1(Q′
21 − XQ′

22)g = 0. (5.9)

The ILDM obtained from Eq. (5.9) is the same as the ILDM obtained from Eq. (3.4) and also the same as the ILDMs
obtained in Refs. [38,41].

Theorem 5.1 (General case).The equation for the ILDM, Eq. (3.4),admits an asymptotic solution in the form of a
power series expansion,

z = ψ(y, ε) = ψ(0)(y)+ εψ(1)(y)+ ε2ψ(2)(y)+ · · · as ε ↓ 0. (5.10)

TheRn-valued functionsψ(0), ψ(1), andψ(2) are defined by the equations

ψ(0) = h0, (5.11)

(Dzg)ψ
(1) = (Dh0)f − gε, (5.12)

(Dzg)ψ
(2) = (Dψ(1))f − (Dzg)−1(D2h0)(f, f )+ (Dh0)((Dzf )ψ

(1) + fε)− 1
2(D

2
z g)(ψ

(1), ψ(1))

− (Dzgε)ψ(1) − 1
2gεε. (5.13)
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Here, h0 ≡ h0(y) is the Rn-valued function defined byEq. (2.9),g(y, h0(y),0) = 0; Dh0 ≡ (Dh0)(y) is a
linear operator fromRm to Rn, which is represented by then × m matrix of partial derivatives∂h0,i/∂yj , and
D2h0 = D(Dh0) ≡ (D2h0)(y) is a bilinear map fromRm × Rm to Rn, (D2h0)(u, v) = ((D2h0)u)v for all
u, v ∈ Rm. The functions f and g and their derivatives are evaluated at(y, h0(y),0);Dzf ≡ Dzf (y, h0(y),0) is a
linear operator fromRn to Rm,Dzg ≡ Dzg(y, h0(y),0) a linear operator fromRn to Rn, andD2

z g = Dz(Dzg) ≡
D2
z g(y, h0(y),0) a bilinear map fromRn × Rn to Rn.

Proof. Assume thatz = ψ(y, ε) and thatψ is given by the expansion (5.10). For the asymptotic analysis of
Eq. (5.9), we take

Q ≡ Q(ε) =
(

0 Im

Q
(0)
21 0

)
+ ε

(
Q
(1)
11 0

0 −Q(0)21Q
(1)′
11

)
+ · · · (5.14)

withQ(0)21 a unitaryn×nmatrix andQ(1)11 anm×nmatrix to be determined. Thus,Q is unitary toO(ε). Higher-order
terms can be found in a consistent manner soQ(ε) is unitary to any desired order. We take, furthermore,

Λf ≡ Λf (ε) = ε−1Λ
(−1)
f +Λ(0)f + · · · , (5.15)

Λ ≡ Λ(ε) = ε−1Λ(−1) +Λ(0) + · · · , (5.16)

Λs ≡ Λs(ε) = Λ(0)s + · · · , (5.17)

X ≡ X(ε) = X(0) + εX(1) + · · · . (5.18)

The generalization of the expansion (4.11) to the present case is

f (y, ψ(y, ε), ε)= f + ε((Dzf )ψ(1) + fε)
+ ε2((Dzf )ψ

(2) + 1
2(D

2
z f )(ψ

(1), ψ(1))+ (Dzfε)ψ(1) + 1
2fεε)+ · · · . (5.19)

In the right member,f and its derivatives are evaluated at(y, ψ(0)(y),0). Similar expansions hold forg and the
derivatives off andg.

To prove the theorem, we substitute the various expansions into Eq. (5.9) and equate the coefficients of like
powers inε in the usual manner.
O(ε−1). The ILDM equation, Eq. (5.9), gives

Q
(0)′
21 g = 0. (5.20)

SinceQ(0)21 is unitary, Eq. (5.20) reduces to

g(y, ψ(0)(y),0) = 0. (5.21)

This equation is satisfied ifψ(0) = h0, which confirms Eq. (5.11).
O(1). From the ILDM equation, Eq. (5.9), we obtain

−X(0)f +Q(0)′21 ((Dzg)ψ
(1) + gε) = 0. (5.22)

Here, we have already used the identityg = 0.
The matrixX(0) is determined from theO(ε−1) terms in the Sylvester equation, Eq. (5.4),

Λ
(−1)
f X(0) = −Λ(−1). (5.23)
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The matricesΛ(−1)
f andΛ(−1), in turn, follow from theO(ε−1) terms in the Schur decomposition, Eq. (5.1),

Q
(0)
21Λ

(−1) = Dyg, Q
(0)
21Λ

(−1)
f Q

(0)′
21 = Dzg. (5.24)

The second equation is the Schur decomposition ofDzg, soQ(0)21 is determined by the ordering of the elements of

Λ
(−1)
f . Both equations can be inverted,

Λ(−1) = Q(0)′21 (Dyg), Λ
(−1)
f = Q(0)′21 (Dzg)Q

(0)
21 . (5.25)

Hence,

X(0) = −Q(0)′21 (Dzg)
−1(Dyg). (5.26)

