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Abstract 

The Allen-Cahn equation with a mass constraint is analyzed asymptotically and numerically 

in a two-dimensional domain. This problem models the phase separation of a binary mixture 

in the presence of a mass constraint. Solutions develop internal layers, or interfaces, that 

propagate depending on the curvature of the interfaces while keeping the area they enclose 

constant. Small interfaces attached to the boundary of the domain are shown to move along 

the boundary in the direction of increasing boundary curvature. The motion of the interfaces 

is simulated numerically to verify these asymptotic results. The slow motion behavior of a 

semi-circular interface intersecting aflat boundary segment is also analyzed. The projection 

method is used to derive an explicit ordinary differential equation for the location of the center 

of such a semi-circular interface. 
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Chapter 1 

Introduction 

A simple model for problem of phase separation in a binary mixture is the Allen-Cahn equation 

with a mass constraint: 

ut = e2Au + Q(u) — a , x € D C R
2

 , (1.1a) 

dnu = 0, x € dD, (1.1b) 

/ u ( x , r ) d x = M . (1.1c) 
JD 

Here M = M ( X , is the concentration of one of the two species, x = (x, y), e < l , D i s a bounded 

two-dimensional domain, and the mass M is constant. We assume that Q(u) = — V'(u), where 

V(u) is a double-well potential with wells of equal depth at u = s±. Thus Q{u) has three zeroes 

located at u = s_ < 0, u = 0, and ti = s+ > 0 and is taken to satisfy 

Q(s±)<0, Q(0)>0, V(*+) = 0, V(u) = - £ Q(V)dV. (1.2) 

To satisfy the mass constraint (1.1c), the function <7 = <j{t) is given by 

In (1.3), |-D| is the total area of D. Notice that due to the form of a, (1.1a) is a nonlocal 

reaction diffusion equation. 

This problem has been well studied from several viewpoints (see [1], [13], [18]). The analysis 

in these papers have revealed many aspects of the dynamics of the solution to (1.1). Starting 

from arbitrary initial data, the solution develops internal layers, or interfaces, on an 0(1/e) 

time interval. These layers have width 0(e) and separate regions in which u ~ s_ from regions 

in which u ~ s+. The asymptotic analysis of Rubinstein and Sternberg in [13] as e —� 0 showed 

1 



Chapter 1. Introduction 2 

that the normal velocity v of the interfaces, denoted by T, satisfies the area preserving mean 

curvature flow 

v ~ e2 - J ndsj . (1.4) 

Here K is the curvature of T, |T| is the total length of all interfaces, and / r denotes integration 

over all interfaces. This holds for interfaces in the interior of D and for interfaces connected 

to dD with the added condition that the interface must intersect the boundary orthogonally. 

A single closed convex interface evolving according to (1.4) will tend to a circle enclosing the 

same area [9]. When there are several interfaces, interfaces enclosing large areas grow at the 

expense of smaller interfaces while preserving the total area enclosed by all interfaces [13]. This 

is referred to a a coarsening process. With appropriate initial data, this can lead to the case of 

a single closed circular interface inside the domain D. A numerical method has been used to 

simulate the dynamics of (1.4) for closed interfaces in [7]. For the case of a circular interface, or 

bubble, contained in D equation (1.4) gives no motion since v = 0 for a circle. Ward was able 

to show in [18] that a bubble solution to (1.1) drifts exponentially slowly towards the closest 

point on dD without a change in shape. Specifically, the distance between the center of the 

bubble and the closest point on the boundary of D, rm(t), satisfies the asymptotic ODE 

Here Km is the curvature of dD at the point closest to the circular interface (positive for a 

convex domain D), is the bubble radius, and £ and z/j_ are constants that depend on e. 

When the distance between the interface and dD is 0(e), a fast transformation takes place 

resulting in an interface intersecting 3D orthogonally. This interface remains connected to dD 

and it evolves according to (1.4) until a steady state is attained. When the length scale of 

an interface is sufficiently small compared to the radius of curvature of dD the interface will 

become approximately semi-circular in shape. Alikakos, Chen, and Fusco show in [1] that the 

center of such a small drop satisfies the following differential equation as 6 —> 0 subject to 
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0 < e < 63: 

f ( i ) ~ ^ r _ , ( f ( t ) ) . (1.6) 

In (1.6), £ is an arclength parameter for dD, 6 is the radius of the drop, and KD is the curvature 

of dD (positive for a convex domain D). 

In this thesis, we derive some of the results stated above, simulate (1.4) numerically, and 

show a new result for the motion of a semi-circular interface along a flat boundary portion of 

dD. In §2 the method of matched asymptotic expansions is used in a multiple time scale setting 

to derive (1.4), the motion by area preserving mean curvature result. In §3 the derivation of 

(1.6), the asymptotic differential equation for the motion of a small drop along the domain 

boundary, is presented. Next, we use the numerical method of [7], modified for general domain 

boundary curves, to simulate motion of interfaces by (1.4) in §4. Numerical results are compared 

to known asymptotic results for closed interfaces and interfaces intersecting dD. In particular 

we compare the numerical motion of small interfaces along the domain boundary to (1.6). In 

§5 we apply the projection method developed by Ward ([17], [18]) to a metastable problem 

for the evolution of a straight line interface for the unconstrained Allen-Calm equation. This 

result agrees with the results of [3] and [12]. Finally, we note that (1.4) gives no indication 

of the motion of a semi-circular interface intersecting a flat portion of the domain boundary. 

