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Preface

For some time, we have been interested in the development and application of asymptotic

methods for the numerical solution of boundary value problems with critical parameters--

that is, parameters that determine the nature of the solution in some critical way. We are

thinking, for example, of fluid flow (viscosity), combustion (Lewis number), and supercon-

(lllctivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth over

wide range of parameter values, but as the parameters approach critical values, compli-

cated patterns may emerge. Boundary layers may develop, or the region over which the

solution extends may take on the appearance of a patchwork of subregions; on each sub-

region, the solution is smooth, but between subregions the solution undergoes dramatic

changes over very short distances. Shock layers in fluid flow are a visible manifestation of

this type of behavior.

Boundary value problems with critical parameters pose some of the most challenging

problems in computational science, and much effort is being spent on developing new tech-

Ifiques for their numerical solution. Some of the most useful techniques, in particular on

parallel computing architectures, are based on domain decomposition. In a domain decom-

position method, one partitions the domain into subdomains, appro_mates the solution

on each subdomain, and assembles these solutions to obtain an approximate solution on

the entire domain. Many criteria, involving considerations from linear algebra to computer

architecture, go into the design of a useful domain decomposition method. Our aim is to

explore the use of asymptotic methods.

Asymptotic analysis, in particular singular perturbation theory, is the study of boundary

value problems involving critical parameters. It provides a methodology to identify and

characterize boundary layers, transition layers, and initial layers; hence, our idea to use

asymptotic methods in the design of domain decomposition algorithms.

We have organized two workshops on the subject of asymptotic analysis and domain

decomposition: a workshop at Argonne, jointly sponsored by the Department of Energy and

the National Science Foundation (February 1990), and a NATO Advanced l_esearch Work-

shop in Beaune, France (May 1992). Proceedings of these workshops have been published

(Asymptotic analysis and the numerical solution or'partial differential equations, edited by

t[. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics - Vol. 130,

Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partiM ditt'er-

ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematical

and Physical Sciences - Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).

We currently have plans to develop a full-length book on the subject. To formulate

our thoughts before final publication, we intend to produce a series of Working Notes on

various relevant topics. Some of the notes will contain new material; others may offer new

presentations of e.xisting material. We certainly expect the notes to evolve in time; the



notes may or may not appear eventually as chapters of the book. The notes are intended

for our own use, but we will be happy to supply copies to interested colleagues.

Marc Garbey, Lyon, France

Hans G. Kaper, Argonne, Illinois, USA
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ASYMPTOTIC ANALYSIS

Working Note _1

BASIC CONCEPTS AND DEFINITIONS

by

Marc Garbey and Hans G. Kaper

Abstract

In this note we introduce the basic concepts of asymptotic analysis. After some

comments of historical interest (Section 1), we begin by defining the order relations O,
o, and OI, which enable us to compare the asymptotic behavior of functions of a small
positive parameter e as e I 0 (Section 2). Next, we introduce order functions (Section 3),
asymptotic sequences of order functions (Section 4), and more general gauge sets of

order functions (Section 5) and define the concepts of an asymptotic approximation
and an asymptotic expansion with respect to a given gauge set (Section 6). This string
of definitions culminates in the introduction of the concept of a regular asymptotic
expansion, also known as a Poincar6 expansion, of a function f : (0, _0) --_ X, where X

is a normed vector space of functions defined on a domain D Ert N. We conclude the
note with the asymptotic analysis of an initial value problem whose solution is obtained

in the form of a regular asymptotic expansion (Section 7).

1 From Euler to Poincar

Asymptotic analysis is the art of comparing functions whose graphs "do not meet" (Gr.

5-avv-m'_'reev); the graphs may get close, even arbitrarily close, but they may not have

any point in common. In particular, it is the art of expressing the asymptotic behavior of

functions that are defined implicitly--for example, as solutions of boundary value problems

or initial value problemsMin terms of functions whose asymptotic behavior as parameters

or variables approach critical values is known.

