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ASYMPTOTIC AND BOOTSTRAP INFERENCE FOR AR(∞)
PROCESSES WITH CONDITIONAL HETEROSKEDASTICITY

Sílvia Gonçalves � Départment de Sciences Économiques, CIREQ and CIRANO,
Université de Montréal, Montreal, Québéc, Canada

Lutz Kilian � Department of Economics, University of Michigan, Ann Arbor,
Michigan, USA and CEPR

� The main contribution of this paper is a proof of the asymptotic validity of the application
of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We
first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve
parameters when the data are generated by a stationary linear process with martingale difference
errors that are possibly subject to conditional heteroskedasticity of unknown form. These results
are then used in establishing that a suitably constructed bootstrap estimator will have the same
limit distribution as the least-squares estimator. Our results provide theoretical justification for
the use of either the conventional asymptotic approximation based on robust standard errors or
the bootstrap approximation of the distribution of autoregressive parameters. A simulation study
suggests that the bootstrap approach tends to be more accurate in small samples.

Keywords Autoregression; Bootstrap; GARCH.

JEL Classification C14; C15; C22; C52.

1. INTRODUCTION

Much applied work relies on linear autoregressions for the purpose
of estimation and inference in time series analysis (see, e.g., Canova,
1995; Stock and Watson, 2001). Standard methods of inference for
linear autoregressions are based on the presumption that the data
generating process can be represented as a finite-order autoregression.
This assumption is clearly unrealistic. It is more plausible to think of
the autoregressive model as a rough approximation to the underlying
data generating process (see, e.g., Braun and Mittnik, 1993; Ng and
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Perron, 1995; Lütkepohl and Saikkonen, 1997; Inoue and Kilian, 2002). In
response to this problem, there has been increasing interest in developing
an alternative asymptotic theory for inference in linear autoregressions
under the presumption that the data are generated by a possibly infinite-
order autoregression. The thought experiment is that the researcher fits a
sequence of finite-order autoregressions, the lag order of which is assumed
to increase with the sample size. The fitted autoregression is thus viewed as
an approximation to the possibly infinite-order autoregression, the quality
of which improves with the sample size. Such methods are commonly
referred to as sieve methods in the literature (see, e.g., Grenander, 1981;
Geman and Hwang, 1982; Bühlmann, 1995, 1997).

The sieve approach has a long tradition in econometrics. For example,
Ng and Perron (1995) study problems of lag order selection for sieve
autoregressions by sequential t -tests. Diebold and Kilian (2001) and
Galbraith (2003) consider inference about measures of predictability
based on autoregressive sieves. Lütkepohl (1988a) derives the asymptotic
distribution of the estimated dynamic multipliers. Lütkepohl and
Poskitt (1991) extend these results to orthogonalized impulse response
estimates and forecast error decompositions. Lütkepohl and Poskitt
(1996) propose tests of Granger causality in the context of infinite-
order autoregressions. Lütkepohl (1988b) investigates tests of structural
instability for autoregressive sieves. Inoue and Kilian (2002) propose
the use of the sieve approximation in evaluating the fit of dynamic
macroeconomic models. The sieve approach has also proved useful in
studying cointegrated processes, building on the framework developed
by Saikkonen (1992) who proposed to approximate cointegrated linear
systems with i.i.d. innovations via autoregressive sieves (also see Saikkonen
and Lütkepohl, 1996; Lütkepohl and Saikkonen, 1997; Saikkonen and
Luukkonen, 1997).

Sieve approximations are valid for all data generating processes that
belong to the stationary linear AR(∞) class. This class includes finite-order
stationary invertible ARMA processes as a special case. Compared to fitting
parametric ARMA models, an important advantage of the autoregressive
sieve approximation is that it retains the computational simplicity of
the parametric finite lag-order autoregressive model, while allowing for
model misspecification within the class of linear models. This is especially
important in the vector case. The specification of an identified vector
ARMA structure is much more complicated than setting up a pure VAR
model and the estimation of vector ARMA models is subject to numerical
difficulties. For these reasons, autoregressive models are the preferred
models in most empirical studies in macroeconometrics.

In the literature on autoregressive sieve approximations of linear
processes, it is typically postulated that the data generating process can
be represented as an infinite-order autoregression with i.i.d. innovations.
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Although this model is substantially less restrictive than the conventional
finite-lag order autoregressive model, for many applications in finance and
economics the i.i.d. error assumption appears too restrictive. In particular,
the i.i.d. error assumption rules out conditional heteroskedasticity, of
which there is evidence in many economic time series (see, e.g., Engle,
1982; Bollerslev, 1986; Weiss, 1988; Hodrick, 1992; Bekaert and Hodrick,
2001). Methods that relax the i.i.d. error assumption in fully parametric
autoregressive models have been discussed for example in Kuersteiner
(2001) and in Gonçalves and Kilian (2004). In this paper we relax the
i.i.d. error assumption in the semiparametric autoregressive sieve model.
We postulate instead that the innovations driving the linear AR(∞) process
follow a martingale difference sequence (m.d.s.) subject to possible
conditional heteroskedasticity of unknown form.

The main contribution of this paper is a proof of the asymptotic
validity of the application of the bootstrap to AR(∞) processes with
possible conditional heteroskedasticity. We also derive the consistency
and asymptotic normality of the least-squares (LS) estimator of the
autoregressive sieve parameters under weak conditions on the form of
conditional heteroskedasticity. These results, while less innovative from
a technical point of view, constitute important intermediate results used
in establishing the validity of the bootstrap. In related work, Hannan
and Deistler (1988, p. 335) state an asymptotic normality result for the
LS estimator in the autoregressive sieve model with m.d.s. errors. Our
derivation relies on stronger moment conditions, but goes beyond Hannan
and Deistler (1988) in that we derive a consistent estimator of the limiting
variance.

Our analysis shows that the asymptotic distribution of estimated
autoregressive parameters derived under the assumption of an AR(∞) data
generating process with i.i.d. errors does not apply when the errors are
conditionally heteroskedastic. In particular, the form of the asymptotic
covariance matrix of the estimated parameters is affected by conditional
heteroskedasticity. In contrast, the asymptotic results derived in this paper
enable applied users to conduct inference that is robust to conditional
heteroskedasticity of unknown form. The use of the asymptotic normal
approximation in practice requires a consistent estimator of the variance
of the autoregressive parameter. We provide sufficient conditions for
the consistency of a version of the Eicker–White heteroskedasticity-robust
covariance matrix estimator in the context of sieve approximations to
AR(∞) processes (see Eicker, 1963; White, 1980; Nicholls and Pagan,
1983).

These asymptotic results for the LS estimator provide the basis for
inference on smooth functions of autoregressive parameters such as
impulse responses and related statistics of interest in macroeconometrics
and finance in the presence of unmodelled conditional heteroskedasticity.
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They also are essential for establishing the asymptotic validity of the
bootstrap for parameters of AR(∞) processes under these conditions.
We show that suitably constructed bootstrap estimators will have the same
limit distribution as the LS estimator. Providing such results is important,
because the bootstrap method is already widely used in applied work
involving autoregressions.

Our aim in this paper is not to establish that the sieve bootstrap
approximation is superior to conventional asymptotic approximations.
Rather we provide a broader set of conditions under which the
bootstrap approach will be justified asymptotically, and we discuss
the modifications required to make the bootstrap approach robust to
conditional heteroskedasticity. We also provide simulation evidence that
suggests that the bootstrap approximation tends to be more accurate
in small samples than the conventional asymptotic approximation based
on robust standard errors. We leave for future research the question of
whether there are conditions under which the bootstrap approach will
provide asymptotic refinements.

The remainder of the paper is organized as follows. In Section 2
we present the theoretical results for the LS estimator. In Section 3, we
develop the theoretical results for the corresponding bootstrap estimator.
Section 4 contains the results of a small simulation study designed to
compare the finite-sample coverage accuracy of bootstrap confidence
intervals for autoregressive coefficients and of intervals based on the
asymptotic approximation. We conclude in Section 5. Details of the proofs
are provided in the Appendix.

2. ASYMPTOTIC THEORY FOR THE LS ESTIMATOR

Our analysis in this section builds on work by Berk (1974), Bhansali
(1978), and Lewis and Reinsel (1985). Berk (1974) in a seminal paper
establishes the consistency and asymptotic normality of the spectral
density estimator for linear processes with i.i.d. innovations. Based on
Berk’s results, Bhansali (1978) derives explicitly the limiting distribution
of the estimated autoregressive coefficients. Lewis and Reinsel (1985)
provide a multivariate extension of Bhansali’s (1978) results in a
form more suitable for econometric analysis. Here we generalize the
analysis of Lewis and Reinsel (1985) by allowing for conditionally
heteroskedastic martingale difference sequence errors. We use these
modified results to study the asymptotic properties of the LS estimator of
the autoregressive slope parameters and of the corresponding bootstrap
estimator. For concreteness, we focus on univariate autoregressions.
Multivariate generalizations of our results are possible at the cost of more
complicated notation.
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Let the time series �yt , t ∈ �� be generated from

yt =
∞∑
j=1

�j yt−j + �t , (2.1)

where �(z) ≡ 1 − ∑∞
j=1 �j zj �= 0 for all |z| ≤ 1, and

∑∞
j=1|�j |< ∞. The

AR(∞) data generating process (2.1) includes the class of stationary
invertible ARMA(p, q) processes as a special case. For i ∈ �, let
��(0, l1, � � � , li−1) denote the ith order joint cumulant of (�0, �l1 , � � � , �li−1)
(see Brillinger, 1981, p. 19), where l1, � � � , li−1 are integers. We make the
following assumption.

Assumption 1. (i) ��t� is strictly stationary and ergodic such that
E(�t |�t−1) = 0, a.s., where �t−1 = �(�t−1, �t−2, � � � ) is the �-field generated
by ��t−1, �t−2, � � � �; (ii) E(�2

t ) = �2 > 0 and E(�2
t �

2
t−j) > 	 for some 	> 0 and

all j ; and (iii)
∑∞

l1=−∞ · · · ∑∞
li−1=−∞|��(0, l1, � � � , li−1)|< ∞, for i = 2, � � � , 8.

Instead of assuming i.i.d. errors as in Lewis and Reinsel (1985),
we postulate that ��t� is a possibly conditionally heteroskedastic m.d.s.
Assumption 1(iii) requires the absolute summability of joint cumulants
of �t up to the eighth order, which restricts the dependence in the
error process. It is implied by an 	-mixing condition plus an eighth-
order moment condition on �t (see, e.g., Remark A.1 of Künsch, 1989, or
Andrews, 1991). Hong and Lee (2003) use a similar assumption in deriving
tests for serial correlation that are robust to conditional heteroskedasticity
of unknown form. Kuersteiner (2001) imposes a stronger version of this
assumption (cf. his Assumption E1) to show consistency of a feasible
version of his optimal IV estimator under conditional heteroskedasticity.

Under these assumptions, it follows that yt has a causal infinite-order
moving average representation

yt =
∞∑
j=0


j�t−j ,

where 
0 ≡ 1, �(z) = 1/�(z) = ∑∞
j=0 
j zj ,

∑∞
j=0|
j |< ∞ (see Bühlmann,

1995).
Let �(k) = (�1, � � � ,�k) denote the first k autoregressive coefficients

in the AR(∞) representation. Given a realization �y1, � � � , yn� of
(2.1), we estimate an approximating AR(k) model by minimizing
(n − k)−1

∑n
t=1+k(yt − �(k)′Yt−1,k)

2, by choice of �(k) = (�1, � � � , �k)
′, where

Yt−1,k = (yt−1, � � � , yt−k)
′. This yields the LS estimators

�̂(k) = (�̂1,k , � � � , �̂k,k)
′ = ̂−1

k ̂k,1,
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where

̂k = (n − k)−1
n∑

t=1+k

Yt−1,kY ′
t−1,k and ̂k,1 = (n − k)−1

n∑
t=1+k

Yt−1,kyt �

The population analogues of ̂k and ̂k,1 are k = E(Yt−1,kY ′
t−1,k) and k,1 =

E(Yt−1,kyt), respectively. Our assumptions on k are identical to those
employed by Lewis and Reinsel (1985).

Assumption 2. k is chosen as a function of n such that (i) k3

n → 0 as
k,n → ∞ and (ii) n1/2

∑∞
j=k+1|�j | → 0 as k,n → ∞.