We examine this metastable problem in §6 for a domain with a straight-line boundary segment 

between (XL,0) and (XR,0). The projection method introduced in §5 is used to determine an 

explicit asymptotic ODE for the center of such a semi-circular interface, xo(t), as it moves 

slowly along the flat boundary portion of D. The ODE is found to be 

7T/3 ^XR - XQ \2V\ J 

KL .-2u'+e-^x0-xL-rb) (J_\ r ( a L + l ) l . (1.7) 

XQ - X L 

Here KL, OIL and KR, O.R are constants used to describe the shape of dD near (XL,0) and 

(XR,0) respectively. In addition, ri is the radius of the semi-circular interface and a + , z/j., and 
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(3 are constants that depend on e and can be calculated asymptotically for a given Q(u). Figure 

1.1 depicts all of the types of motion of solutions to (1.1) described in this thesis after a single 

small closed convex interface has developed inside a particular domain D. 
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(c) (d) 

(e) (f) 

Figure 1.1: Evolution of a small convex interface inside a domain D. (a) The convex interface 

evolves by (1.4) into a circle, (b) The circular interface drifts, satisfying (1.5), towards the 

closest point on dD. (c) The interface attaches to dD, intersecting orthogonally, (d) The 

interface moves along dD satisfying (1.4). (e) If the interface encounters a flat portion of dD, 

it moves along this flat portion according to (1.7). (f) When a curved part of 3D is reached, 

the interface again evolves by (1.4) until a steady state is attained. 



Chapter 2 

Area Preserving Motion by Curvature 

In this chapter the solution to (1.1) is examined as e —� 0 to obtain the motion by area 

preserving mean curvature result, equation (1.4), first derived in [13]. We use the method of 

matched asymptotic expansions with multiple time scales in this analysis. For this problem, we 

introduce a fast time variable t* = t, a slow time variable r = et, and a very slow time variable 

77 = e2t. Outer and inner solutions are obtained and analyzed to determine the motion of the 

internal layers of the solution as t* and r —» oo. 

2.1 The Outer Solution 

Using multiple time scales, we expand the solution to (1.1) and.c(i) in the form 

«(x, <; e) = v0(x, t*, r, rj) + e^x, t*, r, 77) + 0(e2), (2.1) 

a(t;e) = ao{t*,T,r1) + ea1(t*,T,r1)+0(e2). (2.2) 

Substituting (2.1) in (1.1) and collecting powers of e we obtain to leading order 

(vo)t* = Q(vo) - o"o , (2.3a) 

dnv0 = 0 , (2.3b) 

/ t>o(x, t*, r,T])dx= M . (2.3c) 
JD 

Thus t>o(x, i*, r, 77) approaches a steady state, vo(x, 0 0 , r, 77), in the limit t* —> 0 0 . From (2.3a), 

this steady state satisfies 

Q[7j0(x,oo,r,?7)] = 0 0 ( 0 0 , 7 - , 77). (2.4) 

6 
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\ A-

Q{u) 

y^y^y^S^- cr0 

S- & ( / / / / / / / 0 S+ s\ u 

Figure 2.1: Plot of a typical function Q(u). The values of 5+(r, rj) and 5_(r, 77) are shown for 

a given o-0(oo,r,77). The hatched areas represent A +(r,77) and A_(r , 77). 

The steady state is of the following form: 

T J 0 ( X , oo,r, 77) = 
S-(T,V), X€Ds_(T,T]), 

S+(T,TJ), xeDs+(r,ri), 

where 

£ s _(r , 7?)U DS+(T,77) = D, 

5_(r, n)\DS_(T, r?)| + 5+(r, »y)|Z>,+ (x, T?)| = M . 

(2.5) 

(2.6) 

(2.7) 

Here 5_(r, 77) and 5+(r, 77) are the leftmost and rightmost roots of (2.4) respectively. (See 

Figure 2.1.) Thus, we have obtained that as t* —»� 00, the domain D is divided into subdomains, 

Ds_ and Ds+, with VQ approaching a value independent of x in each subdomain. This outer 

solution satisfies the boundary condition (1.1b) to leading order. The solution is assumed to 

have a layered structure so that (2.7) represents the leading order approximation to the mass 

constraint (1.1c). 



Chapter 2. Area Preserving Motion by Curvature 8 

2.2 The Inner Solution 

Separating the subdomains are internal layers or interfaces in which u has large gradients. To 

determine the asymptotic behavior of u near these interfaces we construct an inner solution. 

We refer to the interfaces as T(T, n) and describe their location in terms of a function </>(x, r, 77). 

At r = 0, <j> is the signed distance from x € D to the interface and we set cj> > 0 for x G D S + . 

Then, near an interface we use the following expansion: 

�u(x, t; e) = u0(z, x, t*, r, 77) + eux(z, x, t*, r, n) + 0(e 2 ), (2.8) 

where 

£ = ^(x,r,77)/e. (2.9) 

Substituting (2.8) in (1.1a) and collecting powers of e we obtain that UQ and u\ satisfy 

(�"o)t* + 4>r(u0)z - (V4>)2(UQ)ZZ - Q ( U 0 ) + <70(00, T, T]) = 0 , (2.10) 

(^i)t* + <f>r(ui)z - (V^) 2 ( i f i ) z z + Q'iuo)^ - CTi(00,r,?7) = 

- («o)T + (A^)(«o)z + 2V<£ � V(«o), - &,(«o)* � (2.11) 

We assume for large t* that uo and «i tend to travelling waves. Then we set 

uo(z, x , i* , r , 77) ~ F(z - c f , x , r, 77) as f —»� 00 , (2.12) 

ui(z,x.,t*,r, n) ~ G(z - ci*,x,r,77) as f* —» 00 . (2.13) 

Here c is the constant speed of the waves. Using (2.12) and (2.13) in (2.10) and (2.11) we find 

that F and G satisfy the differential equations 

(<f>T - c)F' - (V<£)2F" - Q{F) + ff0(oo, r, 77) = 0 , (2.14) 

(<pT - c)G' - (Vcf>) 2G" - Q\F)G + cn(oo, r, 77) = -FT + {A<p)F' + 2V<p � V(F') - <pvF'. (2.15) 

In (2.14) and (2.15), the primes represent differentiations with respect to z. To match to the 

outer solution in (2.5), we have that F tends to 5_(r, 77) as z —> —00 and to 5+(r, 77) as z —� 00. 
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Then we multiply (2.14) by F', integrate the result from z = —oo to z — oo, and rearrange to 

obtain 

V[S-(T, n)] - V[S+(r, 77)] - q0(oo, r, rj) [S+(r, rj) - 5_(r, 77)] 

_ A+(T,r,)- A_(r,r?) 