We can simplify this expression if we use the identityg(y, h0(y),0) = 0, which holds for ally. Upon differentiation,
the identity gives a relation betweenDyg andDzg,

Dyg + (Dzg)(Dh0) = 0. (5.27)

Note that this is a relation in the space of linear operators fromRm to Rn. With this identity, Eq. (5.26) becomes

X(0) = Q(0)′21 (Dh0), (5.28)

and Eq. (5.22) reduces to

Q
(0)′
21 [(Dzg)ψ

(1) + gε − (Dh0)f ] = 0. (5.29)

SinceQ(0)21 is unitary, Eq. (5.12) follows.
O(ε). From the ILDM equation, Eq. (5.9), we obtain

(Q
(1)′
11 −X(1) +Q(0)′21 (Dh0)Q

(1)
11Q

(0)′
21 (Dh0))f −Q(0)′21 (Dh0)((Dzf )ψ

(1) + fε)
+Q(0)′21 ((Dzg)ψ

(2) + 1
2(D

2
z g)(ψ

(1), ψ(1))+ (Dzgε)ψ(1) + 1
2gεε) = 0. (5.30)

Here, we have already made use of Eqs. (5.11) and (5.12) and substituted the expression (5.28) forX(0).
The matrixX(1) is determined from theO(1) terms in the Sylvester equation, Eq. (5.4),

Λ
(−1)
f X(1) +Λ(0)f X(0) −X(0)Λ(0)s = −Λ(0). (5.31)

The matricesΛ(0)f ,Λ(0)s , andΛ(0) follow in turn from theO(1) terms in the Schur decomposition, Eq. (5.1),

Q
(1)
11Λ

(−1) +Λ(0)s = Dyf, (5.32)

Q
(1)
11Λ

(−1)
f Q

(0)′
21 = Dzf, (5.33)

Q
(0)
21 (Λ

(−1)
f Q

(1)′
11 +Λ(0)) = (Dz(Dyg))ψ(1) +Dygε, (5.34)

Q
(0)
21 (−Λ(−1)Q

(1)
11Q

(0)′
21 +Λ(0)f Q(0)

′
21 ) = (D2

z g)ψ
(1) +Dzgε. (5.35)

We proceed as follows. First, we solve Eq. (5.33) forQ(1)11 ,

Q
(1)
11 = (Dzf )Q(0)21 (Λ

(−1)
f )−1 = (Dzf )(Dzg)−1Q

(0)
21 . (5.36)
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Then, we obtainΛ(0)s from Eq. (5.23),

Λ(0)s = Dyf −Q(1)11Λ
(−1) = Dyf + (Dzf )(Dh0). (5.37)

(We have used the relation (5.27) to rewrite the expression (5.25) forΛ(−1).) Next, we solve Eqs. (5.34) and (5.35)
for Λ(0) andΛ(0)f ,

Λ(0) =Q(0)′21 ((Dz(Dyg))ψ
(1) +Dygε −Q(0)21Λ

(−1)
f Q

(1)′
11 )

=Q(0)′21 ((Dz(Dyg))ψ
(1) +Dygε − (Dzg)((Dzf )(Dzg)−1)′), (5.38)

Λ
(0)
f =Q(0)′21 ((D

2
z g)ψ

(1) +Dzgε +Q(0)21Λ
(−1)Q

(1)
11Q

(0)′
21 )Q

(0)
21

=Q(0)′21 ((D
2
z g)ψ

(1) +Dzgε − (Dzg)(Dh0)(Dzf )(Dzg)
−1)Q

(0)
21 . (5.39)

After these steps, we findX(1) from Eq. (5.31),

X(1) = (Λ(−1)
f )−1(−Λ(0) −Λ(0)f X(0) +X(0)Λ(0)s )

=Q(0)′21 (Dzg)
−1[−((Dz(Dyg))ψ(1) +Dygε)+ (Dzg)((Dzf )(Dzg)−1)′

− ((D2
z g)ψ

(1) +Dzgε − (Dzg)(Dh0)(Dzf )(Dzg)
−1)(Dh0)+ (Dh0)(Dyf + (Dzf )(Dh0))]. (5.40)

SubstitutingQ(1)11 from Eq. (5.36) andX(1) from Eq. (5.40) into Eq. (5.30), we obtain

Q
(0)′
21 [(Dzg)

−1((Dz(Dyg))(ψ
(1), f )+ (Dygε)f + (D2

z g)(ψ
(1), (Dh0)f )+ (Dzgε)((Dh0)f )

− (Dh0)(Dyf + (Dzf )(Dh0))f )− (Dh0)((Dzf )ψ
(1) + fε)+ (Dzg)ψ(2) + 1

2(D
2
z g)(ψ

(1), ψ(1))

+ (Dzgε)ψ(1) + 1
2gεε] = 0. (5.41)

The bilinear mapsDz(Dyg) andD2
z g satisfy the symmetry relations

(Dz(Dyg))(u, v) = (Dy(Dzg))(v, u), u ∈ Rn, v ∈ Rm, (5.42)