Assumption 2 requires that k → ∞ as n → ∞. Assumption 2(i)
stipulates that, nevertheless, k should not increase at a rate faster than n1/3.
Since supj>k |�j | ≤ ∑∞

j=k+1|�j |, Assumption 2 (ii) implies that supj>k |�j | =
o(n−1/2) as k → ∞. This assumption allows us to approximate the AR(∞)
process by a sequence of finite-order AR models.

In order to state our main result in this section we need to introduce
some notation. Let �(k) be an arbitrary sequence of k × 1 vectors satisfying
0 < M1 ≤ ‖�(k)‖2 ≤ M2 < ∞, and let v2

k = �(k)′−1
k Bk

−1
k �(k), where k is

as defined previously and Bk = E(Yt−1,kY ′
t−1,k�

2
t ). Finally, let ⇒ denote

convergence in distribution.

Theorem 2.1. Let �yt� satisfy (2.1) and assume that Assumptions 1 and 2 hold.
Then �(k)′√n − k(�̂(k) − �(k))/vk ⇒ N (0, 1).

Theorem 2.1 extends (the univariate version of) Theorem 4 of Lewis
and Reinsel (1985) to the m.d.s. case. In particular, we relax the i.i.d.
assumption on �t and allow for conditionally heteroskedastic errors. The
conditions imposed on k are the same as those of Lewis and Reinsel
(1985). Compared to Lewis and Reinsel (1985), our results require a
strengthening of the moment and cumulant conditions. These conditions
are sufficient, but may not be necessary (see Hannan and Deistler, 1988,
p. 335).

One implication of Theorem 2.1 is that the limiting joint distribution
of any fixed set of autoregressive estimators is multivariate normal
with an asymptotic covariance matrix that reflects the possible presence
of conditional heteroskedasticity. Results of this type are central to
inference on many statistics of interest such as impulse responses,
variance decompositions, measures of predictability, and tests of Granger
noncausality (see the references in the introduction).

According to Theorem 2.1, under our assumptions the asymptotic
variance of �(k)′√n − k(�̂(k) − �(k)) is v2

k ≡ �(k)′−1
k Bk

−1
k �(k), as
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opposed to �2�(k)′−1
k �(k) in the i.i.d. case (cf. Lewis and Reinsel,

1985, Theorem 4). Thus, the presence of conditional heteroskedasticity
invalidates the usual LS inference for AR(∞) processes. To characterize
further the asymptotic covariance matrix of the estimated autoregressive
coefficients of the sieve approximation to (2.1) it is useful to define
	l1,l2 =E(�t−l1�t−l2�

2
t ), for l1, l2 = 1, 2, � � � . We note that 	l1,l2 is closely

related to the fourth-order joint cumulants of �t . More specifically,
for l1, l2 ≥ 1, we have that 	l1,l2 = ��(0,−l1,−l2, 0) when l1 �= l2, and
	l1,l2 = ��(0,−l1,−l2, 0)+ �4 when l1 = l2. In the i.i.d. case, 	l1,l2 are equal
to 0 when l1 �= l2, and they are equal to �4 when l1 = l2. As we will
see next, Bk depends on the fourth order cumulants, or the closely
related 	l1,l2 , whose form is affected by conditional heteroskedasticity.
Let bj ,k = (
j−1, � � � ,
j−k)

′, with 
j = 0 for j < 0, and note that Yt−1,k =∑∞
j=1 bj ,k�t−j . This implies

Bk =
∞∑
j=1

∞∑
i=1

bj ,kb ′
i ,kE(�t−j�t−i�

2
t ) =

∞∑
j=1

∞∑
i=1

bj ,kb ′
i ,k	i ,j ,

given the definition of 	i ,j � Under conditional homoskedasticity (or the
stronger i.i.d. assumption), 	i ,j = �41 (i = j), where 1(·) is the indicator
function. Thus, in this case, Bk = �4

∑∞
j=1 bj ,kb

′
j ,k = �2k , implying that v2

k

simplifies to �2�(k)′−1
k �(k), the asymptotic variance of the estimated

autoregressive coefficients in the i.i.d. case.
In practice, v2

k ≡ �(k)′−1
k Bk

−1
k �(k) is unknown and needs to be

consistently estimated for the normal approximation result of Theorem 2.1
to be useful in applications. Under our assumptions, a consistent estimator
of k is given by ̂k = (n − k)−1

∑n
t=1+k Yt−1,kY ′

t−1,k (see Lemma A.1 in the
Appendix). In the possible presence of conditional heteroskedasticity
of unknown form, consistent estimation of Bk requires the use of
a heteroskedasticity-robust estimator. Here we use a version of the
Eicker–White estimator, specifically, B̂k = (n − k)−1

∑n
t=1+k Yt−1,kY ′

t−1,k �̂
2
t ,k ,

where �̂t ,k = yt − Y ′
t−1,k�̂(k) is the LS residual of the autoregressive sieve.

Our next result shows that v̂2
k = �(k)′̂−1

k B̂k ̂
−1
k �(k) is a consistent estimator

of v2
k under the same assumptions on �t as in Theorem 2.1, but with a

slightly tighter upper bound on the rate of growth of k. In particular, we
now require k4/n → 0 instead of the weaker condition k3/n → 0 needed
for asymptotic normality.

Theorem 2.2. Under the assumptions of Theorem 2.1, if in addition k satisfies
k → ∞ as n → ∞ such that k4/n → 0, then v̂2

k − v2
k = oP (1).
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Given Theorems 2.1 and 2.2, the t -statistic

tk = �(k)′√n − k(�̂(k) − �(k))/v̂k

has an asymptotic standard normal distribution. For inference on elements
or linear combinations of �(k), we may compute critical values from this
asymptotic distribution. Alternatively, we can bootstrap the t -statistic and
use bootstrap critical values instead. In Section 4 we will present evidence
that the bootstrap approach tends to have better finite sample properties.
The asymptotic properties of the bootstrap estimator are derived in the
next section.

3. ASYMPTOTIC VALIDITY OF THE BOOTSTRAP

In this section we study the theoretical properties of bootstrap methods
for AR(∞) processes subject to conditional heteroskedasticity of unknown
form in the error term. In related work, bootstrap methods for inference
on univariate infinite-order autoregressions with i.i.d. innovations have
been studied by Kreiss (1997), Bühlmann (1997), and Choi and Hall
(2000), among others. Extensions to the multivariate case are discussed in
Paparoditis (1996) and in Inoue and Kilian (2002). The sieve bootstrap
considered by these papers resamples randomly the residuals of an
estimated truncated autoregression, the order of which is assumed to
grow with the sample size at an appropriate rate. The bootstrap data
are generated recursively from the fitted autoregressive model, given
the resampled residuals and appropriate initial conditions. Given that
the residuals are conditionally i.i.d. by construction, this sieve bootstrap
method is not valid for AR(∞) models with conditional heteroskedasticity.

As our results below show, this problem may be solved by considering
a fixed-design bootstrap method that applies the wild bootstrap (WB) to
the regression residuals of the autoregressive sieve. Bootstrap observations
on the dependent variable are generated by adding the WB residuals to
the fitted values of the autoregressive sieve. These pseudo-observations are
then regressed on the original regressor matrix. Thus, the fixed-design
WB treats the regressors as fixed in repeated sampling, even though
the regressors are lagged dependent variables. The fixed-design WB was
originally suggested by Kreiss (1997), building on work by Wu (1986),
Mammen (1993), and Liu (1988) who studied the WB in the cross-
sectional context. A similar “fixed-regressor bootstrap” has been proposed
by Hansen (2000) in the context of testing for structural change in
regression models. Here we prove the asymptotic validity of the fixed-
design WB for inference on AR(∞) processes with martingale difference
errors that are possibly subject to conditional heteroskedasticity, which to
the best of our knowledge has not been done elsewhere.
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We also study the validity of an alternative bootstrap proposal that
involves resampling pairs (or tuples) of the dependent and the explanatory
variables. This pairwise bootstrap was originally suggested by Freedman
(1981) in the cross-sectional context. Both bootstrap proposals have been
studied in the context of finite-order autoregressions by Gonçalves and
Kilian (2004).

In contrast to this earlier literature, here we establish the asymptotic
validity of these two bootstrap proposals for sieve autoregressions under
weak conditions on the form of conditional heteroskedasticity. We do not
pursue more conventional recursive-design bootstrap methods, such as
the recursive-design WB discussed in Kreiss (1997) and in Gonçalves and
Kilian (2004), because such methods are more restrictive than the fixed-
design WB and the pairwise bootstrap. Specifically, as shown by Gonçalves
and Kilian (2004), the recursive-design method requires more stringent
assumptions on the form of conditional heteroskedasticity than the two
methods discussed in this paper. These restrictions run counter to the
aim of imposing as little parametric structure as possible in bootstrap
inference for linear stationary processes. In addition, the standard results
of Paparoditis (1996) and Inoue and Kilian (2002) require exponential
decay of the coefficients of the moving average representation of the
underlying process. The results for the fixed-design bootstrap and the
pairwise bootstrap, in contrast, only require a polynomial rate of decay.

The fixed-design WB consists of the following steps.

Step 1. Estimate an approximating AR(k) model by LS and obtain LS
residuals

�̂t ,k = yt − Y ′
t−1,k�̂(k) for t = 1 + k, � � � ,n,

where �̂(k) = (�̂1,k , � � � , �̂k,k)
′ is the vector of LS estimators.

Step 2. Generate WB residuals according to

�̂∗
t ,k = �̂t ,k�t , for t = 1 + k, � � � ,n,

with �t ∼ i.i.d.(0, 1) and E ∗|�t |4 ≤ � < ∞. One possible choice is �t ∼ i.i.d.
N (0, 1). Other choices have been discussed by Liu (1988) and Mammen
(1993), among others.

Step 3. Given �̂ (k) and �̂∗
t ,k , generate bootstrap data for the

dependent variable y∗
t according to

y∗
t = Y ′

t−1,k�̂ (k) + �̂∗
t ,k , for t = 1 + k, � � � ,n�

Step 4. Compute �̂∗
fwb(k) = (�̂∗

fwb,1,k , � � � , �̂
∗
fwb,k,k)

′ by regressing y∗
t on

Yt−1,k .
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According to the previous algorithm,

�̂∗
fwb(k) = ̂∗−1

fwb,k ̂
∗
fwb,k,1,

where ̂∗
fwb,k = ̂k and ̂∗

fwb,k,1 = (n − k)−1
∑n

t=1+k Yt−1,ky∗
t , with y∗

t as described
in Step 3. Note that for the fixed-design WB Y ∗

t−1,k = Yt−1,k �
The pairwise bootstrap consists of the following steps.

Step 1. For given k, let � = �(yt ,Y ′
t−1,k) : t = 1 + k, � � � ,n� be the set of

all “pairs” (or tuples) of data.

Step 2. Generate a bootstrap sample �∗ = �(y∗
t ,Y

∗′
t−1,k) : t = 1 +

k, � � � ,n� by resampling with replacement the “pairs” of data from ��

Step 3. Compute �̂∗
pb(k) = (

�̂∗
pb,1,k , � � � , �̂

∗
pb,k,k

)′
by regressing y∗

t on
Y ∗
t−1,k .

Accordingly, let

�̂∗
pb(k) = ̂∗−1

pb,k ̂
∗
pb,k,1,

where ̂∗
pb,k = (n − k)−1

∑n
t=1+k Y

∗
t−1,kY

∗′
t−1,k and ̂∗

pb,k,1 = (n − k)−1
∑n

t=1+k
Y ∗
t−1,ky

∗
t .

It is useful to differentiate the pairwise bootstrap from the blocks-of-
blocks (BOB) bootstrap, as discussed in Gonçalves and White (2004). Let
r denote the first-stage block size and s the second-stage block size of
the BOB bootstrap. The pairwise bootstrap for AR(∞) processes emerges
as a special case of the BOB bootstrap with r = p + 1 and s = 1. Note
that under our assumptions choosing s > 1 given r = p + 1 would be
inefficient.