Here we have used V(u) defined in (1.2). We also use the notation here that A_(r , 77) represents 

the area of the region above the graph of Q(u) and below the line ao(oo,r,77) and A+(t,77) 

represents the area of the region below the graph of Q(u) and above the line 00(00, r, 77). (See 

Figure 2.1.) To determine the evolution of the interfaces on the T time scale, we use the function 

^(x, T, 77) = (̂x, T, rj) - CT . (2.17) 

The location of the interface is then determined by the zero set of ip. We use the new variable 

s and the function _R(s, r, 77) denned by 

s = ^ p R(s,T,n) = F(z-ct*,x,T,r)). (2.18) 

We substitute (2.18) in (2.14) and (2.16) to determine that 

R

" ~ ^ J ^ j R ^ d T ^
R s + g ( j R )

"
 CTo(o

°'
r

'
v) = 0

'
 ( 2

-
1 9 a ) 

R(-00, r,n) = S-(T, rj), E(oo, r, 77) = S+(r, rj), (2.19b) 

and 

A _ A+(r, 77) - A_(r , 77) 

| v ^ | / T c o C i - . )
2

^ '
 ( 2

'
2 0 ) 

To interpret the motion determined by (2.20), we notice that ^> T/|VV>| is just the normal 

velocity of a level set of if). Then (2.20) is an equation for the normal velocity of the interfaces 

on the r time scale. We differentiate (2.7) with respect to r to find that 

(5_)t|jDS_(T,T?)| + S-\DA_\T + (5+)T|I>,+ | + S+\D8+\T = 0. (2.21) 

When A_ < A+, (2.20) gives -0T > 0. Thus the interfaces are propagating is such a way so that 

Ds_ is decreasing is size while Ds+ increases. In this situation we have |-DS_|T < 0, |-DS+|T > 0 
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and from (1.2) we know that S- < 0 and S+ > 0. Putting this information into (2.21), we 

find that 5_ and 5+ must both decrease. Referring to Figure 2.1 we see that <7o(oo,r, n) 

must increase for this to be true. This causes A_ to grow and A+ gets reduced. Similarly, 

when A- > A+, the interfaces move to decrease A_ and increase A+. So, as r —� oo, 5+ 

and S- approach values such that A_ = A+. From (1.2) we see that this can only happen if 

5±(00,77) = s ± a n ( i 00(00,00', 77) = 0. Summarizing our results, as T ^ 00 we have 

v0(x, 00,00,77) = ' 
s_ , x e D s_(oo, 77), 

s+ , x e Ds+(oc,n), 

A+(oo,77) - A_(oo,77) 
= 0. 

(2.22) 

(2.23) 

Note that we have found that vo, cr0, 5±, and A± are all independent of 77. 

Next we find the motion of the interfaces on the 77 time scale. As r —»� 00 we use <f>r — c = 

ipT — 0, and FT — 0 in (2.15) to find that G satisfies 

(V<£) 2G" - Q\F)G = (A<j> + 2V<f> � V ) F ' - <j>vF' - ^(00,00,77). (2.24) 

We multiply (2.24) by F' and integrate from z = —00 to z = 00. Two integrations by parts can 

be used to show that the left side of this equation can be written as 

- f ° \(VTP)2F'"+ Q'(F)F'] Gdz. (2.25) 

Differentiating (2.14) with respect to z as r —»� 00 we find 

iy^pfF'" + Q'(F)F' = 0 . (2.26) 

Therefore the left side of our result equals zero and using <f>v = tpv, V<j> = Vip, and A<f> = Aip, 

the remaining terms can be rearranged to obtain 

[ v f � v ' ) 2 <fa - < , , ( » , 0 0 , > , ) ( » + - » _ ) ] 

We write this in terms of R and s using (2.18) and get 

1 \ 
^ = | V ^ | V T / ; - V J - 7(»7) 

(2.27) 

(2.28) 
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where 

<,1(oO,00,T,)(s+-S-) 

Here we use that the normal velocity on the n time scale, v, and mean curvature, K, of a level 

set of ip are given by v = T ^ / I V T / > | and K = V � ( V - ^ / l V - 0 1 ) - Then we use (2.28) to show that 

on the 77 time scale, the interfaces T(x, oo, 77), given by {x : T/>(X, 00,77) = 0} evolve according to 

v = n-'j. (2.30) 

To determine 7 we use (2.6), (2 .7), and (2.22) to obtain that as r —>� 00 , 

| -D ,_ | + \Ds+\ = \D\ , (2.31) 

s-\DB_\ + s-\Da_\ = M. (2.32) 

Taking the 77 derivative of (2.31) and (2.32) we find that the following condition must hold: 

\Ds-U = \D.+ U = 0- (2-33) 

Next we use the identity [13] 

\Da+\v = / vds. (2.34) 

We substitute (2.30) into (2.34) and use (2.33) to solve for 7: 