Asymptotic analysis as a scientific method for comparing functions and their graphs

goes back to the French mathematician Henri Poincarfi, who, in the first volume of his

monograph Les m6thodes nouvelles de la m_canique c_leste (1892), established a theoretical

framework for the asymptotic approximation by series that are divergent in the customary

sense [1, Chapter 7]. Divergent series had received the attention of various mathematicians

in the eighteenth and nineteenth century; in fact, it is still instructive to consider Euler's



publication [2] of 1754 on the subject. El-let discussed the series

oo

s(=)=
n-'O

which diverges for all x E R. except z = 0. Euler observed that, for small Izl, succes-

sive terms of the series decrease quite rapidly; he asked what function might possibly be

represented by the sum of the first few terms. Because n! = f_ e-tt '_ dr, we have

o+= =
rl=0

so if we could interchange the order of the summation and the integration, it would follow

that S(x)= f(x), where

_0 °° e -tf(z) = 1 + z'--""-tdt.

Of course, the order of the summation and integration cannot be interchanged, so we have

no right to conclude that S(z) = f(z). On the other hand, f is well defined, even analytic

in the complex plane cut along the negative x axis. Hence, it is not unreasonable to ask

whether the sum S(z), taken to a finite number of terms, represents some approximation

to f(x). Indeed, as Euler showed,

f(=)= +

where S_ is the partial sum,

m-1

n-'O

and the remainder Rm satisfies the estimates

m! Ixl 'n if Re(x) _>0,IR.,(z)] < m! ]zJm cosec(arg(x)) if Re(x) < 0.

In either case, Rm is of the order of the first "neglected" term in S,n, and Rm(x) tends to

0 as x tends to 0. Thus, Euler identified pre_.isely those properties that Poincar6 used over

a century later to formalize the concept of an "asymptotic approximation."

We also mention the work by Pierre Da Bois-Reymond, who published a series of articles

in 1870-71 on the foundation of a calculus with infinitesimally large quantities. Du Bois-

Reymond singled out the crucial notion of "asymptotic scales," which was eventually given

its rigorous and definitive form by ttardy [3]. References to Du Bois-Reymond's articles

are given in [3, Appendix 1].

Thus, although the development of asymptotic analysis cannot be traced back to the

Babylonians, there existed at least a considerable body of knowledge related to the subject



prior to Poincar_. But the honors certainly go to Poincar_, who introduced the concept

of an asymptotic ezpansion. This concept, which is broader than that of an asymptotic

series, made it possible to give a rigorous meaning to approximations like Euler's and to

exploit asymptotic methods for practical purposes. Today, the concept covers, in particular,

many topics related to differential equations and perturbations involving a sma/l (or large)

parameter.

2 Order Relations

Throughout most of this book we will be comparing functions that are parameterized by

a "small positive parameter," e. That is, e is confined to an interval (0, e0), where e0 is an

arbitrarily small fixed positive number. "Generic constants" do not depend oil e (but may

depend on _0).

We begin by considering continuous positive-valued functions that depend only on ¢.

Definition 1 Let f and g be continuous positive-valued functions on the interval (0, co) for

sore" e0 > 0. (i) f = O(g) as e _ 0 if there exist an eo > 0 and a positive constant C,

which may depend on _o, such that f(e) < Cg(e) for all e E (0, co). (ii) f = o(g) as e _ 0

ij] for every positive constant c, there exists an eo > O, which may depend on c, such that

[(e) < eg(e) for all e E (0, e0). (iii) f = O_(g) as e I 0 if f = 0(9) and f ¢ o(g) as e _ O.

The symbols O, o, and O _ are pronounced "big-oh," "little-oh," and "big-oh-sharp,"

respectively. The notation O and o goes back to Pfeiffer [4, p. 1-21], Bachmann [5, p. 401],

and Landau [6, p. 61]; O and o are known as the Landau symbols. Sometimes, we shall

use a notation due to Hardy [3], writing f _ g instead of f = O(g) and f < g instead of

f = o(g). The symbol 0 _ is denoted O_ in Eckhaus [7]. If f = OU(g), then there exist

positive constants CI and C2 such that C]g(e) < f(e) < C2g(e) for _11 _ E (0,_0). We often

omit the quantifier "_s e _[0."

Exercises

1. Prove that the symbol O provides a partial ordering (that is, O is reflexive and transitive) on the set
of all continuous positive-valued functions on (0, e0). Is the same true for the symbols o and O_?