(D2
z g)(u, v) = (D2

z g)(v, u), u, v ∈ Rn, (5.43)

so Eq. (5.41) is equivalent with

Q
(0)′
21 [(Dzg)

−1((Dy(Dzg))(f, ψ
(1))+ (Dygε)f + (D2

z g)((Dh0)f, ψ
(1))+ (Dzgε)((Dh0)f )

− (Dh0)(Dyf + (Dzf )(Dh0))f )− (Dh0)((Dzf )ψ
(1) + fε)+ (Dzg)ψ(2) + 1

2(D
2
z g)(ψ

(1), ψ(1))

+ (Dzgε)ψ(1) + 1
2gεε] = 0. (5.44)

We simplify this expression by means of Eq. (5.12). Upon differentiation, this equation gives the identity

(Dy(Dzg))ψ
(1) +Dygε + (D2

z g)(Dh0)ψ
(1) + (Dzgε)(Dh0)+ (Dzg)(Dψ(1))

= (D2h0)f + (Dh0)(Dyf + (Dzf )(Dh0)). (5.45)

This is a relation in the space of linear operators fromRm to Rn. When applied to the vectorf , it gives the identity

(Dy(Dzg))(f, ψ
(1))+ (Dygε)f + (D2

z g)((Dh0)f, ψ
(1))+ (Dzgε)((Dh0)f )+ (Dzg)((Dψ(1))f )

= (D2h0)(f, f )+ (Dh0)(Dyf + (Dzf )(Dh0))f. (5.46)
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With this result, Eq. (5.44) simplifies to

Q
(0)′
21 [(Dzg)ψ

(2) + 1
2(D

2
z g)(ψ

(1), ψ(1))+ (Dzgε)ψ(1) + 1
2gεε − (Dψ(1))f

+ (Dzg)−1(D2h0)(f, f )− (Dh0)((Dzf )ψ
(1) + fε)] = 0. (5.47)

SinceQ(0)21 is unitary, Eq. (5.13) follows. �

The following corollary summarizes the result of the asymptotic analysis.

Corollary 5.1. The ILDM is an approximation to the slow manifoldMε of the fast–slow system ofequations (2.1)
and (2.2),which is asymptotically accurate up to and including theO(ε) term asε ↓ 0. The approximation is
asymptotically accurate up to and including theO(ε2) term if and only ifD2h0(y) = 0 for all y. The asymptotic
expansion of the ILDM is given byEq. (5.10).A comparison of the coefficients in the expansion with the coefficients
in the expansion of the slow manifoldMε, Eq. (2.12),shows that

ψ(0) = h0, (5.48)

ψ(1) = h(1), (5.49)

ψ(2) = h(2) − (Dzg)−2(D2h0)(f, f ). (5.50)

The differenceψ(2) − h(2) involves the bilinear formD2h0, which is proportional to the curvature of the zero
set ofg atε = 0. It is present in any fast–slow system, unless the curvature vanishes everywhere. Because of it, the
ILDM is in general not invariant under the dynamics of the system of equations (2.1) and (2.2).

6. The iterative method of Fraser and Roussel

The iterative method of Fraser and Roussel was developed originally for planar fast–slow systems that are linear
in the fast variable,

ẏ = f1(y, ε)z+ f2(y, ε), (6.1)

εż = g1(y, ε)z+ g2(y, ε). (6.2)

Here,y andz are scalar-valued functions of time. These systems of equations are typical for enzyme kinetics [13]
and other biochemical systems whose dynamics can be reduced to slow manifolds. In this case, the slow manifolds
are curves in the phase plane.

On any trajectoryz = z(y, ε) in the phase plane, we have the identityż = zyẏ, or, in terms of the functionsf
andg,

εzy(f1z+ f2) = g1z+ g2. (6.3)

This identity is known as theinvariance equation. In the present case, it can be solved forz in terms ofy
andzy ,

z = −g2 + εf2zy

g1 − εf1zy
. (6.4)

The equation holds, in particular, along trajectories on invariant manifolds. Fraser used Eq. (6.4) to propose the
following functional iteration procedure to approximate the slow manifold.
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Starting from an initial functionϕ(0), one computes a sequence of functions{ϕ�: � = 1,2, . . . } using the
definitions

ϕ(�) = −g2 + εf2ϕ
(�−1)
y

g1 − εf1ϕ
(�−1)
y

, � = 1,2, . . . . (6.5)

Under appropriate conditions, the sequence{ϕ(�)(y, ε): � = 1,2, . . . } approachesz(y, ε) (in a sense to be made
precise) as� goes to infinity, so the algorithm generates successive approximations to a slow manifold.