7 = JL / K ^ S . (2.35) 

|11 -/r 

Here |T| is the total length of the interfaces. Finally, the normal velocity of the interfaces on 

the 77 time scale is obtained by putting (2.35) in (2.30): 

v = K — - ! - f nds. (2.36) 

l r l 

2.3 Summary and Extensions 

In this section we write out results in terms of the original time variable, t. We have shown that 

starting from initial data, as et —� 00 , the solution to (1.1) develops interfaces, T, separating 

file:///Ds-U
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regions where u ~ s+ from regions where u ~ s_. (See Figure 2.2.) The subsequent evolution 

is such that the normal velocity, v, of the interfaces is governed by 

v = e2 

(
K
-±-J^ds^+0(es). (2.37) 

Note that from (2.9), (2.17), and (2.18) we have as t oo that 

<
2

-
3 8

> 

If an interface has an endpoint on dD, we apply the boundary condition (1.1b) to (2.38) to 

obtain that on dD, 

dJ^)f tA=0. (2.39) 

Since the interface is given by {x : ip(x., et,e2t) — 0}, (2.39) reduces to 

dnip(x., et, e 20 = 0 , x 6 ^ n { x : ^(x, et, e2t) = 0} . (2.40) 

This shows that when an interface intersects the boundary, it intersects orthogonally. 

From (2.33) we see that the motion of the interfaces by (2.37) keeps the area enclosed by the 

interfaces constant. Because of this, the flow (2.37) is referred to as motion by area preserving 

mean curvature. Several other properties of this motion are derived in [9] and [13]. In [9], 

Gage shows that (2.37) shortens the length of the interfaces as time evolves and that a single 

closed convex interface converges to a circle as t —> oo. In addition, from [13], when there are 

multiple interfaces a coarsening process occurs in which interfaces enclosing large areas grow 

at the expense of those enclosing smaller areas until only one circular interface remains. These 

results have been verified numerically in [7] and in Chapter 4. 
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Figure 2.2: Plot of a solution to (1.1) that has developed a single closed interface, 

evolves according to (2.37). 

The interface 



Chapter 3 

Motion of a Small Drop Along the Boundary 

In this chapter we consider the evolution of a single small interface intersecting the domain 

boundary. If the length scale of the interface is relatively small compared to the radius of 

curvature of the domain boundary the results of Chapter 2 suggest that the shape of this 

interface will become approximately semi-circular while intersecting dD at right angles. Since 

evolution by (1.4) shortens the length of interfaces, we expect that this drop will move along 

the domain boundary in the direction where the curvature of dD is increasing the most. This 

should continue until the drop attains a steady state surrounding a point on dD where the 

boundary curvature is a local maximum. 

We examine the motion of such small drops using the procedure in [1]. To do this we consider 

the situation in which the solution to (1.1) is a drop solution. That is, u has developed a single 

small approximately semi-circular interface centered at z(£) with radius 6 <C 1 and intersecting 

dD orthogonally. Here dD is parameterized by z(() where £ is a counterclockwise arclength 

parameter and we assume that the curvature of dD is 0(1). We take u ~ s_ inside and u ~ s+ 

outside of the drop. We also assume that the shape of the interface remains approximately 

semi-circular as it moves along the boundary so that u(x,i) = M ( X , £(£)) and o~(t) = ecr(£(t)). 

The function £ = £(t) represents the arclength coordinate of the center of the semi-circular drop 

on dD. Writing £'(r) = e2c(£) and using (1.1), we take u to satisfy 

e2Au + Q(u) -ecr- e2cu^ = 0, x G D C R
2

 , (3.1a) 

dnu = 0, xedD, (3.1b) 

/ «(x,£)dx = s+\D\- (s+ - S_)?T<$2/2. (3.1c) 

J D 
Here \D\ is the area of D and we have used the result from Chapter 2 that as t —>� oo then 

14 
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a = 0(e). We also assume that 8 satisfies 

0 < e < 83 < 1. (3.2) 

As shown in [1], the condition 0 < e < <!>3 guarantees that a semi-circular interface is the 

least-energy solution and hence the drop will maintain its shape and will not spread out on the 

boundary. We use (3.1) to find conditions on the shape of the interface, r ( £ ) , as e —>• 0. Next, 

we solve (3.1) as 8 —> 0 subject to (3.2) to determine c(f) and produce an asymptotic ODE for 

the motion of a drop along dD. 

3.1 The e-Series Expansion 

In the region near the interface we introduce the local coordinates p(x,£) and s(x,£). We set 

p = e _ 1r, where — r is the distance from x inside the drop to T(£), and we let s be a coordinate 

orthogonal to r. When r — 0, s is a counterclockwise arclength parameter for T(£). In these 

coordinates we have 

e 2A x = dpp + €K(1 + epK)-1dl> + e
2(l + ePK)~2dss - e3pns(l + ePK)-3ds , (3.3a) 

d^e^rtdp + stds + dt. (3.3b) 

Here K ( S , £ ) is the curvature of r ( £ ) . In this region we use the following expansions: 

oo 

«(x,f;e) = UO(P) + ^2^UJ(P,S,^), (3.4a) 

oo 

= £eV , ( 0 , (3.4b) 

3=0 
Q(u) = Q(w0) + £Q'(w0)7ii + O(e2), (3.4c) 

oo 

K(s,£;e) = Xy*>(5>0. (3.4d) 
i=o 
oo 

c(£;e) = X)^i(0, (3.4e) 

3=0 
^(x,£;e) = £e^r|(p ) 5,0, (3.4f) 

j=0 
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(3-4g) 

J=0 

Substituting (3.3) and (3.4) into (3.1a) and collecting powers of e, we get the leading order 

problem as e —> 0 

UQ + Q ( U O ) = 0, -oo</9<oo. (3.5) 

To match to the outer solution, we require 

uo ~ s± , as p —>• ±oo . 