We focus on bootstrapping the studentized statistic tk . The fixed-design
WB analog of tk is given by

t ∗fwb,k = �(k)′√n − k
(
�̂∗

fwb(k) − �̂(k)
)
/v̂∗

fwb,k ,

where v̂∗2
fwb,k is a bootstrap variance estimator consistent for v2

k (see
Lemma A.7). In particular, v̂∗2

fwb,k = �(k)′̂
∗−1
fwb,k B̂

∗
fwb,k ̂

∗−1
fwb,k�(k), where ̂∗

fwb,k = ̂k
and

B̂∗
fwb,k = (n − k)−1

n∑
t=1+k

Y ∗
t−1,kY

∗′
t−1,k �̃

∗2
t ,k =

n∑
t=1+k

Yt−1,kY ′
t−1,k �̃

∗2
t ,k ,

where �̃∗
t ,k = y∗

t − Y ′
t−1,k�̂

∗(k) is the fixed-design wild bootstrap residual.
The pairwise bootstrap analog of tk is given by

t ∗pb,k = �(k)′√n − k
(
�̂∗

pb(k) − �̂(k)
)
/v̂∗

pb,k ,
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with v̂∗2
pb,k = �(k)′̂

∗−1
pb,k B̂

∗
pb,k ̂

∗−1
pb,k �(k), where

B̂∗
pb,k = (n − k)−1

n∑
t=1+k

Y ∗
t−1,kY

∗′
t−1,k �̃

∗2
t ,k

and �̃∗
t ,k = y∗

t − Y ∗′
t−1,k�̂

∗(k) is the pairwise bootstrap LS residual. Lemma A.7
shows that v̂∗2

pb,k is consistent for v
2
k .

Next, we show that the conditional distributions of t ∗fwb,k and t ∗pb,k can be
used to approximate the true but unknown finite-sample distribution of tk .
Our main result is as follows.

Theorem 3.1. Under the assumptions of Theorem 2.1, if in addition k satisfies
k → ∞ as n → ∞ such that k4/n → 0, then for the fixed-design WB and for the
pairwise bootstrap and for any � > 0 it follows that

P
{
sup
x∈R

|P ∗[t ∗k ≤ x] − P [tk ≤ x]|> �

}
→ 0,

where t ∗k denotes either t ∗fwb,k or t ∗pb,k , and P ∗ is the probability measure induced by
the corresponding bootstrap scheme.

The assumptions underlying the bootstrap approximation in
Theorem 3.1 are the same as those needed to apply the asymptotic normal
approximation based on the consistent variance estimator of Theorem 2.2.
Note that for both the fixed-design WB and the pairwise bootstrap, the
asymptotic bootstrap population variance is v∗2

k ≡ �(k)′−1
k B̂k

−1
k �(k) (cf.

Lemma 6). Thus, v∗2
k depends on the same heteroskedasticity-robust

covariance matrix estimator of Bk as the estimator v̂2
k in Theorem 2.2. In

both cases, the same upper bound on the rate of increase of k is needed
to ensure consistency for v2

k .
Although Theorem 3.1 focuses on the bootstrap t statistics, the

bootstrap is also asymptotically valid for the estimated autoregressive
parameters. Indeed, to prove the asymptotic validity of the bootstrap
t statistics we first prove the asymptotic validity of the bootstrap for
the autoregressive estimated parameters (cf. the proof of Theorem 3.1).
Theorem 3.1 follows from this result and the consistency of each bootstrap
variance estimator v̂∗2

fwb,k and v̂∗2
pb,k for v

2
k (see Lemma A.7).

4. SIMULATION EVIDENCE

In this section we study the finite-sample accuracy of the asymptotic
and bootstrap approximations introduced in the previous section.
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TABLE 1 Coverage rates of nominal 90% symmetric percentile-t intervals for �i , i = 1, 2, 3, 4 in
the approximating AR(k) model: ARMA(1, 1)-NID DGP

DGP: yt = 0�9yt−1 + ��t−1 + �t , �t ∼ NID(0, 1)

n = 120 n = 240

� k Method �1 �2 �3 �4 �1 �2 �3 �4

0.3 6 Robust Gaussian 86.42 88.45 88.82 88.85 88.73 89.47 89.29 89.01
Fixed WB 87.57 89.26 89.95 89.88 89.10 89.99 89.81 89.72
Pairwise bootstrap 88.50 90.42 90.71 90.82 89.62 90.45 90.21 89.95

8 Robust Gaussian 85.89 88.35 88.75 88.72 88.52 89.37 89.20 89.26
Fixed WB 87.10 89.36 89.86 89.75 88.95 89.86 89.76 89.73
Pairwise bootstrap 88.46 90.76 90.92 90.89 89.60 90.40 90.27 90.33

10 Robust Gaussian 85.56 87.96 88.27 88.27 88.42 89.05 89.12 89.26
Fixed WB 86.89 89.19 89.49 89.44 89.00 89.67 89.71 89.70

Pairwise bootstrap 88.72 90.76 91.01 91.12 89.55 90.20 90.32 90.65
12 Robust Gaussian 85.05 87.63 87.91 88.17 88.30 89.02 89.20 89.14

Fixed WB 86.43 89.09 89.22 89.17 88.87 89.43 89.62 89.69
Pairwise bootstrap 88.72 90.72 91.24 91.11 89.78 90.35 90.39 90.73

0.6 6 Robust Gaussian 86.13 87.17 89.14 90.33 88.49 89.06 89.65 89.94
Fixed WB 87.15 88.79 90.29 91.05 89.94 89.65 90.20 90.31
Pairwise bootstrap 88.09 89.69 91.00 91.89 89.48 90.04 90.53 90.77

8 Robust Gaussian 85.80 87.94 88.48 89.04 88.42 89.12 89.32 89.61
Fixed WB 86.85 88.97 89.56 90.24 88.90 89.63 89.84 89.98
Pairwise bootstrap 88.08 90.28 90.60 91.16 89.55 90.36 90.42 90.76

10 Robust Gaussian 85.25 87.56 88.19 88.65 88.34 89.02 89.10 89.15
Fixed WB 86.60 88.92 89.21 89.70 88.81 89.50 89.93 89.58
Pairwise bootstrap 88.39 90.48 90.68 91.25 89.41 90.13 90.52 90.37

12 Robust Gaussian 84.92 87.05 87.95 88.27 88.12 88.83 89.21 88.89
Fixed WB 86.18 88.57 88.79 89.28 88.73 89.37 89.78 89.74
Pairwise bootstrap 88.41 90.55 91.31 90.99 89.65 90.25 90.66 90.45

−0.3 6 Robust Gaussian 86.80 88.24 88.52 88.53 88.84 89.42 89.28 89.05
Fixed WB 87.96 89.32 89.58 89.57 89.31 89.92 89.91 89.58
Pairwise bootstrap 88.91 90.22 90.46 90.50 89.85 90.27 90.08 89.94

8 Robust Gaussian 86.30 88.07 88.33 87.89 88.68 89.11 89.29 88.73
Fixed WB 87.70 89.06 89.35 89.07 89.21 89.61 89.76 89.33
Pairwise bootstrap 89.07 90.10 90.56 90.06 89.73 90.20 90.43 89.73

10 Robust Gaussian 86.13 87.72 87.91 88.04 88.70 89.08 89.09 88.67
Fixed WB 87.42 88.99 89.18 88.98 89.23 89.69 89.55 89.30
Pairwise bootstrap 89.14 90.42 90.83 90.61 89.86 90.26 90.28 89.99

12 Robust Gaussian 85.43 87.15 87.59 87.55 88.48 89.08 88.90 88.69
Fixed WB 86.79 88.47 88.90 88.70 88.96 89.74 89.52 89.19
Pairwise bootstrap 88.99 90.18 90.72 90.62 89.84 90.43 90.26 90.00

Source: Based on 20,000 Monte Carlo draws with 1,000 bootstrap replications each.

The data generating process for �yt� is a stationary ARMA(1,1) model of
the form

yt = �yt−1 + ��t−1 + �t , for t = 1 + k, � � � ,n
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TABLE 2 Coverage rates of nominal 90% symmetric percentile-t intervals for �i , i = 1, 2, 3, 4 in
the approximating AR(k) model: ARMA(1, 1)-N-ARCH DGP

DGP: yt = 0�9yt−1 + ��t−1 + �t , �t = h1/2
t vt , ht = � + 0�5�2t−1, vt ∼ N (0, 1)

n = 120 n = 240

� k Method �1 �2 �3 �4 �1 �2 �3 �4

0.3 6 Robust Gaussian 83.96 85.80 87.72 88.46 86.92 87.15 88.28 88.53
Fixed WB 87.83 89.04 89.62 90.03 89.11 89.81 89.96 89.98
Pairwise bootstrap 89.04 90.29 90.64 91.12 89.76 90.38 90.37 90.50

8 Robust Gaussian 83.17 85.72 87.42 87.96 86.81 87.21 88.16 88.45
Fixed WB 87.17 89.17 89.76 89.83 89.13 89.64 89.67 89.57
Pairwise bootstrap 88.68 90.45 91.00 91.33 89.97 90.44 90.39 90.56

10 Robust Gaussian 82.64 85.43 87.47 87.92 86.50 87.00 87.94 88.38
Fixed WB 86.79 88.86 89.48 89.54 88.98 89.43 89.60 89.57
Pairwise bootstrap 88.94 90.49 91.21 91.46 89.86 90.38 90.22 90.54

12 Robust Gaussian 82.10 84.96 87.11 87.61 86.18 86.68 87.90 88.34
Fixed WB 86.31 88.53 89.42 89.24 88.77 89.23 89.54 89.66
Pairwise bootstrap 88.90 90.63 91.55 91.70 89.87 90.46 90.52 90.73

0.6 6 Robust Gaussian 83.75 85.96 88.04 89.45 86.91 87.14 88.40 89.80
Fixed WB 87.38 88.88 90.20 91.23 89.20 89.61 90.14 91.13
Pairwise bootstrap 88.65 90.04 91.09 92.28 89.73 90.18 90.79 91.60

8 Robust Gaussian 83.01 85.38 87.16 88.40 86.61 87.19 87.84 88.65
Fixed WB 87.02 88.88 89.71 90.14 88.97 89.51 89.69 90.10
Pairwise bootstrap 88.63 90.38 91.09 91.48 89.76 90.37 90.45 90.62

10 Robust Gaussian 82.53 84.88 86.80 88.01 86.49 87.02 87.55 88.35
Fixed WB 86.59 88.72 89.31 89.57 88.93 89.52 89.48 89.75
Pairwise bootstrap 88.94 90.55 91.26 91.60 89.86 90.36 90.31 90.58

12 Robust Gaussian 81.92 84.43 86.33 87.65 86.14 86.79 87.51 88.00
Fixed WB 86.21 88.14 89.03 89.67 88.75 89.33 89.44 89.50
Pairwise bootstrap 88.85 90.52 91.33 91.60 89.73 90.21 90.45 90.46

−0.3 6 Robust Gaussian 84.28 86.21 87.63 88.13 87.01 87.47 88.69 88.81
Fixed WB 88.15 89.06 89.52 89.74 89.37 89.53 90.10 89.98
Pairwise bootstrap 89.18 90.09 90.80 90.76 89.97 90.27 90.93 90.62

8 Robust Gaussian 83.42 85.83 87.17 87.53 86.82 87.24 88.22 88.68
Fixed WB 87.31 88.80 89.53 89.29 89.20 89.33 89.71 90.01
Pairwise bootstrap 88.82 90.30 91.09 90.84 90.01 90.39 90.61 90.64

10 Robust Gaussian 83.16 85.42 87.04 87.58 86.52 87.02 88.00 88.66
Fixed WB 87.10 88.65 89.53 89.04 89.10 89.26 89.61 89.73
Pairwise bootstrap 89.11 90.43 91.30 91.10 89.96 90.30 90.60 90.80

12 Robust Gaussian 82.35 85.05 86.58 87.28 86.26 87.10 87.93 88.66
Fixed WB 86.83 88.24 88.87 88.74 88.87 89.29 89.61 89.77
Pairwise bootstrap 89.17 90.51 91.20 91.06 89.86 90.47 90.74 90.70

Source: See Table 1.