2. Show by giving a counterexample that the partial ordering introduced by the symbol O on the set of
all continuous positive-valued functions on (0, e0) is not a total ordering. (That is, there are elements
f and g in the set for which neither f = O(g) nor g = O(f).)

3. The symbol O defines an equivalence relation, f _-,g, if f = O(g) and g = O(f). Prove that (a) f _ g

impfies that f ¢ o(g) and g ¢ o(f); (b) f _ g is sufficient, but not necessary for f = Ol(g).

4. Show by giving a counterexample that the two relations f -4 g and f _ g dn not imply that f -<g.



5.Compare,ifpossible,thefunctionsf(e)= e2andg(e)= esin2(1/e)+ ea.

The symbols 0 and o obey certainalgebraicrules.Here area few examples: (i)If

f = O(h) and g = O(h), then f + g = O(h) and f-g = O(h). (2) If fl = O(gl) and

./'2 = O(g2), then flf2 = O(glg2). (3) If f = O(g) and A is a positive constant, then

fA = O(gA); other rules are found in the exercises. Similar rules hold for the symbol o.

Exercises

1. Show that, if f = o(g) and both f and g tend to infinity as e _ 0, then g-I = o(f-l).

2. Show that, if f = O(g), then f = O(G), where F(e) = fo"]'(71)d_?and G(e) = fo"gO7)d_1.(That is,
order relations can be integrated with respect to parameters.)

3. Show by giving a counterexample that, if f and g are differentiable and / = O(g), then it is not
necessarily true that f' = O(g'). (That is, order relations cannot be differentiated with respect to
parameters.)

Next, we consider variable functions whose values depend not only on e, but also on

additional variables, which we denote collectively by z = (xl, x2,...,XN). The variable z

ranges over a domain D C RN. 1 We consider these functions as maps from the interval

(0, co) into normed vector spaces of functions defined on D. That is, we associate a variable

function f on (0, e0) × D with a vector f(e) E X by making the identification

f(_)(x) = f(c,x), x e D.

ttere, X is a normed vector space with the norm II " [Ix. We always assume that the map

e_ IIf(e)llx is continuous.

Definition 2 Let f " (0, e0) _ X and g "(O, eo) _ Y be continuous maps from the interval

(0, e0) into the normed vector spaces X and Y, respectively. (i) f = O(g) as E _ 0 if

If(e)tlx = O(llg(e)lly ) as e J. O. (ii) f = o(g) as e _ 0 if IIf(e)[Ix = o(llg(_)l]y ) as E l O.

(iii) f - O_(g) as e _.0 if II/(OIIx - o (llg(Ollr) as e £0.

The order relations for variable functions depend intimately on the choice of the normed

vector spaces. One usually takes X = Y when comp;tring variable functions f and g defined

on the same domain D, but this choice is certainly not necessary. (Recall that nonequivalent

norms define different topologies and therefore different function spaces.) In many situations

we will be comparing a variable function defined on (0, co)× D with a positive-valued function

defined on (0, co). In such cases, we can take X to be any normed space of functions on

D and Y = R+ with the ususal topology. Thus, the distinction between "variable" and

nonvariable functions becomes irrelevant. We will usually indicate the normed vector

spaces X and Y explicitly, unless the choice is clear from the context.

1A domain is an open set, which may be bounded or unbounded. The se_ of boundary points of D is
OD, and "D= D tOOD. Sometimes, we shall refer to functions defined on a set D that contains some or all
of its boundary points; in that case, we assume that the function is defined on an open set that contains D
or that one-sided limits are considered at the included boundary points.



Exercises

1. Considerthe function f(z,e) "- e-z/_ on (0,1) × (O,eo) as a map from (O,e0) into X. Show that
(a) f = OJ(1) if X = L°°(O,1); (b) y = OJ(_-1) if X - W1'°°(0,1); (c) f - O_(eI/_) if X = L_(O,1);
(d) f = Ol(e-1/2) if X - WI'_(O,1). Here, Lp and Wp'qare the usual Lebesgueand Sobolev spaces.