The first order problem is given by 

Lui = {u\)pP + Q'(wo)«i = («o - co^o) u'0 + a0. 

(3.6) 

(3.7) 

Differentiating (3.5) we see that UQ satisfies Lu'0 = 0. Thus we obtain the solvability condition 

that (Lui,u0) = 0 where (u,v) = / f ^ uvdp. Applying this solvability condition to (3.7) yields 

where 

a0 = 
s+ — s. 

Kf dp 

(3.8) 

(3.9) 

Summarizing, we have obtained, as e —> 0, that u is given asymptotically by 
* 

s+ + 0(e), x e D s + , p ^ O ( l ) , 

fi(x,f(*))=j u0(p) + O(e), P = 0(l), (3.10) 

s-+0(e), xeDs_,p^O(l). 

In (3.10) Ds_ and Ds+ are the regions inside and outside of the drop respectively. Since we 

have assumed that T intersects dD orthogonally, (3.10) satisfies the boundary condition (3.1b) 

to leading order. In addition, the following expression is satisfied asymptotically 

K — cr^ + ao<7 = 0(e). (3.11) 

To represent dD, as in [1] it is convenient to use to a complex valued function z(£) = 

(
zl

(0 + iz
2

(0) where £ is a counterclockwise arclength parameter. Then the boundary is given 
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by dD = {(̂ (0, *2(0) = 0 < £ < \dD\} where \dD\ is the length of dD. If we let z'(£) = 

where <f>(£) is a known real valued function representing the angle between dD and the positive 

x-axis, then we have (/>'(£) = KD(0- Here KD(0 is the curvature of dD at £ which we assume 

to be 0(1). We use the sign convention that Kp is positive if D is convex. Similarly we describe 

the location of the interface, T(£), by a complex function w(s, £) = (w1(s, £) + iw2(s, £)) so that 
r(0 = {(V(s>0V(s,0) : 0 < s < |r(OI} where |j?(OI is the length of T(£). Then there is a 

real function ̂ (s,£) such that [1] 

w,(s,0 = e i W W ) + * ( 0 + * / J l . (3.12) 

Using this, the curvature of the interface is given by 

K(s,t) = il>
a
(s,{). (3.13) 

Since the interface is close to a semi-circle of radius 8 we expect that K = 0(S~1). 

The interface and the domain boundary must intersect at two places. Thus, using the 

notation above we have 

w(0,0 = z(£ + 5(0), (3.14a) 

w(|r(0|,0 = z ( f - f l f (0) . (3.14b) 

Here is a positive function and since r(£) is close to a small semi-circle, we expect that 

g — 0(8). To satisfy (3.12) and (3.14a) we take w(s,£) in the form 

w(5,0 = z(£ + g(0) + [' eW^+^+^l ds . (3.15) 
Jo 

Then to satisfy (3.14b) we require 

/
| r ( 0 1

 eWm ds = i [
9(i)

 e^tt+0-*(0] d C . (3.i 6 ) 

Jo � J-g(i) 

We have assumed that the interface and the domain boundary intersect orthogonally so 

that n • N = 0 at the intersection points. Here ii is the outward unit normal to T(£) and N 
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is the outward unit normal to dD. Using the expressions for w and z above, these vectors are 

given by 

fi _ eiM'£)+m] i N = e

i[(l>

W-
n/2]

. (3.17) 

Thus at the intersection points we have 

sin (V>(0,0 + #0 - + g)) = 0 , (3.18a) 

sin (V(|r|, 0 + m - <f>(£ - g)) = 0 . (3.18b) 

Then from.(3.18) we then have that if) satisfies 

W,0 = <KZ +9(0) ~<K0> (3.19a) 

fb(\T\,(0) = + <£(£ - 5(0) - 0(0 • (3.19b) 

We can convert (3.11) into a differential equation for tf)(s,0 using (3.13). To do this we 

need to express in terms of ip. The relationship between r and x is 

x = w(s,0 + K x,0 n- (3-20) 

Differentiating (3.20) with respect to £ we get 

^(x,0 = -w rn. (3.21) 

Substituting (3.15) and (3.17) into (3.21) we obtain 

n = -(l+#) cos + g) - 0(0 - V)+ f [V>«(S, 0 + M0] c°s MS, 0 - (̂*, 0) <*S. (3.22) 

Jo 

Now (3.11) can be written as 

ips(s,0 = -«o^-c(l + ̂)cos(^(£ + £f)-^(0-^(5,0) 

+ c f [̂ (5,0 + M0) cos ty(S, 0 - 1>(*> 0) <*S + 0(e). (3.23) 
Jo 

To asymptotically evaluate the mass constraint (3.1c) we decompose it as 

/ u(x,0dx=s+(\D\-\Da_\) + s-\Da_\+ [ (u-5+)dx+ f (u-a_) dx + 0(e). (3.24) 
7D J D S + / D » _ 
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Here \DS_ \ and \Ds+ \ are the areas of Ds_ and Ds+. Using (3.10) we can evaluate the integrals 

in (3.24) as e —» 0 since dominant contributions to these integrals arise from the regions near 

the interface. Thus we obtain 

f u(-x,€)dx=s+\D\-(s+-8-)\Ds_\ + 0(e). (3.25) 

Now from the mass constraint condition, (3.1c), we get 

\ D S _ \ = TTS2/2 + 0(e). (3.26) 

Next we can calculate |-DS_| using 

\Ds_\ = lf (xdy-ydx) = - ^ \ f zdz) = - ^ \ f [z - z(£ + g)] dz\ . (3.27) 
2 JdDa_ 2 [JdDs_ J 2 [JdDs_ J 

