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1 Introduction

Consider first the problem of estimating the shift parameter � based on observations
X1; : : : ;Xn; distributed according to distribution function F.x ��/: Parallel problem
consists of estimating the regression parameter in model Yi D x>

i ˇ C ei; i D
1; : : : ; n. Many estimators of � are asymptotically normally distributed, which is
proven with the aid of the central limit theorem. The word “central” is suitable,
because it approximates well the central part, but less accurately the tails of the
true distribution of the estimator. The leading idea of robust estimators was their
assumed resistance to heavy-tailed distributions and to the gross errors. However,
while they are often asymptotically normal, we can show that they themselves can
be heavy-tailed for any finite n.

Another interesting fact is that though many estimators are asymptotically
admissible with respect to quadratic or generally to convex risk functions, some of
them are not finite-sample admissible for any distribution at all, and cannot be even
Bayesian. This is true mainly for trimmed estimators, as the median, trimmed mean
or the trimmed least squares estimator. Generally this is true for many estimators
with bounded influence functions; cf. [6, 7].

If we do not know F exactly, we usually take recourse to robust estimators,
less sensitive to the outlying observations and to the gross errors. Well-known
are the classes of M-, L- and R-estimators, each of which containing elements,
asymptotically normal and efficient for specific distributions. In the family of
symmetric contaminated distributions, F D .1 � "/F C "H; H 2 H with
unimodal central distribution F, any of these classes contains an element with the
mini-maximally optimal asymptotic variance over F . Under a fixed F; we can
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obtain the M-, L- and R-estimators with identical influence functions by a suitable
transformation (dependent on F) of the respective score (weight) function. However,
the influence function characterizes the statistical functional rather than its finite-
sample estimator, and the M-, L- and R-estimators can behave differently for finite n.

The asymptotic approach often stretches the truth; when the number of observa-
tions is finite, the distribution of a robust estimator is far from normal, and it inherits
the tails from the parent distribution F: From this point of view, the estimator is non-
robust. Our purpose in the present paper is to illustrate some distinctive differences
between the asymptotic and finite-sample properties of robust estimators. We
shall devote attention to the tail-behavior of M-estimators and of their one-step
versions, and generally to the tail-behavior of equivariant estimators. Concerning
the one-step version T.1/n of estimator Tn; starting with an initial estimator T.0/n ;

it is interesting though not well known that while asymptotic properties of T.1/n

depend on those of non-iterated Tn; its finite-sample properties rather depend on
the initial T.0/n : The finite-sample properties of an estimator depend on its finite
sample distribution; we shall illustrate the exact finite-sample densities of some
equivariant estimators. However, to calculate the density numerically requires a
multiple numerical integration, for which a very good approximation is needed. We
recommend the saddle-point approximation, which is very precise even for a very
small n.

2 Tail-Behavior of Equivariant Estimators

2.1 Estimation of Shift Parameter, i.i.d. Observations

Let X1; : : : ;Xn be a random sample from an unknown distribution function
F.x � �/; where F is absolutely continuous with positive density f : For the sake
of identifiability of �; assume that f is symmetric around 0, or another condition
guaranteeing the identifiability. Suppose that F is heavy-tailed in the sense that

lim
x!1

� ln.1� F.x//

m ln x
D 1; for some m > 0: (1)

Then, for x > 0;

1 � F.x/ D x�mL.x/ (2)

where L.x/ is slowly varying at infinity, i.e. limx!1 L.ax/
L.x/ D 1 8a > 0:

For that, we should verify that Lm.x/ D xm.1�F.x// is slowly varying at infinity.
Indeed, for x > 0 and any a > 0 fixed, under (1)
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ln

�
Lm.ax/

Lm.x/

�
D m ln a C ln.1 � F.ax//� ln.1 � F.x//

D m ln a C
�

ln.1� F.ax//

m ln.ax/

�
� m ln.ax/�

�
ln.1 � F.x//

m ln x

�
� m ln x ! 0

as x ! 1; and it confirms (2). In that case F belongs to domain of attraction of the
Fréchet distribution. Conversely, (2) implies (1).