3 Order Functions

The fundamental idea in asymptotic analysis is to compare the behavior of one function as
e _ 0 with that of another whose behavior as e _ 0 is known or at least simpler than that of

the original function. For this purpose it is useful to define a set of comparison functions
that is in some sense dense in the set of continuous functions.

Definition 3 An order function is a monotone continuous positive.valued function on

(0, e0). The set of all order functions is denoted by O.

The set O is sufficient for the asymptotic study of all continuous positive-valued func-

tions, as the following theorem shows. The theorem was first formulated by Eckhaus [7].

Theorem 1 For every continuous positive-valued function f on (0, Co) there exists an ele-

ment 5 E 0 such that f = 0_(_).

Proof. If lim,t0 f(e) e_sts and is (finite and) positive, it suffices to take 5(e) = 1. If

limit0 f(e) exists and is 0, we take 8(e) = sup{f(r/): 7/e (0, e)}. If lim¢10 f(e ) does not exist

(as a finite number), we take _(E) = sup{f (r/): r/e (e, e0)}. II

Examples of order functions are 1, e, e -x/c, and log(I/e).

Exercises

1. Which of the followingare order functions: (a) el/5, (b) e1/_, (c) 1+sin(I/e), (d) e-1/_(1 +sin(l/e)),
(e) log(sin(e)), (f)log(sin(l/e)). .

2. Show that, if f = O(_), then f/c5 = O(1). Does the same property hold for the symbols o and O_?

4 Asymptotic Sequences and Asymptotic Series

As can be seen from the examples, some order functions have a finite limit, others an

infinite limit as e _ 0. In fact, it is not difficult to show that every order function has a



(finite or infinite) limit as e _ 0. This observation motivates us to view O as the union of

two sets, O = O1 U 02, where the elements of O1 have a finite limit and those of (92 have an

infinite limit as e _ 0. Each of these subsets is closed under the operations of addition and

multiplicatior.. Thus, we can form sequences of order functions by taking successive powers,

for example, {e'_ : n = 0, 1,...}, {e-'_/_ :n = 0, 1,...), and {(log(1/e))n:n = O, 1,...).

Sequences of this type, which are linearly ordered, play an important role in asymptotic

analysis.

Definition 4 (i) A linearly ordered sequence {6n : n = O, 1,...} of order .functions 6n E 0

is an asymptotic sequence /f 6n+1 = o(6,,) for all n. (ii) A linearly ordered sequence {fn :

n = O, 1,...) of ]'unctions fn on (0, e0) X D is an asymptotic sequence if there exists an

asymptotic sequence of order functions {6n : n = O, 1,...) such that fn = O_(6n) for all n.

I[_'re, the sequences can be finite or infinite.

Asymptotic sequences generate asymptotic series by the usual linear operations.

Definition 5 A sum Y_n anfn is an asymptotic series if {fn : n = O, 1,...) is an asymptotic

sequence and the coefficients an are all O_(1). An asymptotic series can have a finite or

infinite number of terms.

The concept of an infinite asymptotic series is purely formal; nothing is said about the

convergence or divergence of the series. In fact, the question of convergence of an asymptotic

series plays no role in asymptotic analysis.

A relation of the type 6n+1 = o(&_) is usually interpreted to mean that "6n+1 is asymp-

totically smaller than 6,_." One might ask whether, in the s¢ O, there exist sequences

of order functions that become "arbitrarily small" in the asymptotic sense. The following

theorem, essentially due to Du Bois-Reymond, shows that this is not the case [3].

Theorem 2 For every asymptotic sequence {6n : n = O, 1,...} there exists an order func-

tion 6 E 0 such that 6 = o( 6,_) for all n.

PTvof. If lim_106n(e ) is positive for all sufficiently large n, it suffices to take g(e) = 1.

Suppose _n = o(1) for all sufficiently large n. Then there certainly exists a monotonically

decreasing sequence {en :n = 1,2,...} of positive numbers en E (0, e0) converging to zero,

such that, for each n, &_+x(e) < 6,_(e) for all e E (0, e,_). Applying a diagonal procedure,

we define 6 as a monotone continuous function on (0, co) such that 6(en) = 6n+x(en). Then

6(e)/6n(e) < _n+x(e)/6n(e) for all e E (0, e,_), where the upper bound tends to 0 as e _ 0. II

As an example, consider the asymptotic sequence {&_ : n = 0, 1,...} with 6,_(e) = en.