Here G denotes the imaginary part of a complex function and we have used that the integral 

of z(£ + g) over dDs_ is zero since dDs_ is a closed curve. Using our expressions for z and w 

we then obtain 

\DS_\= j j ^ W l ) - z(£ + 9)W) di+ j['
r |

[w(5,0 - w (0 ,OW5^)dS j 

= ~ J W
 +" T sinW0-^(0)d |rf|+ T s i n ^ , 0 - ^ , 0 ) ^ ^ 1 � (3-28) 

2

 \Jt-g Jl+g Jo Jo 

fl+9 rl . . . . . . . . . . /-in fS 

,'l-g Jl+g 

Substituting (3.28) into (3.26) we obtain that ip satisfies 

rl+3 ri ... . . . . . . f l
r

l 

>t-g Jl+a 
f 9 f sm(<f>(0-cf>(0)dtd£+ f I* sm(TP(s,Z)-ip(siO)dsds = K62+ 0(e). (3.29) 

Jl-g Jl+g Jo Jo 

3.2 The ̂ -Series Expansion 

In this section we expand all of the unknown coefficients in powers of 6 and proceed to solve 

(3.16), (3.19), (3.23), and (3.29) as 6 —> 0. These equations are now contain double series 

expansions. Since we have assumed that 0 < e < 63 <C 1, the various terms in the equations 

can be ordered using <$_1 >� 1 >̂ 6 >> 62 >� 63 >̂ e. Specifically, we use the following 

file:///Jt-g
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expansions: 

3=0 

oo 

3=0 
CO 

3=0 

oo 

3=0 

oo 

3=0 

In addition, we expand <f>(£ + Q in a Taylor expansion as 

+ 0 = m + KD(Q( + \K'd(0C 2 + 

(3.30a) 

(3.30b) 

(3.30c) 

(3.30d) 

(3.30e) 

(3.31) 

In (3.31) KD(0 is the curvature of dD at £. To simplify the calculations, we assume throughout 

that g = 0(6), g^ = 0(62), a = 0(6_1), and c = 0(6). Also note that all calculations done 

here are valid up to O(e) but we suppress writing this in each equation. 

First we solve the differential equation (3.23) with the initial condition (3.19a) up to 0(6): 

1>(s,0 = <KZ + 9(t))-<K0-W* + O(S2). (3.32) 

Here we have assumed that the terms containing c in (3.23) are 0(62). Substituting this back 

into (3.23), we can solve up to 0(62) to obtain 

^(s.O = <K£ + 9) ~ <t>(£) ~ ao°s + c 

To satisfy (3.19b) we require 

a 0<7|r| = - T T + <(>'£ + g)-<t>(£-g) + c 

s'm(aoas) 1 — cos(ao<7s) 
h KD 

a0a 

s in (a 0 £| r | ) 
+ K D 

(a0a)2 

1 - cos(a0<x|r|) 

+ 0(63). (3.33) 

+ 0(63). (3.34) 
a0(T (a0cr)

2 

Using (3.31), the Taylor expansions of sin and cos about — TT, and the assumptions that g = 0(6) 

and c = 0(6) we can show that the term containing c in (3.34) is 0(63). Thus we can write 

(3.34) as 

a0a\T\ = - T T + 2KDg + 0(63). (3.35) 
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Next we need that if) satisfies (3.16). Using (3.31), the right side can be evaluated as 

i f e W * + 0 - * « ) ] d( = i J" [l + i(KDC+ \K'D<? + ���)- \(KDC + � � -)2 + � � �] d( 

= 2gi + UiK2

D-K'D)g
3 + 0(64). (3.36) 

Using (3.33) the left side of (3.16) becomes 

f|r| . . r r 

Atf,g) j e -
O 0

" | l - r * C 

e-ia0a\T\ _ | 

/ � in 

/ ds 

Jo 

sin(a 0a |r|) 1 - cos(a06-|r|) 

a0a (a0&y 
+ 0(6*)} ds 

e - i a 0 a | r | _ -\ /g-2ia 0ff|r| _ ^ 

+ icKD 

in 
4 (a 0 o-) 

where 

-i(a0<5-)3 2(a 0a) 2 4(a0<7)
3 

2aod 

+ „ ^ ) \ + 0(8*), (3.37) 

(3.38) 

We can evaluate (3.37) using (3.31), (3.34), Taylor expansions and assuming that g — 0(6) and 

a = 0(6_1) to obtain 

L 
m . . i 

ds = — ^ < 7
2

- ^ + i(-2 + K2

Dg
2) + 0(64) (3.39) 

Equating the real and imaginary parts of (3.36) and (3.39) we get 

c= 2J^l(l+la0ag) + O(84), 

aoag = -2 + K2

Dg
2(l - \aQag) + 0(83) 

(3.40) 

(3.41) 

Finally we solve (3.29). Using a Taylor expansion and (3.31) we can express first term on 

the left side of (3.29) as . 

fi+g ri _ „ _ f3 fC 
/ i 

>i-g Ji+g 

fi+9 [' sm(<j>(i)-<f>(i))didi = / C s i n ( ^ + C ) - ^ + 0) d(d( 
g Jg 

' " W - o + '̂'i>(c
2

-c
2

) + 
J ' l 
J-g Jg 

- K D 9

3 + 0(64) 

d( d( 

(3.42) 
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Here we have again assumed that g — 0(8). Similarly the second term on the left side of (3.29) 

becomes 

/�
|r|

 r /
|r|

 r r 9 1 

J j s'm(7p(s, £) - if)(s,£)) dsds — J j sin [a0<r(s - s) + 0(6 )J dsds 

sin(a0<7ir|) - a 0 a | r | 4 

= (^ay + 0 { 6 ) 

= TLZ^l + 0(6<). (3.43) 

Here we have used c = 0(8), a = 0(8~r), and (3.34). Substituting these expressions into (3.29) 
we obtain 