The iterative procedure generalizes to the fast–slow system of equations (2.1) and (2.2). The invariance equation
is

ε(Dyz)(y, ε)f (y, z(y, ε), ε) = g(y, z(y, ε), ε) (6.6)

for any trajectoryz = z(y, ε) in phase space. Starting from a functionϕ(0), one computes a sequence of functions
{ϕ(�): � = 1,2, . . . } by solving the equation

ε(Dyϕ
(�−1))(y, ε)f (y, ϕ(�)(y, ε), ε) = g(y, ϕ(�)(y, ε), ε). (6.7)

The sequence{ϕ(�)(y, ε): � = 1,2, . . . } approachesz(y, ε) (again, in a sense to be made precise) as� goes to
infinity.

Notice that Eq. (6.7) amounts to animplicit definitionof ϕ(�), unless bothf andg are linear in the fast variable
z, as in the planar case discussed above, Eqs. (6.1) and (6.2). Hence, the numerical computation ofϕ(�) generally
requires the solution of a nonlinear equation.

7. Asymptotics of the iterative method

Because the iterative method of Fraser and Roussel is closely related to the invariance equation, its asymptotic
properties are most easily analyzed in terms of those of Eq. (6.6).

Lemma 7.1. The invariance equation, Eq. (6.6),admits an asymptotic solution in the form of a power series
expansion,

z(y, ε) = z(0)(y)+ εz(1)(y)+ · · · as ε ↓ 0, (7.1)

where

z(0) = h0, (7.2)

and the functionsz(�) : K → Rn, � = 1,2, . . . , are found successively fromEq. (7.17).In particular, z(1) andz(2)

are found from the equations

(Dzg)z
(1) = (Dz(0))f − gε, (7.3)

(Dzg)z
(2) = (Dz(1))f + (Dz(0))((Dzf )z

(1) + fε)− 1
2(D

2
z g)(z

(1), z(1))− (Dzgε)z(1) − 1
2gεε, (7.4)

where f and g and their derivatives are evaluated at(y, z(0)(y),0).

Proof. We begin by expanding the functionf ,

f (y, z(y, ε), ε) = f (0)(y)+ εf (1)(y)+ ε2f (2)(y)+ · · · , (7.5)
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where

f (0)(y) = f (y, z(0)(y),0), (7.6)

and

f (�)(y)=
�∑
j=1

1

j !
(D
j
z )f (y, z

(0)(y),0)
∑
|i|=�
(z(i1)(y), . . . , z(ij )(y))+

�−1∑
k=1

1

k!

�−k∑
j=1

1

j !
(D
j
z (∂

k
ε f ))(y, z

(0)(y),0)

×
∑

|i|=�−k
(z(i1)(y), . . . , z(ij )(y))+ 1

�!
(∂�ε f )(y, z

(0)(y),0), � = 1,2, . . . . (7.7)

The derivative(Djz f )(y, z(0)(y),0) in the first term is aj -linear map from(Rn)j to Rm. The inner sums are taken
over all multiindicesi = (i1, . . . , ij ) of positive integersi1, . . . , ij with length |i| = ∑j

k=1 ik = � and� − k,
respectively. The first few coefficients are

f (1)(y) = (Dzf )z(1) + fε, (7.8)

f (2)(y) = (Dzf )z(2) + 1
2(D

2
z f )(z

(1), z(1))+ (Dzfε)z(1) + 1
2fεε, (7.9)

f (3)(y)= (Dzf )z(3) + (D2
z f )(z

(1), z(2))+ 1
6(D

3
zf )(z

(1), z(1), z(1))+ (Dzfε)z(2) + 1
2(D

2
z fε)(z

(1), z(1))

+ 1
2(Dzfεε)z

(1) + 1
6fεεε, (7.10)

wheref and its derivatives are evaluated at(y, z(0)(y),0), and the argument of eachz(i), i = 1,2, . . . , is y. A
similar expansion holds forg(y, z(y, ε), ε),

g(y, z(y, ε), ε) = g(0)(y)+ εg(1)(y)+ ε2g(2)(y)+ · · · , (7.11)

where

g(0)(y) = g(y, z(0)(y),0), (7.12)

and

g(�)(y)=
�∑
j=1

1

j !
(D
j
z g)(y, z

(0)(y),0)
∑
|i|=�
(z(i1)(y), . . . , z(ij )(y))+

�−1∑
k=1

1

k!

�−k∑
j=1

1

j !
(D
j
z (∂

k
ε g))(y, z

(0)(y),0)

×
∑

|i|=�−k
(z(i1)(y), . . . , z(ij )(y))+ 1

�!
(∂�ε g)(y, z

(0)(y),0), � = 1,2, . . . . (7.13)

Termwise differentiation of the asymptotic expansion (7.1) gives

(Dyz)(y, ε) = Dz(0) + εDz(1) + · · · . (7.14)

Equating the coefficients of like powers ofε in the left and right members of the invariance equation, Eq. (6.6), we
obtain a sequence of functional identities,

g(0) = 0, (7.15)

g(�) =
�−1∑
i=0

(Dz(i))f (�−1−i), � = 1,2, . . . . (7.16)
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We satisfy theO(1) equation, Eq. (7.15), by takingz(0) = h0; see Eq. (7.2). Thenf (0)(y) = f (y, h0(y),0), and
f (�)(y) andg(�)(y) are given by Eqs. (7.7) and (7.13), respectively, withz(0)(y) replaced byh0(y).