Here 6 = o(6,) ior n = 0, 1,... for 6(e) = e-x/t. Functions of the order of magnitude of 6

are often called "transcendentally small."



Exercises

1. Show that, for any nontrivial function f on (0, co) × D, there exists an order function _ E O such that

.f=

5 Gauge Sets

In an asymptotic sequence, there is a linear ordering of the elements as indicated by the

index n. Such an ordering does not always exist in the more general concept of a gauge set,

which we now define. (A "gauge" is an instrument for or a means of measuring. Hint for

nonnative English speakers: "gauge" rhymes with "cage.")

Definition 6 (i) A gauge set is a subset of 0 that is totally ordered with respect to the

relation "-_ or =." A gauge set is denoted by _. (ii) A function f • (0, e0) _ X is

measurable with respect to _ if there exists an element _ E _ such that f = 0_(_) as e _ O.

J

Observe that the element _fin part (ii) of the definition is uniquely determined once the

gauge set g"is given.

An example of a nontrivial gauge set is _ = {e'_(log(1/e)) -n : m, n = 0, 1,...}. Although

L" is countable, its elements cannot be ordered a_ in an asymptotic sequence; here, the

natural ordering is lexicographical--that is, if 8,n,,,(e) = Era(log(i/e)) -n, then 6p,q = o(Sm,n)

if p > m or if p = m and q > n.

If an operation like multiplication or inversion maps the elements of a given gauge set

into elements that are measurable with respect to the same gauge set, we say tha_ the gauge

set is stable under the given operation.

Exercises

1. Verify that the gauge set {em(log(1/_.)) -n : m, n = 0,1,...} is stable iznder multiplication, differenti-

ation, and integration.

2. Show that the set {e-P/e(log(1/e))q : p, q E Q} is a gauge set. (Q is the _et of all rational numbers.)

Is this set stable under integration?

6 Asymptotic Approximations and Asymptotic Expansions

Given a gauge set _, we can define the concept of an asymptotic approxima,tion.



Definition 7 The function g : (0, e) _ X is an asymptotic approximation of the order of

6 of the function f : (O, e0) -* X if there exists a gavge _5E _ such that g = OU(6) and

f- g = 0(6).

If the function f in Definition 7 is itseff also 0_(5), and the order function 6 is clear

from the context, we may use the special notation f ,,, g to denote that g is asymptoticlly

similar to f. Thus, f ,,_g implies both f - g -" o(f) and f -- g = o(g).

If the gauge set £ is an asymptotic sequence with the natural ordering, we can repeatedly I
apply the definition to find asymptotic approximations of successively higher order,

g = f - (((f- go)- gl) .... ),

where go = 0_(6o), gx = 0_(_1), .... The approximation obtained after m steps is g =
m--1

_n=o gn; by rescaling, we obtain what is called an asymptotic expansion.

Definition 8 An asymptotic expansion of the function f : (0, _o) "* X is an asymptotic

approximation g : (0, eo) _ X of the form g(e,z) = __,n 6n(e)fn(e,x), where each coefficient

f,_ " (0, eo) ---, X satisfies the order relation f,_ = 0_(1). The asymptotic expansion is said

to be to m terms if the sum contains m terms (n = O,...,m- 1); here, m can be finite or

infinite.

The case where the functions fn in the asymptic expansion are independent of e is special
and merits discussion.

Suppose f : (0,e0) _ X has an asymptotic approximation g : (0,eo) _ X of the form

g(e,z) = _n _n(e)fn(z), where each fn e X is independent of e. Then,

lim llft")(e)/6,,(,)- f, llx - o, n = o,1,...,
el,O

where f(°)(e) f(E) and f(n)(e) f(e) n-I= = - _p=0 6p(e)fp for n = 1,2, .... Hence, the fact
that f has an asymptotic expansion with E-independent coefficients implies that there exist

nontrivial functions f0, fl,.., in X such that each fn is the limit as e _ 0 of an expression

involving f and the previous coefficients f0,..., fn-1. In other words, the coefficients are

uniquely determined (with respect to the given gauge set) and can be calculated explicitly

by taking limits in X. This property is very special and motivates the final definition of

this chapter.