(a0a)2ir82 = 7r-4KDg(l-±(a0d)2g2) + 0(82). (3.44) 

We now use the ^-series expansions, (3.30), in equations (3.35), (3.40), (3.41), and (3.44) to 

determine a, g, \T\, and c. To leading order, equation (3.44) produces 

a0 = - O Q
 1

 . (3.45) 

In (3.45) we have used from (3.35) that a < 0 since |T| and ao are positive. Using this result 

in (3.41) we get 

go = 0, (3.46) 

Qi = I- (3.47) 

Substituting (3.45) in (3.35) we find 

L0 = ir8. (3.48) 

Finally, we use these results in equation (3.40) to obtain 

co = 0, (3.49) 

ci - ^K'D. (3.50) 

Note that we have found that g = 0(8), g^ = 0(82), a = 0(8_1), and c = 0(8) which is what 

we assumed to simplify the calculations. 
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3.3 Summary and Alternate Derivation 

Using the results of the previous section, we have obtained an ordinary differential equation for 

the location of the center of a small drop moving along the domain boundary. This ODE is 

satisfied asymptotically as 6 —> 0 for 0 < e <C S
3

 and is given by 

m = ^K'DW)) + 0(e263). (3.51) 

Recall that KD(0 is the curvature of dD at £. Thus according to (3.51), the drop will move 

in the direction of increasing curvature of dD as expected and attain a steady state at a local 

maximum of the boundary curvature. We note that while we have used the condition 0 < e <C 83 

to order the terms in our double series expansion, this restriction is necessary. It is shown in 

[1] that if S is smaller than an 0(€X/3) critical size, a constant solution to (1.1) is more energy 

efficient than a small drop solution. Because of this drop solutions will not occur for very small 

6. 

The result (3.51) can also be directly derived from (1.4) without any reference to (1.1). 

To do this we use the same notation for w(s,£) and z(£) introduced in §3.1. The endpoint 

condition, equation (3.16), must still be satisfied. The interface intersects the boundary at 

right angles, so (3.19) is needed. We also assume that the interface encloses an area'of TT82

 S O 

that (3.29) is satisfied. Next, instead of deriving (3.23) using (3.1), we assume that the interface 

evolves by (1.4) so that 

cw£ = w s s - ^ w s s � n ds^j n + 0(e). (3.52) 

This is because the projection of (3.52) in the direction of n produces (1.4). Substituting (3.15), 

(3.17), and z'(£) = e^) into (3.52) we obtain 

c(l + ̂ )e^+9) - c f [<Ms,0 + <t>t(0]
eiMS

'
0+m]

 ds = 
Jo 

- ib,{s,tyM'#+M» + i ^ M l l U ) - ^ ( 0 , O ] c *
[

^
) +

^
) ]

 + 0(e). (3.53) 

We multiply this by e~%^s'^+^^\ take the real part and rearrange terms to get that V,(s?0 
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satisfies the asymptotic differential equation 

M*,O = ^ M \ T \ , o - m o ] - ^ + 9 i ) ^ m + 9 ) - m - ^ , o ) 

+ c f [ibt's, 0 + ̂ (0] cos (ib(s, 0 - ib(s, 0) ds + 0(e). (3.54) 
Jo 

Now we can solve (3.16), (3.19), (3.29), and (3.54) as in §3.2 to obtain (3.51). Note that using 

(3.19) and (3.34) we obtain that 

[ V ( | r | , o - v(o,0] = * + itf - 9) - M + 9) = -a0a\v\ + o(63). (3.55) 

Thus (3.23) and (3.54) give the same differential equation for ij>. 



Chapter 4 

Numerical Mot ion by Area Preserving Mean Curvature 

In this chapter we model the Allen-Cahn equation numerically . Specifically, we examine a 

numerical model for the normal velocity of the interfaces developed by solutions to (1.1) as 

et —> oo. If there are several interfaces in the domain, the normal velocity of the ith interface, 

T{, is determined from the motion by area preserving mean curvature result (1.4): 

Vi ~ e2 - £ Ki ds^j . (4.1) 

Here w,- is the normal velocity of I\-, is the curvature of and |T| is the total length of all 

interfaces [13]. To be consistent with the definitions in Chapter 2, we use the sign convention 

that when I\ is convex, Vi is in the outward normal direction and is negative. If an interface 

intersects the boundary it must intersect orthogonally. 

This chapter is organized as follows. In §4.1 a numerical method based on the method of 

lines for computing motion by area preserving mean curvature is described. Some numerical 

results are presented in §4.2. These numerical results are compared to asymptotic properties 

of solutions to the Allen-Cahn equation presented in Chapter 1. In particular, we examine 

the numerical evolution of approximately semi-circular interfaces intersecting dD. The radii of 

these semi-circular interfaces, called drops, are assumed to be small compared to the radius of 

curvature dD. We then compare the numerical motion of these small drops to the asymptotic 

result for the Allen-Cahn equations derived in Chapter 3 which states that 

f (0 ~ *?±K'Dm), (4-2) 

where 6 —> 0 and 0 < e <C #3. Here £ is an arc length parameter for dD, 6 is the radius of the 

drop, and KD is the curvature of dD. We use the sign convention that KD is positive for a 

convex domain. 

25 
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4.1 Numerical Model for Motion by Area Preserving Mean Curvature 

In this section, we set up a discretization scheme based on [7] for modelling motion by curvature 

as given by (4.1). A front tracking method is used. First, partial differential equations that 

describe motion by curvature are presented. We then apply the method of lines to these 

equations, discretizing in space and stepping forward in time. 