with � = 0�9 and � ∈ �0�3, 0�6,−0�3,−0�6�� These parameter settings
capture typical situations in applied work. We model the error term �t

alternatively as an ARCH model or a GARCH model. For a motivation of
the specific models of conditional heteroskedasticity used see Gonçalves
and Kilian (2004). The sample size is n ∈ �120, 240�, corresponding to
10 and 20 years of monthly data, respectively. We compare the coverage
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TABLE 3 Coverage rates of nominal 90% symmetric percentile-t intervals for �i , i = 1, 2, 3, 4 in
the approximating AR(k) model: ARMA(1, 1)-N-GARCH DGP

DGP: yt = 0�9yt−1 + ��t−1 + �t , �t = h1/2
t vt , ht = � + 0�05�2t−1 + 0�94ht−1, vt ∼ N (0, 1)

n = 120 n = 240

� k Method �1 �2 �3 �4 �1 �2 �3 �4

0.3 6 Robust Gaussian 86.29 88.06 88.42 88.62 88.08 89.03 89.32 88.95
Fixed WB 87.72 89.50 89.82 89.83 89.08 89.89 90.01 89.94
Pairwise bootstrap 88.57 90.49 90.50 90.70 89.44 90.33 90.34 90.11

8 Robust Gaussian 85.78 87.99 88.37 88.47 87.86 89.08 88.92 89.21
Fixed WB 87.30 89.42 89.61 89.79 88.89 89.90 89.64 89.82
Pairwise bootstrap 88.60 90.83 90.77 90.87 89.40 90.43 90.31 90.26

10 Robust Gaussian 85.58 87.60 87.97 88.29 87.70 88.90 88.73 89.11
Fixed WB 87.05 89.18 89.50 89.69 88.60 89.80 89.48 89.97
Pairwise bootstrap 88.92 90.61 90.99 91.10 89.25 90.48 90.21 90.57

12 Robust Gaussian 84.84 86.93 87.72 88.04 87.80 88.89 88.59 89.09
Fixed WB 86.53 88.75 89.22 89.27 88.67 89.55 89.61 89.99
Pairwise bootstrap 88.76 90.84 91.09 91.17 89.37 90.44 90.48 90.89

0.6 6 Robust Gaussian 85.95 83.37 88.77 89.91 87.99 88.85 89.68 89.89
Fixed WB 87.27 88.96 89.88 90.93 88.85 89.71 90.34 90.69
Pairwise bootstrap 88.20 89.81 90.79 91.60 89.08 90.01 90.66 91.13

8 Robust Gaussian 85.52 87.70 87.85 88.68 87.89 88.89 88.87 89.12
Fixed WB 86.99 89.29 89.41 89.75 88.70 89.80 89.63 90.02
Pairwise bootstrap 88.33 90.44 90.42 90.98 89.32 90.24 90.31 90.46

10 Robust Gaussian 85.08 87.09 87.74 88.27 87.69 88.68 88.71 88.85
Fixed WB 86.71 88.91 89.15 89.54 88.59 89.45 89.54 89.57
Pairwise bootstrap 88.60 90.46 90.97 91.06 89.26 89.94 90.18 90.45

12 Robust Gaussian 84.62 86.75 87.34 88.06 87.67 88.16 88.77 88.55
Fixed WB 86.32 88.30 88.92 89.32 88.64 88.92 89.57 89.61
Pairwise bootstrap 88.54 90.25 91.00 91.16 89.25 90.01 90.39 90.49

−0.3 6 Robust Gaussian 86.65 88.07 88.33 88.68 88.40 89.15 88.89 88.87
Fixed WB 88.04 89.25 89.64 89.75 89.17 89.93 89.61 89.78
Pairwise bootstrap 88.74 90.20 90.66 90.60 89.71 90.32 90.15 90.19

8 Robust Gaussian 86.30 87.77 87.98 88.02 88.26 88.99 88.74 88.75
Fixed WB 87.87 89.15 89.54 89.50 89.05 89.78 89.47 89.50
Pairwise bootstrap 89.18 90.31 90.65 90.56 89.53 90.23 90.31 90.24

10 Robust Gaussian 86.09 87.48 87.61 87.79 88.04 88.78 88.38 88.82
Fixed WB 87.54 88.82 88.98 89.40 88.97 89.56 89.28 89.69
Pairwise bootstrap 89.20 90.54 90.73 91.05 89.52 90.46 90.21 90.48

12 Robust Gaussian 85.25 87.01 87.56 87.72 87.89 88.44 88.38 88.50
Fixed WB 86.87 88.59 89.05 89.00 88.86 89.54 89.35 89.44
Pairwise bootstrap 89.18 90.54 90.91 90.88 89.61 90.21 90.28 90.31

Source: See Table 1.

accuracy of alternative nominal 90% confidence intervals for the first four
slope parameters of the approximating autoregressive model

yt =
k∑

i=1

�i yt−i + �t ,k , for t = 1 + k, � � � ,n,
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where k ∈ �6, 8, 10, 12�. The intervals considered include the asymptotic
normal interval based on robust standard errors as well as the corres-
ponding symmetric bootstrap percentile-t intervals based on the fixed-
design bootstrap algorithm and based on the pairwise bootstrap
algorithm. The simulation results are fairly robust to changes in the
lag order, provided the lag order of the approximating model is not
too short. The fixed-design WB method is based on the two-point
distribution �t = −(

√
5 − 1)/2 with probability p = (

√
5 + 1)/(2

√
5) and

�t = (
√
5+ 1)/2 with probability 1 − p, suggested by Mammen (1993).

Table 1 shows results for an ARMA(1,1) data generating process with
NID(0,1) innovations. Tables 2 and 3 show the corresponding results for
ARMA(1,1) models with ARCH(1) and GARCH(1,1) errors. To conserve
space we only show some of the results. The other simulation results
are very similar. The bootstrap intervals perform consistently well under
all designs. The asymptotic interval rarely is more accurate than the two
bootstrap intervals. For n = 120, the pairwise bootstrap interval can be
more accurate than the asymptotic interval by up to 7 percentage points;
for n = 240 the gain still may approach 4 percentage points. There is no
clear ranking of the two bootstrap methods, but on average the pairwise
bootstrap interval is more accurate for n = 120.

5. CONCLUSION

Our main contribution in this paper has been the derivation of the
asymptotic distribution of the bootstrap least-squares estimator in the sieve
model with conditional heteroskedasticity of unknown form. In addition,
we developed robust asymptotic methods of inference for this model.
Our results are immediately applicable to problems of testing lag-order
restrictions for autoregressions and of computing dynamic multipliers
or measures of persistence. They may also be generalized to allow the
construction of variance decompositions and of orthogonalized impulse
responses as well as tests of Granger noncausality and tests of structural
stability.

Our analysis in this paper has assumed that the unconditional error
variance is constant. A more general class of volatility models allows for
time-varying unconditional variances. The latter class of models could be
handled by a subsampling approach, as discussed in the context of the
finite-lag order autoregressive model by Politis et al. (1999, Chapter 12.2).
This does not mean that subsampling is generally preferred, however.
If the unconditional variance is constant, as we have assumed, consistent
with the leading examples of volatility models used in applied work, then
subsampling will be inefficient relative to bootstrapping.

An interesting extension of this paper would be a study of the
relative accuracy of the first order asymptotic approximation and of the
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bootstrap approximation, when closed form solutions for the variance are
available. It also would be useful to clarify the conditions under which
the bootstrap approximation will provide asymptotic refinements. We defer
these important questions to future research.

A. APPENDIX

Throughout this Appendix, C denotes a generic constant independent
of n. Given a matrix A, let ‖A‖ denote the matrix norm defined by ‖A‖2 =
tr (A′A), and let ‖A‖1 = supx �=0�‖Ax‖/‖x‖�. The following inequalities
relating ‖ · ‖ and ‖ · ‖1 are often used below: ‖A‖2

1 ≤ ‖A‖2, ‖AB‖2 ≤
‖A‖2

1‖B‖2, and ‖AB‖2 ≤ ‖B‖2
1‖A‖2�

For any bootstrap statistic T ∗
n we write T ∗

n = oP ∗(1) in probability when
for any � > 0, P ∗(|T ∗

n |> �) = oP (1). We write T ∗
n = OP ∗(n�) in probability

when for all � > 0 there exists a M� < ∞ such that limn→∞ P [P ∗(|n−�T ∗
n |>

M�) > �] = 0� We write T ∗
n ⇒dP∗ D, in probability, for any distribution D,

when weak convergence under the bootstrap probability measure occurs
in a set with probability converging to one. For a more detailed exposition
of the in-probability bootstrap asymptotics used in this paper see Giné and
Zinn (1990). E ∗(·) and Var ∗(·) denote the expectation and variance with
respect to the bootstrap data conditional on the original data.

To conserve space, we state the bootstrap results jointly for the fixed-
design WB and for the pairwise bootstrap, dropping the subscript fwb or
pb, whenever this distinction is not needed. For instance, �̂∗(k) denotes
either �̂∗

fwb(k) or �̂∗
pb(k) and we use (y∗

t ,Y
∗
t−1,k) to denote bootstrap data in

general. Note that for the fixed-design WB Y ∗
t−1,k = Yt−1,k . Similarly, we let

v∗2
k denote either v∗2

fwb,k or v
∗2
pb,k .

A.1. Auxiliary Lemmas

Some of the lemmas used to prove our main results require
assumptions that are weaker than Assumptions 1 and 2 in the main text.
Since these lemmas are of independent interest, we state the weaker
version of these assumptions below.

Assumption 1.(iii′)
∑∞

l1=−∞
∑∞

l2=−∞
∑∞

l3=−∞|��(0, l1, l2, l3)|< ∞.
Assumption 2.(i′) k2

n → 0 as k,n → ∞

Lemma A.1 is an extension of Berk’s (1974) Lemma 3 for AR(∞)
processes with i.i.d. errors to the case of AR(∞) processes with m.d.s.
errors satisfying Assumption 1(i), (ii), and (iii′).
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Lemma A.1. Let �yt� be generated from (2.1) and assume Assumptions 1(i),
(ii), and (iii′) holds. Then, if k,n → ∞ such that k2/n → 0,∥∥̂−1

k − −1
k

∥∥
1
= oP (1)� (A.1)

If instead k3/n → 0,

k1/2
∥∥̂−1

k − −1
k

∥∥
1
= oP (1)� (A.2)

The next result states the consistency of �̂(k) for �(k) provided
k/n → 0. It is an univariate extension of Theorem 2.1 of Paparoditis (1996)
to the conditionally heteroskedastic AR(∞) case. It is used in proving our
main results further below.

Lemma A.2. Let �yt� satisfy (2.1) and assume that Assumptions 1(i), (ii), and
(iii′) and 2(i′) and (ii) hold. Then ‖�̂(k) − �(k)‖ = OP

(
k1/2

n1/2

)
.

The next lemma is useful for deriving the asymptotic distribution of
the estimated autoregressive parameters. For the univariate case it is the
m.d.s. extension of Lewis and Reinsel’s (1985), Theorem 2.

Lemma A.3. Let �yt� satisfy (2.1) and assume that Assumptions 1(i), (ii), and
(iii′) and Assumption 2 hold. Then

�(k)′√n − k(�̂(k) − �(k)) − �(k)′√n − k−1
k

(
(n − k)−1

n∑
t=1+k

Yt−1,k�t

)
= oP (1)�

The following result is the pairwise bootstrap analogue of Lemma A.1.
Note that for the fixed-design WB, ̂∗

fwb,k = ̂k and therefore the fixed-
design version of this result is not needed.

Lemma A.4. Under the conditions of Lemma A.1, if k,n → ∞ such that
k2/n → 0, ‖̂∗−1

pb,k − ̂−1
k ‖1 = oP ∗(1), in probability. If instead k3/n → 0, then

k1/2‖̂∗−1
pb,k − ̂−1

k ‖1 = oP ∗(1), in probability.

Lemmas A.5–A.7 below are the bootstrap (fixed-design WB and
pairwise bootstrap) analogs of Lemmas A.2, A.3, and Theorem 2.2,
respectively.

Lemma A.5. Under the assumptions of Lemma A.2, for the fixed-design WB
and for the pairwise bootstrap, it follows that ‖�̂∗(k) − �̂(k)‖ = OP ∗( k1/2

n1/2 ), in
probability.
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Lemma A.6. Under the assumptions of Lemma A.3, for the fixed-design WB and
for the pairwise bootstrap, it follows that

�(k)′√n − k(�̂∗(k) − �̂(k))/vk = (n − k)−1/2
n∑

t=1+k

�(k)′−1
k v−1

k Y ∗
t−1,k �̂

∗
t ,k + r ∗,

where r ∗ = oP ∗(1) in probability.