Definition 9 The function f : (0, e) _ X has a regular asymptotic expansion on D if

there exist an asymptotic sequence {6,, : n = O, 1,...} of order functions _,_ and a nontrivial

sequence {fn : n = 0, 1,...} of elements fn E X, which do not depend on e, such that the

function E f : (0, eo) _ X a_d by the expression E f(e) = En 6n(')fn is an asymptotic

approximation of f on D.



We emphasize that "regularity" is an attribute of the asymptotic expansion of a function,

not of the function itself. In fact, it is easy to think of examples of functions that have

a regular asymptotic expansion, yet are singular in the sense of the classical theory of
functions.

The discussion preceding Definition 9 is summarized in the following theorem.

Theorem 3 The coefficients fn E X in a regular asymptotic expansion E f = _n 6nfn of

f :(0, Eo) _ X are uniquely determined and found by taking limits in X,

f_=lim n=0 1,..
' ' "'

where f(°)(e) f(,) and f(n)(,) f(,) n-1= = - Zp=o _p(_)fp for n = 1, 2, ....

A regular asymptotic appro_mation is sometimes called a Poincard expansion although

tt_e expansions considered by Poincard were of the general type, with coefficients that could

be e-dependent.

An asymptotic expansion may be defined up to a specified number of terms or up to a

specified order of accuracy, depending on the particular application. The number of terms in

the expansion may be finite or infinte: if it is infinite, nothing is said about the convergence

or divergence of the expansion.

Roughly speaking, an asymptotic expansion can fail to be regular in either of two ways.

It can be regular "almost everywhere" on D, that is, regular except on a subset of D

of (N-dimensional) measure 0; or it can be "strictly singular" on D, that is, nowhere

regular or regular outside some subset of D of positive measure. The latter situation occurs,

for example, when f is oscillatory and the limits that define the expansion coefficients

do not exist on D; the former situation is characteristic for problems with "boundary-

layer behavior." The asymptotic methods that have been developed for these two types

of problem are quite different and do not lend themselves to a comprehensive treatment.

In this book, the focus wiU be entirely on functions that show boundary-layer behavior.

R.eaders who are interested in oscillatory functions are referred to the literature on the

subject; we mention the monographs of Nayfeh [8] and Roseau [9, 10].

Exercises

1. Find the asymptotic expansionof f, definedby f(e, x) = (1 - ez/(1 + e))-I forx E [0,1], with respect

to the asymptotic sequence (a) {(e/(1 + e))n: n -"O,1,...}, and (b) {en: n - O,1,...}.



7 Regular Initial Value Problems

We conclude this chapter with an example to illustrate the concept of regular approxi-

mations and regular expansions. The example is concerned with a family of initial value

problems, parameterized by a small parameter e. The gauge set is £ = {en : n = 0, 1,...}.

Let {f(e) : e E (0, e0)} be a family of vector fields mapping a domain U in an (N + 1)-

dimensional Euclidean vector space with coordinates (t,z), where x = (zt,...,XN), (the

"extended phase space") into an N-dimensional Euclidean vector space with coordinates

(f 1,..., fN). The vector fields define a family of initial value problems,

5: = f(e,t,x), t > 0, z(0)= _, (7.1)

where _ is fixed. (The symbol " denotes differentiation with respect to t.)

Using the identification x(e)(t) = z((,t), we interpret (7.1) as an abstract initial value

,roblem for the vector-valued function x E C((0, e0); X), where X = (C([0,T]),]]. ]]oo)for

some T > 0. The values of z(e) are vectors that belong to some bounded set V C R.N, and

if T is sufficiently small, then the cylinder VT = [0, T] × V is entirely contained in U. We

prove the following theorem.