Let Tn D Tn.X1; : : : ;Xn/ be a translation equivariant estimator of �; further
satisfying the following natural condition:

min
1�i�n

Xi > 0 ) Tn.X/ > 0; max
1�i�n

Xi < 0 ) Tn.X/ < 0: (3)

Tail-behavior of Tn can be characterized by means of a measure proposed in [3]:

B.a;Tn/ D � ln P� .jTn � � j � a/

� ln.1 � F.a//
D � ln P0.jTnj � a/

� ln.1 � F.a//
(4)

and its values for a � 0: If Tn satisfies (3), then under any fixed n

1 � lim inf
a!1 B.a;Tn/ � lim sup

a!1
B.a;Tn/ � n

(see [3] for the proof). Particularly, if lima!1 B.a;Tn/ D �n > 0 and F is heavy-
tailed with tail index m; then

P0.Tn � a/ D a�m�n L1.a/; L1 slowly varying at infinity;

hence Tn is also heavy-tailed. Specifically, it applies also to median QXn and to the
M-estimator Mn with bounded  -function, where �n D n

2
: It means that QXn and Mn

are heavy-tailed with the tail index mn
2
: It is finite for every n; though increasing with

n; which classifies the distribution of these estimates as heavy-tailed for any finite
n. The distribution of estimates is light-tailed (normally, exponentially tailed) only
under n D 1: The sample mean NXn has �n � 1I thus NXn is heavy-tailed with the tail
index m for any n < 1:

2.2 Estimation of Shift Parameter, Non-identically
Distributed Observations

Let us now consider the case where the Xi; i D 1; : : : ; n are independent, but
non-identically distributed, Xi having continuous distribution function Fi.x � �/;

symmetric around �; and heavy-tailed in the sense that

1 � Fi.x/ D x�mi Li.x/; 0 < mi < 1; Li slowly varying at infinity, i D 1; : : : ; n:
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Denote

m� D minfmi; 1 � i � ng m� D maxfmi; 1 � i � ng:

If we are not aware of the difference between F1; : : : ;Fn; we automatically use an
equivariant estimate Tn satisfying (3) as before. Then even its tail behavior cannot
be exponentially-tailed. In fact, as proven in [8],

a�m�

L.a/ � P� .Tn � � > a/ � a�m�L.a/ for a > a0;

where L.�/ is slowly varying at infinity. Particularly, if X1; : : : ;Xn are heteroscedastic
in the sense that Fi.x/ � F.x=�i/; i D 1; : : : ; n; then m1; : : : ;mn coincide. Hence,
the heteroscedasticity does not affect the tail index of Tn; which is always equal
to m:

2.3 Estimation of Regression Parameter

Consider the linear model Yn D Xnˇ C en with a fixed (nonrandom) design matrix
Xn of order n�p and of rank p; with the rows x>

i ; i D 1; : : : ; n: The vector of errors
en consists of n independent components, identically distributed with a symmetric
distribution function F such that 0 < F.z/ < 1; z 2 R

1: Let Tn be an estimator of
ˇ; regression equivariant in the sense

Tn.Y C Xb/ D Tn.Y/C b; 8b 2 R
p:

He et al. [2] extended the tail measure (4) to Tn in the linear model in the following
way:

B.a;Tn/ D � ln P


maxi jx>

i .Tn � ˇ/j > a
�

� ln .1 � F.a//
; a � 0: (5)

The same authors showed that if there exists at least one non-positive and one non-
negative residual ri D Yi � x>

i Tn; then lim supa!1 B.a;Tn/ � n: The properties
of this measure were further studied by Mizera and MRuller [12] and Portnoy and
Jurečková [13], and this measure was extended to multivariate models by Zuo ([15,
16] and [17]). Jurečková, Koenker and Portnoy [11] studied the tail behavior of the
least-squares estimator with random (possibly heavy-tailed) matrix X:

It is traditionally claimed that robust estimators are insensitive to outliers in Y
and to heavy-tailed distributions of model errors. However, we can show that an
equivariant estimator Tn in the linear model is still heavy-tailed for any finite n
provided the distribution function F is heavy-tailed, even if X is non-random. More
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precisely, if Tn is a regression equivariant estimator of ˇ such that there exists at
least one non-negative and one non-positive residual ri D Yi � x>

i Tn; i D 1; : : : ; n;
then

Pˇ .kTn � ˇk > a/ � a�m.nC1/L.a/

where L.�/ is slowly varying at infinity. Hence, the distribution of kTn �ˇk is heavy-
tailed under every finite n (see [8] for the proof).

2.4 Tail-Behavior of M-Estimator of Regression Parameter

The class of M-estimators defined as

Tn D arg min
b2Rp

n nX

iD1
�.Yi � x>

i b/
o

covers the Huber estimator and some redescending M-estimators. Assume that F is
symmetric with nondegenerate tails (heavy or light) and such that

lim
a!1

� ln.1 � F.a C c//

� ln.1 � F.a//
D 1 for 8c > 0:

Following [12], we suppose that � satisfies the conditions (discussed in [12] in
detail):

(i) � is absolutely continuous, nondecreasing on Œ0;1/; �.z/ � 0;

�.z/ D �.�z/; z 2 R
1:

(ii) �.z/ is unbounded and its derivative  .z/ is bounded for z 2 R
1:

(iii) � is subadditive in the sense that there exists L > 0 such that
�.z1 C z2/ � �.z1/C �.z2/C L for z1; z2 � 0:

Define

m� D m�.n;X; �/

D min
n
card M W

X

i2M
�.x>

i b/ �
X

i…M
�.x>

i b/ for some b ¤ 0
o

where M runs over subsets of N D f1; 2; : : : ; ng: Then it is proven in [5] that

lim inf
a!1 B.a;Tn/ � m�:

It means that m� is the lower bound for the tail behavior of M-estimator generated
by � and it coincides with the lower bound derived in [12] for the finite-sample
breakdown point of the M-estimator Tn.
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3 One-Step Version of an Estimator, Its Tail-Behavior
and Breakdown Point

A broad class of estimators Tn of ˇ admit a representation

Tn.Y/ D ˇ C 1

�
.X>

n Xn/
�1

nX

iD1
xi .Yi � x>

i ˇ/C Rn;

kRnk D op.kX>
n Xnk�1=2/ (6)

with a suitable function  and a functional � D �. ;F/:
The one-step version of Tn is defined as the one-step Newton-Raphson iteration

of the system of equations
Pn

iD1 xi .Yi �x>
i b/ D 0; even when the estimator is not

a root of this system (as in the case of L1-estimator or of other M-estimators with
discontinuous  ).

Let us start with a consistent initial estimator T.0/n of ˇ; satisfying
n1=2.T.0/n � ˇ/ D Op.1/: The one-step version of Tn is defined as

T.1/n D
8
<

:
T.0/n C 1

n O�n
.Q�

n /
�1Pn

iD1 xi .Yi � x>
i T.0/n / : : : if O�n ¤ 0

T.0/n : : : otherwise

where Q�
n D n�1X>

n Xn: The two-step or the k-step versions of Tn are defined
analogously for k D 2; 3; : : :. Here we assume that � ¤ 0 and that O�n is a consistent
estimator of � such that 1 � .�= O�n/ D Op.n�1=2/: For possible regression invariant
estimates of � we refer the reader to [9].