Lemma A.7. Under the assumptions of Theorem 2.2, if k4/n → 0, v̂∗2
k − v2

k =
oP ∗(1), in probability.

Proof of Lemma A.1. We follow the proof of Berk’s (1974) Lemma 3.
Since ‖−1

k ‖1 is bounded, we can write

∥∥̂−1
k − −1

k

∥∥
1
≤ C 2

∥∥̂k − k
∥∥
1

1 − C
∥∥̂k − k

∥∥
1

� (A.3)

Because E‖̂k − k‖2
1 ≤ E‖̂k − k‖2, it suffices to show that E‖̂k − k‖2 =

O
(

k2

n−k

) → 0, if k2/n → 0, which implies that ‖̂k − k‖1 = oP (1), and
thus from (A.3), ‖̂−1

k − −1
k ‖1 = oP (1). If instead k3/n → 0, then

E((k1/2‖̂k − k‖1)
2) ≤ kE(‖̂k − k‖2) ≤ Ck3/(n − k) → 0, showing that

k1/2‖̂k − k‖1 = oP (1) and consequently k1/2‖̂−1
k − −1

k ‖1 = oP (1). To show
that E‖̂k − k‖2 = O( k2

n−k ), we use routine calculations (see, e.g., Hannan,
1970, p. 209) to write E((n − k)−1

∑n
t=1+k(yt−i yt−j − E(yt−i yt−j)))

2 as a
function of fourth-order cumulants of �yt� and then use Assumption 1(iii′)
and Theorem 2.8.1 of Brillinger (1981) to bound this expression. �

Proof of Lemma A.2. We follow Lewis and Reinsel’s (1985) proof of
their Theorem 1. Let �t ,k = yt − Y ′

t−1,k�(k). We have that∥∥�̂(k) − �(k)
∥∥ ≤ ∥∥̂−1

k

∥∥
1
‖U1n‖ + ∥∥̂−1

k

∥∥
1
‖U2n‖, (A.4)

with U1n = (n − k)−1
∑n

t=k+1 Yt−1,k(�t − �t ,k), and U2n = (n − k)−1
∑n

t=k+1

Yt−1,k�t � We can show that (a) ‖̂−1
k ‖1 = OP (1), (b) ‖U1n‖ = oP ( k1/2

n1/2 ), and
(c) ‖U2n‖ = OP (

k1/2

n1/2 ). (a) and (b) follow as in Lewis and Reinsel (1985,
cf. Eq. (2.9)), given (A.1). For (c), we can write

E(‖U2n‖2) = (n − k)−2
k∑

j=1

n∑
t=1+k

n∑
s=1+k

E(yt−j ys−j�t�s)

= (n − k)−2
k∑

j=1

n∑
t=1+k

E
(
y2t−j�

2
t

)
, (A.5)
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since E(yt−j ys−j�t�s) = 0 for t �= s. It follows that

E
(
y2t−j�

2
t

) = E

( ∞∑
l=0


l�t−j−l

)2

�2
t

 =
∞∑

l1=0

∞∑
l2=0


l1
l2E(�t−j−l1�t−j−l2�
2
t )

=
∞∑

l1=0

∞∑
l2=0


l1
l2	l1+j ,l2+j ≤ C

( ∞∑
l=0


l

)2

< ∞,

given that 	l1+j ,l2+j are uniformly bounded under Assumption 1(iii) and
that

∑∞
l=0|
l |< ∞. Thus, E(‖U2n‖2) ≤ C k

n−k , implying ‖U2n‖ = OP

(
k1/2

n1/2

)
by

the Markov inequality. �

Proof of Lemma A.3. The proof follows exactly the proof of Theorem 2
of Lewis and Reinsel (1985, p. 399), given in particular our Lemma A.1,
Eq. (A.2), and the proof of our Lemma A.2. �

Proof of Lemma A.4. Following the same argument as in the
proof of Lemma A.1, for the first result it is enough to show that
‖̂∗

pb,k − ̂k‖1 = oP ∗(1) in probability, or by the Markov inequality, that
E ∗(‖̂∗

pb,k − ̂k‖2) = oP (1). By definition of the Euclidean matrix norm,

E ∗(∥∥̂∗
pb,k − ̂k

∥∥2)
= tr

(
(n − k)−2

n∑
t=1+k

n∑
s=1+k

E ∗
[(
Y ∗
t−1,kY

∗′
t−1,k − ̂k

)(
Y ∗
s−1,kY

∗′
s−1,k − ̂k

)])

= tr

(
(n − k)−2

n∑
t=1+k

(
Yt−1,kY ′

t−1,k − ̂k
)(
Yt−1,kY ′

t−1,k − ̂k
))

= (n − k)−1tr

(
(n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,kYt−1,kY ′

t−1,k − ̂k · ̂k
)
,

where the second equality uses the fact that E ∗[(Y ∗
t−1,kY

∗′
t−1,k − ̂k)

(Y ∗
s−1,kY

∗′
s−1,k − ̂k)] = 0 when t �= s. Since ‖(n − k)−1

∑n
t=1+k Yt−1,kY ′

t−1,kYt−1,k

Y ′
t−1,k‖ ≤ (n − k)−1

∑n
t=1+k ‖Yt−1,k‖4 = OP (k2) (given that supt E |yt |4 ≤

C <∞) and ̂k = OP (1), it follows that E ∗(‖̂∗
pb,k − ̂k‖2) = OP

(
k2

n−k

) +
OP

(
1

n−k

) = oP (1) given that k2

n → 0. The second result follows similarly
given that k3

n → 0. �

Proof of Lemma A.5. We only present the proof for the fixed-
design WB, since the proof for the pairwise bootstrap follows using similar
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arguments. We can write �̂∗(k) − �̂(k) = ̂−1
k (n − k)−1

∑n
t=1+k Yt−1,k �̂

∗
t ,k ,

which implies ‖�̂∗(k) − �̂(k)‖ ≤ ‖̂−1
k ‖1‖(n − k)−1

∑n
t=1+k Yt−1,k �̂

∗
t ,k‖.

Since ‖̂−1
k ‖1 = OP (1), as we argued before, and as we show next,

‖(n − k)−1
∑n

t=1+k Yt−1,k �̂
∗
t ,k‖ = OP ∗

(
k1/2

n1/2

)
, it follows that ‖�̂∗(k) − �̂(k)‖ =

OP ∗
(
k1/2

n1/2

)
in probability. To show that ‖(n − k)−1

∑n
t=1+k Yt−1,k �̂

∗
t ,k‖ =

OP ∗
(
k1/2

n1/2

)
in probability, it suffices to show that

E ∗
(∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,k �̂
∗
t ,k

∥∥∥∥2
)

= OP

(
k

(n − k)

)
, (A.6)

by the Markov inequality. We can write

E ∗
(∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,k �̂
∗
t ,k

∥∥∥∥2
)

= E ∗
{
(n − k)−2

n∑
t=1+k

n∑
s=1+k

Y ′
t−1,kYs−1,k �̂

∗
t ,k �̂

∗
s,k

}

= (n − k)−2
n∑

t=1+k

n∑
s=1+k

Y ′
t−1,kYs−1,kE ∗(�̂∗

t ,k �̂
∗
s,k)

= (n − k)−2
n∑

t=1+k

Y ′
t−1,kYt−1,k �̂

2
t ,k ≡ (n − k)−1�1,

where the last inequality follows because E ∗(�̂∗
t ,k �̂

∗
s,k) = 0 if t �= s and

E ∗(�̂∗
t ,k �̂

∗
s,k) = �̂2

t ,k otherwise. Next, we show that �1 = OP (k), which in turn
implies (A.6). Applying the triangle inequality first and then the Cauchy–
Schwartz inequality, we have that

|�1| ≤ (n − k)−1
n∑

t=1+k

|Y ′
t−1,kYt−1,k ||�̂2

t ,k |

≤
(
(n − k)−1

n∑
t=1+k

|Y ′
t−1,kYt−1,k |2

)1/2 (
(n − k)−1

n∑
t=1+k

�̂4
t ,k

)1/2

=
(
(n − k)−1

n∑
t=1+k

‖Yt−1,k‖4

)1/2 (
(n − k)−1

n∑
t=1+k

�̂4
t ,k

)1/2

≡ A1 · A2�

Because supt E |yt |4 ≤ C < ∞, E‖Yt−1,k‖4 = O(k2), which implies A1 =
OP (k). Since A2 = OP (1), as we show next, this proves the result. To show
that A2 = OP (1) , note that �̂t ,k = �t − ∑∞

j=1+k �j yt−j − (�̂(k) − �(k))′Yt−1,k .
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By the cr -inequality (Davidson, 1994, p. 140), we have that

(n − k)−1
n∑

t=1+k

�̂4
t ,k

≤ C(n − k)−1
n∑

t=1+k

�4
t +

∣∣∣∣ ∞∑
j=1+k

�j yt−j

∣∣∣∣4 + ∣∣(�̂(k) − �(k))′Yt−1,k

∣∣4
≡ B1 + B2 + B3�

B1 = OP (1) since E |�|4 ≤ � < ∞ for all t . Next consider B2. We have that

E |B2| = C(n − k)−1
n∑

t=1+k

E

∣∣∣∣ ∞∑
j=1+k

�j yt−j

∣∣∣∣4
 1

4×4

≤ C(n − k)−1
n∑

t=1+k

 ∞∑
j=1+k

|�j |
(
E |yt−j |4

)1/44

≤ C

 ∞∑
j=1+k

|�j |
4

,

where the first inequality follows by Minkowski’s inequality and the
last inequality holds by E |yt−j |4 ≤ � < ∞ for all t , j . Thus, by the
Markov inequality, it follows that B2 = OP

(( ∑∞
j=1+k |�j |

)4) = oP (1) given that∑∞
j=1|�j |< ∞ and k → ∞. Finally, consider B3. By the triangle inequality

for vector norms, we have that

B3 ≤ ‖�̂(k) − �(k)‖4(n − k)−1
n∑

t=1+k

‖Yt−1,k‖4 = OP

(
k2

n2

)
OP (k2)

= OP

((
k2

n

)2)
= oP (1),

given Lemma A.2, the fact that ‖Yt−1,k‖4 = OP (k2) and k2/n → 0. �

Proof of Lemma A.6. We start with the fixed-design WB. Adding and
subtracting appropriately yields

|r ∗| ≤ Ck1/2
∥∥̂−1

k − −1
k

∥∥
1
(n − k)1/2k−1/2

∥∥∥∥(n − k)−1
n∑

t=1+k

Yt−1,k �̂
∗
t ,k

∥∥∥∥,
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given that ‖�(k)‖ and |v−1
k | are bounded, with r ∗ defined as

r ∗ ≡ �(k)′(̂−1
k − −1

k

)
v−1
k (n − k)−1/2

n∑
t=1+k

Yt−1,k �̂
∗
t ,k �

Since by (A.6), E ∗(∥∥(n − k)−1
∑n

t=1+k Yt−1,k �̂
∗
t ,k

∥∥2) = OP

(
k

(n−k)

)
, we have that

E ∗|r ∗| ≤ Ck1/2
∥∥̂−1

k − −1
k

∥∥
1
OP (1) = oP (1), by Lemma A.1, see (A.2). By the

Markov inequality, for any � > 0, we have P ∗(|r ∗|> �) ≤ 1
�
E ∗(|r ∗|) = oP (1)

and the desired result follows. For the pairwise bootstrap, simple algebra
shows that r ∗ = A1 + A2, where

A1 = �(k)′√n − k
(̂
∗−1
pb,k − ̂−1

k

)
v−1
k (n − k)−1

n∑
t=1+k

Y ∗
t−1,k �̂

∗
t ,k

A2 = �(k)′√n − k
(̂
−1
k − −1

k

)
v−1
k (n − k)−1

n∑
t=1+k

Y ∗
t−1,k �̂

∗
t ,k �

Consider A2 first. We have that

|A2| ≤ C‖�(k)‖k1/2∥∥̂−1
k − −1

k

∥∥k−1/2(n − k)1/2
∥∥∥∥(n − k)−1

n∑
t=1+k

Y ∗
t−1,k �̂

∗
t ,k

∥∥∥∥�
(A.7)