Theorem 4 If f(e) has a reqular asymptotic ezpansion ,n-1_"_n=oenfn on U, where fn is con-

tinuous with respect to t and (m + 1 - n) times continuously Frgchet differentiable with

respect to z for n = 0,...,m- 1, then the solution z(e) of (7.1) has a regular asymptotic

ezpansion ,,_-1_n=o enzn as e _ O. The leading coefficient zo is found by solving the differential

equation _o = fo(t, zo) for t > O, subject to the initial condition zo(0) = _; the higher-order

coefficients zn (n = 1,..., m- 1) are found by solving a linear inhomogeneous differential

equation of the form ic,_ = f_(t, zo(t))zn + bn(t) for t > O, subject to the initial condition

z,_(O) = O. Here, f_(t, zo(t)) is the Frdchet derivative of fo with respect to z at zo(t).

Proof. We prove the theorem successively for m = 1, 2, ....

(i) m = 1. Since x(e) is a solution of the initial value problem, it satisfies the integral

equation

/: /0
where f(1)(e) = f(e) - J'o. Let zo be the solution of the initial value problem

=/o(t, zo), t > o, zo(0)= (,

10



Consider the function x(1)(e) = x(e)- xo. It is defined in such a way that the equation

z(_)(e,t) fot /ot
- [fo(s,x(_,s))- fo(s,xo(s))]ds + f(1)(e,s,x(e,a))ds

is satisfied for all t. We estimate each integral in the right member.

According to the Mean Value Theorem for multidimensional mappings, we have

fo(s, x(e, s))- fo(8, Xo(S)) -- f_(s, Xo(S) + ax0)(e, s))x(1)(e, s),

where f_ is the Fr6chet derivative of f0 with respect to z and a = (al,...,aN) is a vector

with components between 0 and 1. More precisely,

f;(s, Xo(8) + o'x(1)(E, s)) = " ;

see, for example, [11, Section 3.2]. The Fr(ichet derivative, which is a linear operator from

R N into itself, is uniformly bounded on the convex compact set VT, so

[fo(s,x(E,s))-fo(s, xo(s)) I <_CIx(')(e,s)l,

for some positive constant C. Thus we obtain the following estimate for the first integral:

If0 t [fo(S, x(e, a))- fo(s, x0(s))] dsl<C fot ,x(1)(e, s), ds.

Next, we observe that f(1)(e) = O(e) as e _ O, so there exists a positive constant c such that

f(1)(e) < ce on VT. Thus we obtain the following estimate for the second integral:

Ifotf(1)(e,s,z(e,s)) dsl <_ect.

Combining these two estimates, we conclude that

_<c]o' d,+
Using Gronwall's inequality, we obtain the estimate

_<(:,- 1);
hence, taking the supremum over all t E [0, T], we obtain

ii_(_)(_)ll<_, (:_ _ _)_<EC t .

11



In other words, x(1)(e) = O(e). This proves the claim for m = 1.

(5) m = 2. The proof is similar, but more complicated. We take xo from step (i) and

define xl as the solution of the initial value problem

xl = fD(t, xo(t))xl + bl(t), t > 0, xl(O) = O,

where bl(t) = fl(t, xo(t)). Thus, xl(t) = f_ fD(s, xo(S))xl(s) ds + f_ fl(s, Xo(s)) ds.

With the definition x(2)(e) = x(e) - xo - eZl we have

- fot [fo(s,x(e,s))- fo(8, xo(s)) - ef:)(s, xo(,))xl(s)]
ds

/o' :o'+e [A(s,x(e,s))- fl(s, x0(8))las+ f(2)(e,s,x(e,8))es.

Using the Mean Value Theorem, we rewrite the first integrand adding and subtracting
terms,

x(2)(e,t) = /otf;(a, xo(s) + ax(1)(e,s))x(2)(E,s) ds

/o'
/o' Z'+e [J'l(_,z(e,s))- f_(s,x0(8))las+ f(2)(e,_,x(e,_))_s,

and estimate each of the integrals in the right member of this expression.

Because the Frfichet derivative is uniformly bounded on VT, it follows immediately that

According to the Mean Value Theorem, there exists a vector r = (rl,..., rN), with compo-

nents between 0 and 1, such that

f;(s, zo(s)+ az(_l(e,s))- I;(s, xo(s))= " x(1)(e,s).