Next, we turn to theO(ε�) equation, Eq. (7.16). We observe thatz(�) occurs ing(�) only in the first term with
j = 1; the remaining terms involvez(1) throughz(�−1) but notz(�). The right member of Eq. (7.16) similarly involves
z(1) throughz(�−1) but notz(�). Therefore, the identities (7.16) can be solved successively forz(1), z(2), and so on.
Thus we find

(Dzg)z
(�) =

�−1∑
i=0

(Dz(i))f (�−1−i) −
�∑
j=2

1

j !
(D
j
z g)

∑
|i|=�
(z(i1), . . . , z(ij ))

−
�−1∑
k=1

1

k!

�−k∑
j=1

1

j !
(D
j
z (∂

k
ε g))

∑
|i|=�−k

(z(i1), . . . , z(ij ))− 1

�!
(∂�ε g) (7.17)

for � = 1,2, . . . . Here, the functionsf andg and their derivatives are evaluated at(y, z = h0(y),0), and it is
understood that a sum is empty when the lower bound exceeds the upper bound. The equations for� = 1 and 2 are
given in the statement of the theorem. �

The following theorem shows that� successive applications of the iterative algorithm of Fraser and Roussel,
starting fromϕ(0) = h0, generate an approximationϕ(�) to the slow manifoldMε that is accurate up to and
including theO(ε�) term asε ↓ 0.

Theorem 7.1. Let ϕ(�) and z(�) be defined recursively for� = 1,2, . . . by Eqs.(6.7) and (7.17),respectively. If
ϕ(0) = z(0) = h0, then

ϕ(�) ≡ ϕ(�)(y, ε) =
�∑
i=0

εiz(i)(y)+O(ε�+1), � = 1,2, . . . . (7.18)

Proof. The proof is by induction. Taking� = 1, we have

ε(Dϕ(0))(y)f (y, ϕ(1)(y, ε), ε) = g(y, ϕ(1)(y, ε), ε).
Sinceϕ(0) = z(0), this equation is the same as

ε(Dz(0))(y)f (y, ϕ(1)(y, ε), ε) = g(y, ϕ(1)(y, ε), ε).
We expand the terms in this equation in powers ofε and equate the coefficients of like powers ofε. To leading order,
we find the equation

g(y, ϕ(1)(y,0),0) = 0,

which is precisely the equation forz(0), so

ϕ(1)(y,0) = z(0)(y).
To the next order, we find the equation

(Dzg)(y, z
(0),0)ϕ(1)ε (y,0)+ gε(y, z(0),0) = (Dz(0))(y)f (y, z(0)(y),0),

which is precisely Eq. (7.3), so

ϕ(1)ε (y,0) = z(1)(y).



84 H.G. Kaper, T.J. Kaper / Physica D 165 (2002) 66–93

Thus,

ϕ(1)(y, ε) = z(0)(y)+ εz(1)(y)+O(ε2),

and the theorem is true for� = 1.
Suppose the theorem is true for�− 1,ϕ(�−1) = ∑�−1

i=0 ε
iz(i) +O(ε�). The functionϕ(�) is defined by Eq. (6.7),

ε(Dyϕ
(�−1))(y, ε)f (y, ϕ(�)(y, ε), ε) = g(y, ϕ(�)(y, ε), ε).

We expand each term in powers ofε and equate the coefficients of like powers,

j−1∑
i=0

(Dyz
(i))f (j−1−i) = g(j), j = 1,2, . . . , �,

wheref (·) andg(·) are the functions defined after Eq. (7.5). Forj = 1, . . . , �, these are exactly the same functional
identities as we derived above. Hence, order by order, the solution is

∂iεϕ
(�)(y,0) = z(i)(y), i = 0,1, . . . , �.

This proves that the theorem is true for�. �

Remark. In general, the coefficient ofε2 in ϕ(1) will not be equal toz(2). This may be seen by direct examination
of theO(ε2) equation,

(Dz(0))(y)((Dzf )z
(1) + fε) = 1

2(D
2
z g)(z

(1), z(1))+ (Dzgε)z(1) + 1
2gεε,

which differs from Eq. (7.4). The latter has two additional terms, namely,(Dzg)z
(2) and(Dz(1))f . Hence, the first

iterate generally involves an error ofO(ε2). Similarly, the�th iterate does not give the same equation for the term at
orderO(ε�+1) as compared with that obtained from invariant manifold theory; hence, the error in the approximation
at this stage is generallyO(ε�+1).

A comparison of the results given in Theorem 7.1 with Theorem 2.1 leads to the following conclusions.