Next we will show that

E ∗
(∥∥∥∥(n − k)−1

n∑
t=1+k

Y ∗
t−1,k �̂

∗
t ,k

∥∥∥∥2
)

= OP

(
k

n − k

)
, (A.8)

which, combined with Lemma A.1 and (A.7), shows that A2 = oP ∗(1) in
probability. To prove (A.8), note that

E ∗
(∥∥∥∥(n − k)−1

n∑
t=1+k

Y ∗
t−1,k �̂

∗
t ,k

∥∥∥∥2
)

= (n − k)−2
n∑

t=1+k

n∑
s=1+k

E ∗(Y ∗′
t−1,k �̂

∗
t ,kY

∗
s−1,k �̂

∗
s,k

)
�

By the properties of the pairwise bootstrap, conditional on the data,
Y ∗′
t−1,k �̂

∗
t ,k is independent of Y

∗
s−1,k �̂

∗
s,k when t �= s, which implies that

E ∗(Y ∗′
t−1,k �̂

∗
t ,kY

∗
s−1,k �̂

∗
s,k

) = E ∗(Y ∗′
t−1,k �̂

∗
t ,k

)
E ∗(Y ∗

s−1,k �̂
∗
s,k

)
=

∥∥∥∥∥(n − k)−1
n∑

t=1+k

Yt−1,k �̂t ,k

∥∥∥∥∥
2

= 0,
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where the last equality holds by the FOC of the optimization problem that
defines �̂(k). For t = s, instead we have

E ∗(Y ∗′
t−1,k �̂

∗
t ,kY

∗
s−1,k �̂

∗
s,k

) = (n − k)−1
n∑

t=1+k

Y ′
t−1,kYt−1,k �̂

2
t ,k �

Thus, the LHS of (A.8) equals (n − k)−2
∑n

t=1+k Y
′
t−1,kYt−1,k �̂

2
t ,k , which

is OP

(
k

n−k

)
, as we showed earlier. Next, we show that A1 = oP ∗(1) in

probability. We can write

|A1| ≤ C‖�(k)‖∥∥̂∗−1
pb,k − ̂−1

k

∥∥
1
(n − k)1/2

∥∥∥∥(n − k)−1
n∑

t=1+k

Y ∗
t−1,k �̂

∗
t ,k

∥∥∥∥
≤ C

∥∥̂∗−1
pb,k − ̂−1

k

∥∥
1
(n − k)1/2OP ∗

(
k1/2

(n − k)1/2

)
,

conditional on the data, given (A.8) and the Markov inequality. So,
it suffices to show that k1/2

∥∥̂∗−1
pb,k − ̂−1

k

∥∥
1
= oP ∗(1) in probability, which

follows by Lemma A.4.

Proof of Lemma A.7. We follow the proof of Theorem 2.2. For both
bootstrap schemes, it suffices that (a)

∥∥̂∗−1
k − −1

k

∥∥ = oP ∗(1) in probability,
and that (b) ‖B̂∗

k − Bk‖ = oP ∗(1), in probability. For the fixed-design WB,
̂∗
k = ̂k (since Y ∗

t−1,k = Yt−1,k) and (a) corresponds to showing that
‖̂−1

k − −1
k ‖ = oP (1), which follows by Lemma A.1. For (b), note that �̃∗

t ,k =
�̂∗
t ,k − Y ′

t−1,k(�̂
∗(k) − �̂(k)), where �̂∗

t ,k = �̂t ,k�t . We can write ‖B̂∗
k − Bk‖ ≤

‖A∗
1‖ + ‖A∗

2‖ + ‖A∗
3‖, where

A∗
1 = (n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k

(
�̃∗2
t ,k − �̂∗2

t ,k

)
,

A∗
2 = (n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k

(
�̂∗2
t ,k − �̂2

t ,k

)
,

and A∗
3 = B̂k − Bk � By Theorem 2.2, ‖A∗

3‖ = oP (1). Next, we will show that
‖A∗

1‖ = OP ∗(( k
4

n )
1/2) = oP ∗(1) in probability, if k4

n → 0, and A∗
2 = oP ∗(1) in

probability. Following the proof of Theorem 2.2, we can write ‖A∗
1‖ ≤ A∗

11 +
A∗

12, where A∗
11 and A∗

12 are exactly as A11 and A12 except that we replace
�̂t ,k with �̃∗

t ,k and �t ,k with �̂∗
t ,k . For A∗

11, we proceed as for A11 but replace
�̃∗
t ,k − �̂∗

t ,k with −Y ′
t−1,k(�̂

∗(k) − �̂(k)), yielding

A∗
11 ≤ ∥∥�̂∗(k) − �̂(k)

∥∥(
(n − k)−1

n∑
t=1+k

‖Yt−1,k‖6

)1/2(
(n − k)−1

n∑
t=1+k

|�̃∗
t ,k |2

)1/2

�
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By Lemma A.5, ‖�̂∗(k) − �̂(k)‖ = OP ∗
(
k1/2

n1/2

)
in probability. In addition,

E‖Yt−1,k‖6 = O(k3) (since E |yt |6 ≤ � < ∞) and we can show that (n − k)−1∑n
t=1+k |�̃∗

t ,k |2= OP ∗(1) in probability (write �̃∗
t ,k = �̂t ,k + �̂t ,k(�t − 1)− (�̂(k) −

�(k))′Yt−1,k , apply the cr -inequality and show that each term is OP ∗(1) in
probability). Since k4/n → 0, it follows that A∗

11 = oP ∗(1) in probability.
A∗

12 can be handled similarly.
To show that A∗

2 = oP ∗(1) in probability, we show that E ∗(A∗
2)

P→ 0
and Var ∗(A∗

2)
P→ 0� Note that A∗

2 = (n − k)−1
∑n

t=1+k Yt−1,kY ′
t−1,k �̂

2
t ,k(�

2
t − 1)

and since E ∗(�2t ) = 1, E ∗(A∗
2) = 0. Similarly, using the fact that E ∗((�2t −

1)(�2s − 1)) = 0 for t �= s, we can write Var ∗(A∗
2)= (n − k)−2

∑n
t=1+k

Yt−1,kY ′
t−1,kYt−1,kY ′

t−1,k �̂
4
t ,k��, where �� = E ∗[(�2 − 1)2] < ∞. By the Cauchy–

Schwartz inequality and noting that ‖Yt−1,k‖8 = OP (k4), it follows that

|Var ∗(A∗
2)| ≤ (n − k)−1

(
(n − k)−1

n∑
t=1+k

‖Yt−1,k‖8

)1/2 (
(n − k)−1

n∑
t=1+k

|�̂t ,k |8
)1/2

�� = OP

(
k2

n

)
,

which is oP (1) if k2/n → 0.
The proof for the pairwise bootstrap is similar, so we omit the details.

Lemmas A.1 and A.4 imply (a). For (b), using �̃∗
t ,k = �̂∗

t ,k − Y ∗′
t−1,k(�̂

∗(k) −
�̂(k)), where �̂∗

t ,k = y∗
t − Y ∗

t−1,k�̂(k), we can write B̂∗
k − Bk = B∗

1 + B∗
2 + B∗

3 +
B∗
4 , where B∗

1 = (n − k)−1
∑n

t=1+k Y
∗
t−1,kY

∗′
t−1,k �̂

∗2
t ,k − B̂k , B∗

2 = B̂k − Bk , B∗
3 =

−2(n − k)−1
∑n

t=1+k Y
∗
t−1,kY

∗′
t−1,kY

∗′
t−1,k �̂

∗
t ,k(�̂

∗(k) − �̂(k)), and B∗
4 = (n − k)−1∑n

t=1+k Y
∗
t−1,kY

∗′
t−1,k(Y

∗′
t−1,k(�̂

∗(k) − �̂(k)))2. Theorem 2.2 implies that
B∗
2 = oP (1). By Lemma A.5 and using arguments similar to those used

above, we can show that B∗
1 = oP ∗(1), B∗

3 = OP ∗
(
k4/2

n1/2

)
, B∗

4 =OP ∗
(
k3

n

)
. Thus,

B̂∗
k − Bk = oP ∗(1) in probability if k4

n → 0� �

A.2. Proofs of the Theorems

Proof of Theorem 2.1. Given Lemma A.3 and the Asymptotic
Equivalence Lemma (cf. White, 2000, Lemma 4.7), the proof proceeds
in two steps. First, we show that v2

k is bounded above and bounded away
from zero. Second, we show that (n − k)−1/2

∑n
t=1+k �(k)

′−1
k Yt−1,k�t/vk ⇒

N (0, 1).
Let P ′

k = [b1,k , b2,k , � � � ] be a k × ∞-dimensional matrix, where
bj ,k = (
j−1, � � � ,
j−k)

′ with 
j = 0 for j < 0 and 
0 = 1, and let � = [	i ,j ]
be the infinite-dimensional matrix associated with �m as defined by
equation (7) of Kuersteiner (2001, p. 368). It follows that k = �2P ′

kPk and
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Bk = P ′
k�Pk , implying that

v2
k = �(k)′(�2P ′

kPk)
−1P ′

k�Pk(�
2P ′

kPk)
−1�(k) = z ′�z,

where we let z ′ ≡ �(k)′(�2P ′
kPk)

−1P ′
k . For any sequence of real numbers

x = �x1, x2, � � � �, define the norm ‖x‖2 = ( ∑∞
i=1|xi |2

)1/2
and let l 2 denote

the space of all sequences that are bounded under this norm. Note
that z ′z = ‖z‖2

2 = �−2�(k)′−1
k �(k) is bounded above and bounded away

from zero (uniformly in k), so z ∈ l 2� Lemma 4.1 of Kuersteiner (2001)
shows that �−1 exists, i.e., minx ′x=1 x ′�x > 0. Under our Assumption
1, which is identical to Kuersteiner’s Assumption A1, it follows thus
that v2

k ≥ (z ′z)minx ′x=1 x ′�x > 0. The boundedness of v2
k also follows by

Lemma 4.1 of Kuersteiner and an application of the Cauchy–Schwartz
inequality, given that z ∈ l 2 and �z ∈ l 2�

Let znt = �(k)′−1
k Yt−1,k�t/vk � To prove that (n − k)−1/2

∑n
t=1+k

znt ⇒ N (0, 1) we apply a CLT for m.d.s. (cf. Davidson, 1994, p. 383)
since E(znt | �t−1, �t−2, � � � )= �(k)′−1

k Yt−1,kv−1
k E(�t |�t−1, �t−2, � � � )= 0

under Assumption 1. Hence we need to show that (a)
(n − k)−1

∑n
t=1+k z

2
nt − 1

P→ 0, and (b) max1+k≤t≤n(n − k)−1/2|znt | P→ 0� Lewis
and Reinsel (1985) also verify similar conditions for establishing their
asymptotic normality result (cf. their Theorem 4). However, the arguments
of Lewis and Reinsel (1985) are based on the independence between yt−j

and �t and do not apply in our context. Here, the simplification afforded
by the independence between yt−j and �t is not available; we overcome
the extra difficulty by exploiting well known properties of joint cumulants.
This explains in particular our strengthening of Assumption 1(iii′).