The operator represented by the matrix is uniformly bounded on the convex compact set

VT, SO

I:o' I[f;(s, Xo(S) + ax(1)(e,s))- f_)(s, xo(S))]xl(s) ds < ct.

The third and fourth integral are estimated as in step (i); the former is bounded by a

constant multiple of t, the latter by a constant multiple of et.

12



Taking all the estimates together, we obtain

Iz(2)(e,t)] < C ]z(2)(e,s)l ds + ect.

Hence, proceeding as in step (i), we find that I[z(2)(¢)[I < E2C', so z(2)(¢) = O(e2). This
proves the claim for m = 2.

(iii) The process can be continued for successive values of m. After m steps, one takes
the coefficients zo,..., zm-1 from all previous steps and introduces a new coefficient x,,, by

solving a linear initial value problem of the form

_,_ = f[_(t, zo(t))z_ + bin(t), t > 0, zm(0) = 0.

The inhomogeneous term bm is defined in terms of Zo, ..., z,,,-t. Then one considers the

equation that is satisfied by the function z(m)(e,t) z(e,t) ,,,-1= - _,=0 d_z-(t) and estimates
the various terms. Using Gronwall's inequality, one shows that z(')(e) = O(¢_) as e _ 0. |

The crucial point in the construction of the asymptotic expansion of x(e) is the deft-

hi,ion of the inhomogeneous term bn. It can be obtained formally by the following pro-

cess: (1) Define y(e,t) = _n°°=oenzn(t); (2) expand fn(t,y(e,t))in a Taylor series ex-

pansion near (t, zo(t)), for n = 0,1,...; (3) substitute the exI.ansions in the formal sum

_n°°=Oenfn(t,y(e,t)); (4) rearrange the terms, grouping them in like powers of e. The co-
efficient of e'_ then corresponds to the expression in the right-hand side of the differential

equation for :/:n, i.e., f_(t, zo(t))zn + bn(t).

The general expression for b, becomes increasingly complicated as n increases; for ex-
ample,

1 Ctt{_
b2(t) = f2(t, zo(t)) + f_(t, zo(t))zl(t) + _joto, Zo(t))zl(t)z_(t),

1 Ctt{_
b3(t) = f3(t, zo(t)) + f_(t, zo(t))zl(t) + 7J1 to, zo(t))zl(t)za(t) + f_(t, zo(t))z2(t)

1 III

+-_f_ (t, zo(t))zl(t)zl(t)zl(t) + f_'(t, zo(t))zl(t)=2(t) + f_(t, zo(t))z3(t).

'rhese coefficients are best calculated on a case-by-case basis.

Note that, if the vector field is given as an (infinite) regular asymptotic expansion, the

result of this procedure is an (infinite) regular asymptotic expansion of the solution. Nothing
is said, however, about the cortvergence or divergence of the expansion in the classical sense.

Another caveat is in order. In the proof of the theorem, we considered the solution of
the initial value problem only on a finite interval [0, T]; in fact, the arguments depended

critically on the fact that T was finite. Consequently, nothing is said about the asymptotic

behavior of global solutions--solutions that exist for all t > 0. It is indeed extremely risky

to extend our results to an infinite _ime interval, as the limits T --, c¢ and e _ 0 are not

i



interchangeable without further restrictions on the vector field. (As it is, the conditions are

already rather restrictive!)

In conclusion, we observe that the leading term in the asymptotic expansion, xo, satisfies

a nonlinear differential equation (the "unperturbed" equation) but that all higher-order

terms satisfy a linear differential equation (the "variational" equation). This observation is

intimately linked to the fact that the solution of a regularly perturbed differential equation

depends continuously on the perturbation parameter e--see, for example, [12, Sections 8"

and 9.5].

Exercises

1. Construct an asymptotic expansion of the solution of the equation for the damped harmonic oscillator,

4- 2ex 4- x - 0, t > 0, that starts at z(0) = a with velocity _(0) = 0. Compare the expansion with
the exact solution.

2. Consider the system

J:=cfl(x,t)-{-e2f2(x,t), t>O, x(O)"_,

=efl(y,t) t >0, y(0)=_,

Construct an asymptotic expansion of the solution (x, II) as e £ 0.
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