Corollary 7.1. The iterative method of Fraser and Roussel gives successively higher-order asymptotic approx-
imations to the slow manifoldMε. Starting fromϕ(0) = h0, � applications of the iterative procedure give an
approximationϕ(�) that satisfies

ϕ(�) =
�∑
i=0

εih(i) +O(ε�+1), � = 1,2, . . . , (7.19)

where the functionsh(i) are the coefficients in the asymptotic expansion ofMε given inTheorem 2.1, Eq. (2.12).

Remark. The result of Corollary 7.1 was shown for a special class of planar fast-slow vector fields in Ref. [46].
Also, in Ref. [62], Roussel and Fraser noted the connection between their iterative approach and techniques from
dynamical systems theory, such as deriving the existence of certain invariant manifolds via application of the
contraction mapping principle to appropriate integral equations.
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8. The MMH model

In this section, we illustrate the analytical results of the preceding sections on the MMH model. The MMH model
is a prototype reaction mechanism for enzyme kinetics in biochemistry [21]. It is a planar fast–slow system, which
is given in nondimensional form by the equations

ẏ = −y + (y + a − b)z, (8.1)

εż = y − (y + a)z. (8.2)

The variables arey, the concentration of the substrate, andz, the concentration of an intermediate substrate–enzyme
complex. The parametersa andb satisfy the inequalitiesa > b > 0.

Remark. The MMH model, Eqs. (8.1) and (8.2), is derived from a more complicated system involving four species
(enzyme, substrate, enzyme–substrate complex, and product) and two reactions (one reversible, one irreversible).
The full system can be reduced to the planar system, because it has two conserved quantities; see Ref. [21].

The system of equations (8.1) and (8.2) has a family of slow manifoldsMε, whose asymptotics are given by
Eq. (2.12),

hε(y) = h0(y)+ εh(1)(y)+ ε2h(2)(y)+ · · · , y > 0, (8.3)

where

h0(y) = y

y + a , (8.4)

h(1)(y) = aby

(y + a)4 , (8.5)

h(2)(y) = aby(2ab− 3by− ay− a2)

(y + a)7 . (8.6)

We now show that the ILDM method yields an approximation of the slow manifold that is accurate up to and
including theO(ε) term, but differs atO(ε2) because of the curvature ofh0.

The Jacobian of the vector field associated with Eqs. (8.1) and (8.2) is

J =
( −(1 − z) y + a − b
ε−1(1 − z) −ε−1(y + a)

)
, (8.7)

and its eigenvalues are

λs,f (y, z) = −1

2

(
y + a
ε

+ 1 − z
)

±
√

1

4

(
y + a
ε

+ 1 − z
)2

− b(1 − z)
ε

. (8.8)

The (nonnormalized) slow eigenvector is

vs =
(
λs + ε−1(y + a)
ε−1(1 − z)

)
, (8.9)
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and there is a corresponding fast eigenvector. The vectorvs spans the slow subspace. As noted before, the fast and
slow subspace are not orthogonal, so we work withv⊥s and define the ILDM as the set of points where the vector
field is orthogonal tov⊥s ,

(1 − z)[−y + (y + a − b)z] − (λs + ε−1(y + a))[y − (y + a)z] = 0. (8.10)

Asymptotically, the ILDM is given by

z = ψ(y, ε) = ψ(0)(y)+ εψ(1)(y)+ ε2ψ(2)(y)+ · · · , (8.11)

where

ψ(0)(y) = y

y + a , (8.12)

ψ(1)(y) = aby

(y + a)4 , (8.13)

ψ(2)(y) = aby(2ab− by− ay− a2)

(y + a)7 . (8.14)

A comparison of the coefficients in the expansions (8.3) and (8.11) shows agreement of theO(1) andO(ε) terms.
On the other hand, theO(ε2) terms differ; their difference is proportional to the curvature ofh0,

ψ(2) − h(2) = 2ab2y2

(y + a)7 = −f
2

g2
z

h′′
0. (8.15)

Remark. For planar systems, Ref. [51] introduces a curve, called the A-inflector, which is equivalent to the ILDM.
It is found as the set of points at which the vector field is parallel to the slow eigenvector, and it is interpreted as
the set of points at which the trajectories near the slow manifold have inflection points in the(y, z) plane. This
A-inflector is given for the MMH model in Ref. [52, Eq. (5.2)]; the explicit formula involvesy as a function ofz.

Remark. For the planar MMH problem, Roussel [59] also finds a curve, labeled the slow tangent manifold, that
is equivalent to the ILDM. The formula for this curve [59, Eq. (3.2.19)], is derived by solving the ILDM equation,
which is a quadratic iny and a cubic inz, explicitly for y as a function ofz, as in Ref. [52].