We start with (a). Note that Var (znt) = �(k)′−1
k Bk

−1
k �(k)/v2

k = 1.
We can write

1
n − k

n∑
t=1+k

z2nt − 1

= v−2
k

{
�(k)′−1

k

(
1

n − k

n∑
t=1+k

Yt−1,kY ′
t−1,k�

2
t − E

(
Yt−1,kY ′

t−1,k�
2
t

))
−1
k �(k)

}
≡ v−2

k ��(k)′−1
k Sk−1

k �(k)�,

with the obvious definition of Sk . Because v2
k > 0, v−2

k is bounded, and it
suffices to show �(k)′−1

k Sk−1
k �(k)

P→ 0� We have that∣∣�(k)′−1
k Sk−1

k �(k)
∣∣ ≤ ‖�(k)‖∥∥−1

k

∥∥
1
‖Sk‖1

∥∥−1
k

∥∥
1
‖�(k)‖ ≤ M2C 2

2 ‖Sk‖1,

since ‖�(k)‖2 ≤ M2 and ‖−1
k ‖1 ≤ C2 uniformly in k� Next we show that

‖Sk‖1 = oP (1). By the Markov inequality it suffices to show that E‖Sk‖2
1 → 0
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or, that E‖Sk‖2 → 0, since ‖Sk‖2
1 ≤ ‖Sk‖2� We have

E‖Sk‖2
1 ≤ E‖Sk‖2 =

k∑
i=1

k∑
j=1

E
([Sk]2i ,j) = 1

n − k

k∑
i=1

k∑
j=1

(n − k)E
([Sk]2i ,j),

where [Sk]i ,j denotes element (i , j) of Sk . Below we use Assumption 1(iii)
to bound

(n − k)E([Sk]2i ,j) = (n − k)E

[(
(n − k)−1

n∑
t=1+k

(
yt−i yt−j�

2
t − E

(
yt−i yt−j�

2
t

)))2
]

(A.9)

by a constant C , independent of i , j or n, implying that E‖Sk‖2
1 ≤ C k2

n−k → 0
if k2/n → 0. To prove (b), note that for any � > 0 and for some r > 1,

P
(

max
1+k≤t≤n

|znt |>
√
n − k�

)
≤

n∑
t=1+k

P
(
|znt |>

√
n − k�

)
≤

n∑
t=1+k

E |znt |r
(n − k)r/2�r

�

(A.10)

Letting vt ,k = �(k)′−1
k Yt−1,k , we can write znt = v−1

k vt ,k�t , and by the
Cauchy–Schwartz inequality it follows that E |znt |r =E |vt ,k�t/vk |r≤
|v−1

k |r (E |vt ,k |2r )1/2(E |�t |2r )1/2 ≤ C(E |vt ,k |2r )1/2, since v−1
k = O(1) and

E |�t |2r =O(1), for r ≤ 4. We now prove that E |vt ,k |2r= O(kr ). We
can write |vt ,k | = |�(k)′−1

k Yt−1,k | ≤ ‖�(k)‖‖−1
k ‖1‖Yt−1,k‖, so that |vt ,k |2r≤

Mr
2C

r
2 |

∑k
j=1 y

2
t−j |r � By an application of the Minkowski inequality, and the

fact that E |yt−j |2r≤ � < ∞ for all j = 1, � � � , k and some r ≤ 4, it follows
that E |vt ,k |2r≤ Mr

2C
r
2�k

r , implying E |znt |r≤ Ckr/2. Using this bound in
(A.10) with r = 3 implies that the LHS of (A.10) is O

(
k3/2

(n−k)1/2

)
, which is

o(1) provided k3/n → 0, as we assume.
To conclude the proof, we show that (A.9) is bounded uniformly

in i , j = 1, � � � , k and n� Define 
j = 0 for j < 0. Using the MA(∞)
representation of yt , we have that (A.9) is equal to

(n − k)−1
n∑

t=1+k

n∑
s=1+k

Cov(yt−i yt−j�
2
t , ys−i ys−j�

2
s )

=
∞∑

l1,���,l4=−∞

l1
l2
l3
l4(n − k)−1

×
n∑

t=1+k

n∑
s=1+k

Cov
(
�t−i−l1�t−j−l2�

2
t , �s−i−l3�s−j−l4�

2
s

)
�
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Next, we show that

(n − k)−1
n∑

t=1+k

n∑
s=1+k

Cov
(
�t−i−l1�t−j−l2�

2
t , �s−i−l3�s−j−l4�

2
s

) ≤ C , (A.11)

uniformly in i , j , l1, � � � , l4, and n, which proves the result given the absolute
summability of �
j�. By an application of Theorem 2.3.2 of Brillinger
(1981, p. 21) we can write Cov(�t−i−l1�t−j−l2�

2
t , �s−i−l3�s−j−l4�

2
s ) as the sum of

products of cumulants of �t of order eight and lower (see also McCullagh’s
1987 equation (3.3), p. 39). In particular, if we let Y1 = �t−i−l1�t−j−l2�

2
t and

Y2 = �s−i−l3�s−j−l4�
2
s , then

Cum(Y1,Y2) =
∑
v

Cum(Xij : i , j ∈ v1) � � �Cum(Xij : i , j ∈ vp) (A.12)

where the sum extends over all indecomposable partitions v = v1 ∪ · · · ∪ vp
of the following table:

X =
[
�t−i−l1 �t−j−l2 �t �t

�s−i−l3 �s−j−l4 �s �s

]
�

We let Cum(·, � � � , ·) denote the joint cumulant of the set of random
variables involved. By the mean zero property of �t only partitions with
a number of sets smaller or equal to 4 (i.e., with p ≤ 4) contribute to
the sum in (A.12). For a list of the indecomposable partitions that omit
the unit parts (i.e., the blocks with only one element), see Table 2 of
McCullagh (1987, p. 259).

Consider p = 1, i.e., consider v = ��t−i−l1 , �t−j−l2 , �t , �t , �s−i−l3 , �s−j−l4 , �s ,
�s�. This term contributes towards the sum with the 8th order
joint cumulant Cum(�t−i−l1 , �t−j−l2 , �t , �t , �s−i−l3 , �s−j−l4 , �s , �s), which by
stationarity can be written as ��(t − s − i − l1, t − s − j − l2, t − s, t − s,
−i − l3,−j − l4, 0, 0) ≡ ��(� − i − l1, � − j − l2, �, �,−i − l3,−j − l4, 0, 0), if
we set � = t − s. Thus, by a change of variables, the contribution of this
term to (A.11) is

n−(1+k)∑
�=−n+(1+k)

(
1 − |�|

n − k

)
��

(
� − i − l1, � − j − l2, �, �,−i − l3,−j − l4, 0, 0

)
≤

∞∑
�=−∞

∣∣��

(
� − i − l1, � − j − l2, �, �,−i − l3,−j − l4, 0, 0

)∣∣
≤

∞∑
�1=−∞

∞∑
�2=−∞

· · ·
∞∑

�7=−∞

∣∣��(�1, �2, � � � , �7, 0)
∣∣ < ∞,
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by Assumption 1(iii). For p = 2 the mean zero property of �t

implies that only partitions v = v1 ∪ v2 with cardinalities (#v1, #v2) ∈
�(4, 4), (2, 6), (3, 5)� contribute to (A.12) with a nonzero value,
i.e., products of cumulants of orders 2 to 6 enter this term. Here #vi is used
to denote the number of elements contained in each set vi . Because the
sum is taken over indecomposable partitions there is at least one element
of each row of X in at least one set of each partition. This implies that
we can express some of the cumulants entering the product as a function
of t − s. The summability condition Assumption 1(iii′) then ensures the
boundedness of the contribution of these terms to the sum in (A.11).
The same reasoning can be applied for p = 3, where (#v1, #v2, #v3) ∈
�(2, 2, 4), (3, 3, 2)�, and for p = 4, where (#v1, #v2, #v3, #v4) ∈ �(2, 2, 2, 2)�.

Proof of Theorem 2.2. Adding and subtracting appropriately, we can
write

v̂2
k − v2

k = �(k)′ ̂
−1
k

(
B̂k − Bk

)
−1
k �(k) + �(k)′( ̂−1

k − −1
k

)
Bk

−1
k �(k)

+ �(k)′ ̂
−1
k B̂k

(
̂

−1
k − −1

k

)
�(k)�

Since ‖�(k)‖, ‖−1
k ‖1, and ‖Bk‖1 are bounded, and ‖̂−1

k ‖1 and ‖B̂k‖1 are
bounded in probability, it suffices that ‖̂−1

k − −1
k ‖ = oP (1) (which follows

by Lemma A.1), and that ‖B̂k − Bk‖ = oP (1), which we prove next. We can
write ‖B̂k − Bk‖ ≤ A1 + A2 + A3, where

A1 =
∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k

(
�̂2
t ,k − �2

t ,k

)∥∥∥∥,
A2 =

∥∥∥∥(n − k)−1
n∑

t=1+k

Yt−1,kY ′
t−1,k

(
�2
t ,k − �2

t

)∥∥∥∥,
A3 =

∥∥∥∥(n − k)−1
n∑

t=1+k

(
Yt−1,kY ′

t−1,k�
2
t − E

(
Yt−1,kY ′

t−1,k�
2
t

))∥∥∥∥�
A3 = OP

(
k

(n−k)1/2

)
under our conditions (see proof of Theorem 2.1; A3 here

corresponds to Sk there). Next, we will show that A1 = OP

((
k4

n

)1/2)
,

which is oP (1) if k4

n → 0, and A2 = OP

(
k

∑∞
j=1+k |�j |

)
, which is oP (1) if

n1/2
∑n

t=1+k |�j | → 0 and k2/n → 0� Consider A1. Write

A1 =
∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k(�̂t ,k − �t ,k)(�̂t ,k + �t ,k)

∥∥∥∥
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≤
∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k �̂t ,k(�̂t ,k − �t ,k)

∥∥∥∥
+

∥∥∥∥(n − k)−1
n∑

t=1+k

Yt−1,kY ′
t−1,k�t ,k(�̂t ,k − �t ,k)

∥∥∥∥ ≡ A11 + A12�

We will consider only A11. The analysis of A12 follows by similar arguments.
Replacing �̂t ,k − �t ,k with −Y ′

t−1,k(�̂(k) − �(k)) and applying the triangle
inequality and the Cauchy–Schwartz inequality yields

A11 ≤ ∥∥�̂(k) − �(k)
∥∥(n − k)−1

n∑
t=1+k

‖Yt−1,k‖3|�̂t ,k |

≤ ∥∥�̂(k) − �(k)
∥∥ (

(n − k)−1
n∑

t=1+k

‖Yt−1,k‖6

)1/2 (
(n − k)−1

n∑
t=1+k

|�̂t ,k |2
)1/2

= OP

(
k1/2

n1/2

)
OP (k3/2)OP (1) = OP

(
k4/2

n1/2

)
,

where the second equality holds by Lemma A.2, the fact that E‖Yt−1,k‖6 =
O(k3) (since E |yt |6 ≤ � < ∞) and (n − k)−1

∑n
t=1+k |�̂t ,k |2= OP (1) (cf. proof

of Lemma A.6). Since k4/n → 0, it follows that A11 = oP (1).
Next, take A2. Since �t ,k = �t − ∑∞

j=1+k �j yt−j and �2
t ,k − �2

t = (�t ,k −
�t)(�t ,k + �t), we can write

A2 ≤
∥∥∥∥∥∥(n − k)−1

n∑
t=1+k

Yt−1,kY ′
t−1,k�t ,k

(
−

∞∑
j=1+k

�j yt−j

)∥∥∥∥∥∥
+

∥∥∥∥∥∥(n − k)−1
n∑

t=1+k

Yt−1,kY ′
t−1,k�t

(
−

∞∑
j=1+k

�j yt−j

)∥∥∥∥∥∥ ≡ A21 + A22�

Consider A22. The analysis of A21 is analogous. An application of the
triangle inequality and the Cauchy–Schwartz inequality yields

A22 ≤ (n − k)−1
n∑

t=1+k

‖Yt−1,k‖2|�t |
∞∑

j=1+k

|�j ||yt−j |

≤
∞∑

j=1+k

|�j |(n − k)−1
n∑

t=1+k

‖Yt−1,k‖2|�t yt−j |
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≤
∞∑

j=1+k

|�j |
(
(n − k)−1

n∑
t=1+k

‖Yt−1,k‖4

)1/2 (
(n − k)−1

n∑
t=1+k

|�t yt−j |2
)1/2

= OP

k
∞∑

j=1+k

|�j |
 ,

given that E‖Yt−1,k‖4 = OP (k2) and that E |�t yt−j |2 ≤ � < ∞ for all t , j .
But k

∑∞
j=1+k |�j | = k

n1/2n
1/2

∑∞
j=1+k |�j | → 0 under Assumption 2(ii) and

k/n1/2 → 0, which implies A22 = oP (1).

Proof of Theorem 3.1. Given Lemmas A.6 and A.7, it suffices to show
that with probability approaching one (n − k)−1/2

∑n
t=1+k w

∗
nt ⇒dP∗ N (0, 1),

where w∗
nt = �(k)′−1

k v−1
k Y ∗

t−1,k �̂
∗
t ,k . We start with the fixed-design WB.