While the asymptotic properties of T.1/n depend on those of the non-iterated
estimator Tn; its finite-sample breakdown point depends on that of initial T.0/n (see
[13]). There is a conjecture that even more finite sample properties of T.1/n depend
solely on the initial estimator. We shall illustrate this phenomenon at least in the
special case of location model:

3.1 One-Step Version in the Location Model

Let Tn be an equivariant estimator of a location parameter and T.0/n be an equivariant
initial estimator. Consider a modified one-step version of Tn W

T.1/n D
(

T.0/n C O��1
n Wn : : : if j O��1

n Wnj � c; 0 < c < 1
T.0/n : : : otherwise
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where Wn D n�1Pn
iD1  .Yi � T.0/n / D Op.n�1=2/: Then T.1/n � Tn D op.n�1=2/ and

T.1/n is also equivariant. Surprisingly, the tail behavior of T.1/n and of T.k/n depends
more on that of T.0/n than on the tail-behavior of non-iterative Tn: The following
theorem is proven in [5]:

Theorem 1. Let Y1; : : : ;Yn be a sample from a population with distribution
function F.y � �/; F symmetric and increasing on the set fx W 0 < F.x/ < 1g.
Let Tn be an equivariant estimator of � admitting the representation

Tn.Y/ D � C 1

n�

nX

iD1
 .Yi � �/C Rn; Rn D op.n

�1=2/

with a bounded skew-symmetric non-decreasing  : Then, for k D 1; 2; : : :

lim inf
a!1 B.T.0/n ; a/ � lim inf

a!1 B.T.k/n ; a/

� lim sup
a!1

B.T.k/n ; a/ � lim sup
a!1

B.T.0/n ; a/:

Example 1. (i) Let T.0/n D QXn be the sample median, n odd. Let Tn be an
equivariant estimator and T.k/n its k-step version starting with QXn: Then, under
the conditions of Theorem 1,

lim
a!1 B.T.k/n ; a/ D n C 1

2
for k D 1; 2; : : : :

(ii) Let T.0/n D NXn be the sample mean. Let Tn be an equivariant estimator and T.k/n

its k-step version starting with NXn: Then, under the conditions of Theorem 1,

lim
a!1 B.T.k/n ; a/ D

(
n if F is of type I (exponentially tailed)

1 if F is of type II (heavy tailed)

for k D 1; 2; : : : ; where the types I or II of F mean that its tails satisfy

lim
a!1

� ln.1 � F.a//

bar
D 1; b > 0; r � 1

lim
a!1

� ln.1 � F.a//

m ln a
D 1; m > 0;

respectively (see [3] for more details).
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4 Finite-Sample Density of Equivariant Estimators

The finite-sample properties of estimator Tn, including the moments, depend on its
entire scope, not only on its central part. The finite sample density can be sometimes
derived, though it does not have a simple form. For instance, let X1; : : : ;Xn be a
sample from the distribution with distribution function F.x � �/ where F has a
continuously differentiable density f and finite Fisher information. Denote by g� .t/
the density of a translation equivariant estimator Tn of �: Then (see [10])

g� .t/ D
Z

T.x1;:::;xn/�t
: : :

Z nX

iD1

f 0.xi � �/
f .xi � �/

nY

kD1
f .xk � �/dx1 : : : dxn

D E0

(
nX

iD1

f 0.Xi/

f .Xi/
I
h
T.X1; : : : ;Xn/ � t � �

i)
:

If Tn is a solution of the equation
Pn

iD1  .Xi � t/ D 0 with monotone ; then g� .t/
can be rewritten as

g� .t/ D E0

8
<

:

nX

iD1

f 0.Xi/

f .Xi/
I
h nX

jD1
 .Xj � .t � �// � 0

i
9
=

; :

To calculate it numerically means an n-fold integration, and we recommend to use
a saddle point approximation as it is more precise.

This density is numerically compared in [10] with its saddle-point approxima-
tion, developed in [1], for the Huber and maximum likelihood estimators, and
for various parent distributions, including the Cauchy. The numerical comparisons
demonstrate that the saddle-point approximations are very precise even for small
sample sizes, and thus can be recommended in applications. A similar approach
applies to the density of a regression quantile, derived in [4], and its saddle-point
approximation, computed in [14].
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