The iterative method of Fraser and Roussel starts from the invariance equation,

z = y + εzyy
y + a + εzy(y + a − b) (8.16)

or, equivalently,

z = y

y + a + ε byzy
(y + a)2 − ε2 by(y + a − b)z2y

(y + a)3 + ε3 by(y + a − b)2z3y
(y + a)4 + ε(y + a)3(y + a − b)zy . (8.17)

Successive applications of the iterative algorithm lead to the approximations

ϕ(0) = y

y + a , (8.18)

ϕ(1) = y

y + a + ε aby

(y + a)4 − ε2a
2by(y + a − b)
(y + a)7 +O(ε3), (8.19)
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ϕ(2) = y

y + a + ε aby

(y + a)4 + ε2 aby(2ab− 3by− ay− a2)

(y + a)7 +O(ε3). (8.20)

A comparison with Theorem 2.1 (and Eqs. (8.4)–(8.6)) shows thatϕ(�) is asymptotically correct up to and including
terms ofO(ε�) for � = 1,2 (and beyond), as predicted by the analysis.

Remark. We refer the reader to Refs. [54,55,71] for further analyses of the MMH model in the context of singular
perturbation theory. The last two references significantly extend the domain in parameter space where the model
can be analyzed by using separation of time scales.

9. The Davis–Skodje model

The planar fast–slow system

ẏ = −y, (9.1)

εż = −z+ y

1 + y − εy

(1 + y)2 , (9.2)

was introduced by Davis and Skodje [7] as a model on which to compare various reduction methods. (The inverse,
ε−1, which is large, equals the large parameterγ of Ref. [7].)

For anyε, the curve

z = hε(y) = y

1 + y , y ≥ 0, (9.3)

is invariant under the dynamics of Eqs. (9.1) and (9.2). Therefore, the functionhε represents the slow manifold
exactly ony ≥ 0 for all smallε > 0. (The nonlinearity in Eqs. (9.1) and (9.2) was, in fact, chosen so the slow
manifold is given by the simple expression of Eq. (9.3).)

The Jacobian of the vector field is

J =
( −1 0

ε−1((1 + y)+ ε(y − 1))(1 + y)−3 −ε−1

)
, (9.4)

and the eigenvalues areλs = −1 andλf = −1/ε for all (y, z). The corresponding (nonnormalized) eigenvectors
are

vs =
(

1

(1 − ε)−1(1 + y + ε(y − 1))(1 + y)−3

)
, vf =

(
0

1

)
. (9.5)

The ILDM is given by the expression

z = ψ(y, ε) = y

1 + y + 2ε2y2

(1 − ε)(1 + y)3 , (9.6)

cf. [7, Eq. (3.8)]. Its asymptotic expansion is

z = y

1 + y + ε2 2y2

(1 + y)3 + · · · . (9.7)

The error in the expansion isO(ε2) and proportional to the curvature,h′′
0 = −2/(1 + y)3.
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The invariance equation is

z = y

1 + y − ε y

(1 + y)2 + εyzy, (9.8)

from which one readily verifies that the iterative method of Fraser and Roussel yields the approximationϕ(�)(y) =
y/(1 + y) for � = 1,2, . . . .

Remark. If one restricts the variabley to a finite interval, then the system of equations (9.1) and (9.2) has a family
of slow manifolds, all exponentially close (O(e−c/ε) for somec > 0) to the exact slow manifold, Eq. (9.3).

10. Discussion

The fast–slow system of equations (2.1) and (2.2) captures the essential elements of any reaction mechanism
whose long-time dynamics evolve on a slow manifold in the composition space. As stated in Section 2, however,
this system is a mathematical idealization, and we need to consider how the results of the analysis carry over
to more general reaction mechanisms. In this section, we consider issues related to the separation of time scales
(Section 10.1), the inclusion of conserved quantities (Section 10.2), and the development and analysis of reduction
mechanisms for reaction–diffusion equations (Section 10.3).

10.1. Separation of time scales

In this section, we discuss the partition of variables into a fast and a slow group and the assumption that the groups
evolve on time scales that are and remain well separated at all times. This assumption underlies the definition of the
small parameterε in the model of Eqs. (2.1) and (2.2). We also discuss the possibility of partitioning the variables
in more than two groups.

While many of the systems to which reduction methods have been applied satisfy this assumption, there are a
significant number of reaction mechanisms where the fast and slow time scales are separated, but not well separated.
This is the case, for example, whenε is no longer an asymptotically small parameter but a fixed (relatively small)
number. In such cases, the spectral gap between the fast and slow eigenvalues of the Jacobian of the vector field
is small, much smaller than the chasm between the fastO(ε−1) eigenvalues and the slowO(1) eigenvalues for
asymptotically smallε, even at points near a low-dimensional manifold. Nevertheless, as long as there exists a
nonzero spectral gap, the Jacobian can still be reduced to a fast and a slow component, and the ILDM method
can be (and has been) implemented numerically. Part of our ongoing research is aimed at using spectral projection
operators to analyze these applications of the ILDM method.

In addition, there are reaction mechanisms where the number of fast and slow species changes over time, as may
happen, for example, when the temperature in the chemical reactor changes and the least-slow of the slow species
transits to the group of fast species. To account for this type of occurrence, practical implementations of the ILDM
method may use one ILDM until the crossover occurs and another after the crossover. The two procedures can be
linked by doing a numerical integration of the full system of equations during the crossover. The analysis presented
in this paper applies to each ILDM separately. However, it should be noted that the relationship between these two
ILDMs (and, more generally, slow manifolds) depends on the bifurcation that occurs at crossover. As an alternative,
one may consider repartitioning the species to avoid crossover altogether.