Because conditional on the original data w∗
nt is an independent (not

identically distributed) array of random variables, we will apply Lyapunov’s
theorem (Durrett, 1996, p. 121) conditional on the data. Note that
E ∗((n − k)−1/2

∑n
t=1+k w

∗
nt

) = 0 and �̄∗2
n ≡ Var ∗((n − k)−1/2

∑n
t=1+k w

∗
nt

) =
v∗2
k
v2k
, with v2

k ≡ �(k)′−1
k Bk

−1
k �(k) and v∗2

k ≡ �(k)′−1
k B̂k

−1
k �(k), B̂k = (n −

k)−1
∑n

t=1+k Yt−1,kY ′
t−1,k �̂

2
t ,k . The proof consists of two steps: Step 1. Show

�̄∗2
n

P→ 1, or equivalently, v∗2
k − v2

k
P→ 0, given that v2

k is bounded away
from zero. Step 2. Verify Lyapunov’s condition, i.e., for some r > 1,
(n − k)−r

∑n
t=1+k E

∗|w∗
nt |2r P→ 0�

Proof of Step 1. Note that |v∗2
k − v2

k | ≤ ‖�(k)‖2‖−1
k ‖2

1‖B̂k − Bk‖ ≤
C‖B̂k − Bk‖, given that ‖�(k)‖ and ‖−1

k ‖1 are bounded, and that by
Theorem 2.2, ‖B̂k − Bk‖ = oP (1).

Proof of Step 2. We will show that Lyapunov’s condition holds with
r = 3

2 . Let vt ,k = �(k)′−1
k Yt−1,k . Then w∗

nt = v−1
k vt ,k �̂∗

t ,k . We have that

(n − k)−r
n∑

t=1+k

E ∗|w∗
nt |2r = (n − k)−r

n∑
t=1+k

|vk |−2r |vt ,k |2r |�̂t ,k |2r E ∗|�t |2r

≤ C(n − k)−r
n∑

t=1+k

|vt ,k |2r |�̂t ,k |2r

≤ C(n − k)1−r

(
(n − k)−1

n∑
t=1+k

|vt ,k |4r
)1/2

×
(
(n − k)−1

n∑
t=1+k

|�̂t ,k |4r
)1/2

� (A.13)
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By an argument similar to that used in Lemma A.6, we can show
that (n − k)−1

∑n
t=1+k |�̂t ,k |4r ≤ (n − k)−1

∑n
t=1+k |�t |4r +OP

(( ∑∞
j=1+k |�j |

)4r ) +
OP

(
k4r

n4r/2

)
, provided E |yt |4r ≤ � < ∞ for all t . Thus, with r = 3

2 it follows
that (n − k)−1

∑n
t=1+k |�̂t ,k |4r= OP (1). Similarly, we can show that (n − k)−1∑n

t=1+k |vt ,k |4r= OP (k2r ) = OP (k3), with r = 3
2 . Hence, the LHS of (A.13) is

OP

((
k3

n−k

)1/2) = oP (1) if k3/n → 0�
The proof for the pairwise bootstrap follows similarly. In particular,

to show (n − k)−1/2
∑n

t=1+k w
∗
nt ⇒dP∗ N (0, 1) in probability, where

w∗
nt = �(k)′v−1

k −1
k Y ∗

t−1,k �̂
∗
t ,k , we note that w∗

nt is independent (conditional on

the original data) with E ∗(w∗
nt) = 0 and Var ∗((n − k)−1/2

∑n
t=1+k w

∗
nt) = v∗2

k
v2k
,

where v∗2
k = �(k)′−1

k B̂k
−1
k �(k), as for the fixed-design WB. Thus, v∗2

k
v2k

→ 1
in probability, and we only need to check Lyapunov’s condition. Using the
properties of the pairwise bootstrap yields, for some r > 1,

E ∗(|w∗
nt |2r

) ≤ ‖�(k)‖2r‖−1
k ‖2r

1 |v−1
k |2r E ∗(∥∥Y ∗

t−1,k �̂
∗
t ,k

∥∥2r )
≤ C(n − k)−1

n∑
t=1+k

‖Yt−1,k �̂t ,k‖2r

≤ C

(
(n − k)−1

n∑
t=1+k

‖Yt−1,k‖4r

)1/2 (
(n − k)−1

n∑
t=1+k

|�̂t ,k |4r
)1/2

= OP (k2r/2)OP (1) = OP (kr ),

provided supt E |�t |4r< C < ∞. Choosing r = 3
2 verifies Lyapunov’s

condition provided k3/n → 0.

ACKNOWLEDGMENTS

Part of this research was conducted while the second author was
serving as an advisor to the European Central Bank. We thank the
editor, two anonymous referees, Peter R. Hansen, Atsushi Inoue, Guido
Kuersteiner, Simone Manganelli, Nour Meddahi, Roch Roy, and Victoria
Zinde-Walsh for helpful discussions. We also thank seminar participants at
the June 2003 North American and the July 2003 Australasian Meeting of
the Econometric Society, as well as the NBER-NSF Time Series Conference
in Chicago in September of 2003. Gonçalves acknowledges financial
support from the Fonds québécois pour la recherche sur la société et
la culture (FQRSC), and the Social Science and Humanities Research
Council of Canada (SSHRCC).



D
ow

nl
oa

de
d 

B
y:

 [U
ni

v.
 M

ic
hi

ga
n 

B
us

in
es

s 
S

ch
oo

l] 
A

t: 
15

:2
7 

11
 D

ec
em

be
r 2

00
7 640 S. Gonçalves and L. Kilian

REFERENCES

Andrews, D. W. K. (1991). Heteroskedastic and autocorrelation consistent covariance matrix
estimation. Econometrica 59:817–858.

Bekaert, G., Hodrick, R. J. (2001). Expectations hypothesis tests. Journal of Finance 56:1357–1394.
Berk, K. (1974). Consistent autoregressive spectral estimates. Annals of Statistics 2:489–502.
Bhansali, R. (1978). Linear prediction by autoregressive model fitting in the time domain. Annals

of Statistics 6:224–231.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics

31:307–327.
Braun, P. A., Mittnik, S. (1993). Misspecifications in vector autoregressions and their effects on

impulse responses and variance decompositions. Journal of Econometrics 59:319–341.
Brillinger, D. R. (1981). Time Series: Data Analysis and Theory. San Francisco: Siam.
Bühlmann, P. (1995). Moving-average representation for autoregressive approximations. Stochastic

Processes and Their Applications 60:331–342.
Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli 3:123–148.
Canova, F. (1995). Vector autoregressions: specification, estimation, inference and forecasting. In:

Pesaran, H., Wickens, M., eds. The Handbook of Applied Econometrics. Vol. 1. London: Basil
Blackwell.

Choi, E., Hall, P. (2000). Bootstrap confidence regions computed on autoregressions of arbitrary
order. Journal of the Royal Statistical Society, Series B 62:461–477.

Davidson, J. (1994). Stochastic Limit Theory. New York: Oxford University Press.
Diebold, F. X., Kilian, L. (2001). Measuring predictability: theory and macroeconomic applications.

Journal of Applied Econometrics 16:657–669.
Durrett, R. (1996). Probability: Theory and Examples. 2nd ed. Belmont, California: Duxury Press.
Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families

of linear regressions. Annals of Mathematical Statistics 34:447–456.
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of

United Kingdom inflation. Econometrica 50:987–1007.
Freedman, D. A. (1981). Bootstrapping regression models. Annals of Statistics 9:1218–1228.
Galbraith, J. W. (2003). Content horizons for univariate time-series forecasts. International Journal of

Forecasting 19:43–55.
Geman, S., Hwang, C.-R. (1982). Nonparametric maximum likelihood estimation by the method of

sieves. Annals of Statistics 10:401–414.
Giné, E., Zinn, J. (1990). Bootstrapping general empirical measures. Annals of Probability 18:851–869.
Gonçalves, S., Kilian, L. (2004). Bootstrapping autoregressions with conditional heteroskedasticity

of unknown form. Journal of Econometrics 123:89–120.
Gonçalves, S., White, H. (2004). Maximum likelihood and the bootstrap for nonlinear dynamic

models. Journal of Econometrics 119:199–220.
Grenander, U. (1981). Abstract Inference. New York: Wiley.
Hannan, E. J. (1970). Multiple Time Series. New York: Wiley.
Hannan, E. J., Deistler, M. (1988). The Statistical Theory of Linear Systems. New York: Wiley.
Hansen, B. E. (2000). Testing for structural change in conditional models. Journal of Econometrics

97:93–115.
Hodrick, R. J. (1992). Dividend yields and expected stock returns: alternative procedures for

inference and measurement. Review of Financial Studies 5:357–386.
Hong, Y., Lee, Y.-J. (2003). Consistent testing for serial correlation of unknown form under general

conditional heteroskedasticity. Manuscript, Department of Economics, Cornell University.
Inoue, A., Kilian, L. (2002). Bootstrapping smooth functions of slope parameters and innovation

variances in VAR(∞) models. International Economic Review 43:309–332.
Kreiss, J. P. (1997). Asymptotic properties of residual bootstrap for autoregressions. Mimeo, Institute

for Mathematical Stochastics, Technical University of Braunschweig, Germany.
Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Annals

of Statistics 17:1217–1241.
Kuersteiner, G. M. (2001). Optimal instrumental variables estimation for ARMA models. Journal of

Econometrics 104:359–405.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

v.
 M

ic
hi

ga
n 

B
us

in
es

s 
S

ch
oo

l] 
A

t: 
15

:2
7 

11
 D

ec
em

be
r 2

00
7 Asymptotic and Bootstrap Inference 641

Lewis, R., Reinsel, G. (1985). Prediction of multivariate time series of autoregressive model fitting.
Journal of Multivariate Analysis 16:393–411.

Liu, R. Y. (1988). Bootstrap procedure under some non-i.i.d. models. Annals of Statistics
16:1696–1708.

Lütkepohl, H. (1988a). Asymptotic distribution of the moving-average coefficients of an estimated
vector autoregressive process. Econometric Theory 4:77–85.

Lütkepohl, H. (1988b). Prediction tests for structural stability. Journal of Econometrics 39:267–296.
Lütkepohl, H., Poskitt, D. S. (1991). Estimating orthogonal impulse responses via vector

autoregressive models. Econometric Theory 7:487–496.
Lütkepohl, H., Poskitt, D. S. (1996). Testing for causation using infinite order vector autoregressive

processes. Econometric Theory 12:61–87.
Lütkepohl, H., Saikkonen, P. (1997). Impulse response analysis in infinite-order cointegrated vector

autoregressive processes. Journal of Econometrics 81:127–157.
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of

Statistics 21:255–285.
McCullagh, P. (1987). Tensor Methods in Statistics. London: Chapman and Hall.
Ng, S., Perron, P. (1995). Unit root tests in ARMA models with data-dependent methods for the

selection of the truncation lag. Journal of the American Statistical Association 90:268–281.
Nicholls, D. F., Pagan. A. R. (1983). Heteroskedasticity in models with lagged dependent variables.

Econometrica 51:1233–1242.
Paparoditis, E. (1996). Bootstrapping autoregressive and moving average parameter estimates of

infinite order vector autoregressive processes. Journal of Multivariate Analysis 57:277–296.
Politis, D. N., Romano, J. P., Wolf, M. (1999). Subsampling. New York: Springer-Verlag.
Saikkonen, P. (1992). Estimation and testing of cointegrated systems by an autoregressive

approximation. Econometric Theory 8:1–27.
Saikkonen, P., Lütkepohl, H. (1996). Infinite-order cointegrated vector autoregressive processes.

Econometric Theory 12:814–844.
Saikkonen, P., Luukkonen, R. (1997). Testing cointegration in infinite order vector autoregressive

processes. Journal of Econometrics 81:93–126.
Stock, J. H., Watson, M. W. (2001). Vector autoregressions. Journal of Economic Perspectives

15(Fall):101–115.
Weiss, A. A. (1988). ARMA models with ARCH errors. Journal of Time Series Analysis 5:129–143.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity. Econometrica 48:817–838.
White, H. (2000). Asymptotic Theory for Econometricians. Revised Edition. San Diego: Academic Press.
Wu, C. F. J. (1986). Jackknife bootstrap and other resampling methods in regression analysis. Annals

of Statistics 14:1261–1295.