In some systems, a component ofy may evolve on an even slower time scale than that given byτ = εt . For
example, in Eq. (2.1) one may havey′

i = ε1+γ fi(y, z, ε) with γ > 0 for some indexi. Such cases are accounted
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for by the present analysis; in fact, it suffices to absorb the factorεγ in fi . On the other hand, the fact that there
are slower time scales in the model may point to the existence of still lower-dimensional slow manifolds. By
systematically eliminating fast variables, starting with the fastest and proceeding up the hierarchy, one can reduce
the dimensionality of the slow manifold in a systematic way until no further reduction is possible. Such an approach
has been used, for example, in Refs. [62,89]. The idea of a hierarchy of time scales was first explored in singular
perturbation theory by Tikhonov [79].

10.2. Conserved quantities and the ILDM method

In this section, we briefly consider the ILDM method for fast–slow systems whose dynamics are described by
Eqs. (2.1) and (2.2), where the unknowns satisfy one or more conservation laws. For models of chemical reactions,
a conserved quantity is, typically, a linear combination of several unknowns that is constant in time. Conserved
quantities give rise to zero eigenvalues of the Jacobian of the vector field, and the ILDM method groups these zero
eigenvalues with the slow ones.

Degeneracies in the Jacobian affect the analysis of the ILDM method. Consider, for example, a system given
by Eqs. (2.1) and (2.2) withm = 2 andn = 2, which has one conserved quantity. If the conserved quantity
is a linear combination of the two slow variables, then the first and second row of the Jacobian are linearly
dependent. In this case, there is effectively only one slow variable, and the analysis presented in this paper ap-
plies to the one-dimensional slow manifoldM0. If, by contrast, the conserved quantity is a linear combination
of the two fast variables, then not only isJ degenerate, but also the columns ofDzg(y, h0(y),0) are linearly
dependent; hence,M0 is not asymptotically stable in the four-dimensional composition space. A reduction of
the number of fast variables by one lifts this degeneracy, becauseM0 is asymptotically stable in the reduced
three-dimensional composition space. Other possibilities are that a conserved quantity depends on a mix of fast
and slow variables or that there are multiple conserved quantities. In each case, the analysis of the ILDM method
presented here applies once the system has been reduced to a system for which the manifoldM0 is asymptotically
stable.

10.3. Reaction–diffusion equations

Reduction methods have also been developed for systems ofreaction–diffusion equations[20,26,29,32,36,73,83,
89,90]. The elimination of the fast species affects not only the reaction kinetics of the slow species (as is the
case for the kinetics reduction methods considered in this paper) but also their diffusivities. For systems where
the fast and slow species have been separated, the “effective” diffusivities differ from the ordinary diffusivities by
concentration-dependent terms that are higher order inε. See [29, Section 7.6] for an example where the diffusivities
are changed to leading order.

We illustrate this phenomenon on the MMH model with diffusion of the slow species,

ẏ = −y + (y + a − b)z+D1y, (10.1)

εż = y − (y + a)z. (10.2)

The variablesy andzdepend not only on time but also on space;1 is the Laplace operator. Ideas from inertial-manifold
theory have been applied to this reaction–diffusion system [89]. The slow manifold is infinite dimensional, its asymp-
totics are given by

z = y

y + a + ε
[

aby

(y + a)4 − a

(y + a)3D1y
]

+O(ε2), (10.3)
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and the reduced reaction–diffusion equation up to and including terms ofO(ε) is

ẏ = −y + (y + a − b)
(
y

y + a + ε aby

(y + a)4
)

+D
(

1 − ε a(y + a − b)
(y + a)3

)
1y. (10.4)

The regular diffusivityD is seen to be corrected by anε-dependent term that involves the concentration of the slow
species.

Singular perturbation theory provides an alternative method to find the infinite-dimensional slow manifold and,
hence, the reduced reaction–diffusion equation for this and similar systems. In particular, one finds an asymptotic
expansion for the slow manifold of the form

z = h0(y)+ εh(1)(y,1y)+ ε2h(2)(y,1y,12y)+ · · · . (10.5)

For the MMH model, this procedure leads to the same expansion of the slow manifold, Eq. (10.3), and dynamical
systems theory states thatMε is the infinite-dimensional weak stable manifold of the spatially homogeneous state
(0,0).

We remark that one can include diffusion of the fast variablez, but only if the diffusion coefficient isO(ε),

ẏ = f (y, z, ε)+D11y, (10.6)

εż = g(y, z, ε)+ εD21z. (10.7)

In this case,z(0) is independent ofD2, and one can follow the same asymptotic procedure as before; the diffusion
coefficientD2 enters into the equation of orderO(ε). However, if the diffusion term in the fast equation isO(1),
the asymptotic procedure for findingz(0) breaks down.
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