4.1.1 Equations of Motion 

To eliminate the dependence on e, we use the change of variables, r = e2t. We assume that the 

interfaces, are described parametrically by X
! ( C T , r) = (xl(a, r), y\cr, r)) where a £ [0,1]. In 

this situation, a partial differential equation that describes the motion given by (4.1) is 

where n; is a unit normal to Ti. It is easily seen that the projection of (4.3) in the normal 

direction of a given interface agrees with equation (4.1). Note that (4.1) is arbitrary up to any 

velocity in the tangential direction. 

If the interfaces are closed curves, then we have 

If the interfaces intersect the boundary, then they intersect at a normal angle. Thus if the 

boundary, dD, is parameterized by z(£), where £ is an arclength parameter, then this boundary 

condition can be written as 

(4.3) 

x ' (0 , r ) = x ' ( l , r ) . (4.4) 

xt (0 , r ) .z ' ( e«(r ) ) = 0, (4.5a) 

x U l , r ) - z ' ( ^ + 1 ( r ) ) = 0, (4.5b) 

where 

x'(0,r) = z(£ o ( r ) ) , (4.6a) 

x ' ( l , r ) = z (&+i (r) ) , (4.6b) 

for some &(r) and CN+I(
T

) 
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A A.2 Discretization 

The discretization procedure described here is as in [7]. We apply the method of lines, discretiz-

ing in space. A staggered grid in a and second order centered approximations are used. We let 

XJ-(T) approximate x 8((j - l/2)h, r) for j = 0 , 1 , . . . , N, N + 1, where h is the grid spacing and 

N = 1/h is the number of interior grid points. Then to second order we have 

x'ijh) « (Xj- + 1 + X$)/2 . (4.7) 

The explicit dependence on time will be suppressed for the remainder of this section. Denot-

ing the second order centered approximation of the kth derivative by Dk, we use the following 

approximations: 

A x j - ^ c x j + . - x j - . . ) ^ , 

D2X) = ( X j + 1 - 2 X J + XJ-_!)/fe2 . 

(4.8) 

(4.9) 

We estimate the normal vector, i i ; , to an interface, I\, by 

(^iX*-)
X 

(4.10) 

(AXp 

The integral in the second term on the right hand side of equation (4.3) is approximated using 

these discretizations and the trapezoid rule: 

h 

|J-1 � JTi x* |i I a y i . 

The length of the interfaces is also approximated using a trapezoid scheme: 

| r | « _ r * _ r ; | 2 > i x ; 

(4.11) 

(4.12) 

We use the approximations (4.8), (4.9), (4.10), (4.11), and (4.12), to discretize equation 

(4.3): 

i S . W S , . ^ . (4.13) 
2>iXJ 
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and 

Here na is as given in (4.11). Note that equation (4.13) is independent of h. For closed interfaces, 

(4.4) requires 

X 0 = X V , X i = X J v + 1 . (4.14) 

If an interface is closed, we apply second order forward differencing and averaging to (4.5) and 

(4.6) to yield the following conditions: 

(Xi-z ( f t)).z ' (£ j ) = 0, (4.15a) 

X«, = 2 z ( f t ) - X « , (4.15b) 

( X j v - z ( ^ + 1 ) ) - z ' ( 4 + 1 ) = 0, (4.16a) 

X J v + i = 2 z ( ^ + 1 ) - X J v . (4.16b) 

Here z(£",) and %{VN+\) are unknown points on the boundary curve. These equations can be 

interpreted geometrically. From (4.15a) and (4.16a) we see that Z ( £ Q ) and z(f"y+1) must be the 

points on the boundary that are closest to X^ and X.l

N respectively. The points X 0 and X ^ + 1 

are then reflections of X\ and X ^ through the closest point on the boundary. 

4.1.3 Solving the Discrete Equations Numerically 

Given arbitrary initial data, information on whether the curve is closed or intersects the bound-

ary, and a boundary curve, the system of ordinary differential equations, (4.13), and the bound-

ary conditions (4.14) or (4.15) and (4.16), need to be solved in time using some numerical 

scheme. The code used in this thesis employs the explicit fourth order Runge Kutta method. 

Other appropriate methods for time stepping are discussed in [7]. For stability, the time steps, 

k, are chosen to satisfy 

h? � 2 
k = — min Z^X!- . (4.17) 

If a given interface is closed, then we use (4.14) to ensure that the curve remains closed. 

We advance equation (4.13) for j = 0,1,..., N by one time step using the explicit fourth order 
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Runge Kutta method and values of XJ- at the previous time step. This procedure is repeated 

to advance further in time. 

For an interface that intersects the boundary, first we use equations (4.15) and (4.16) to find 

X 0 and X ) y + 1 to ensure that the interface intersects the boundary curve orthogonally. We do 

this using geometrical reasoning for simple boundaries such as circles or squares. For general 

boundaries parameterized by z(£), we solve (4.15a) and (4.16a) using the bisection method and 

Newton's method to determine £ 0 and CN+I- We used several iterations of the bisection method 

to obtain good initial guesses for Newton's method and then Newton's method is repeated until 

convergence is attained. Equations (4.15b) and (4.16b) are then used to find X 0 and ~X.l

N+1. 

We again use the explicit fourth order Runge Kutta method on (4.13) for j = 1,2,..., A" to 

advance one time step. We repeat this procedure for subsequent time steps. 

The code used in this chapter, based on [7], employs regridding to maintain at least one 

grid point for every arc length h along an interface curve. Surgeries are also done to eliminate 

curves when they get too short and for other singularities. This is not important for this thesis 

and the reader is referred to [7] for more information. 

4.2 Numerical Results 

In this section we examine the evolution of interfaces in several situations using the numerical 

method described in §4.1. The motion of both closed interfaces and interfaces intersecting the 

boundary are considered. We make comparisons with analytical results. 

4.2.1 Closed Interfaces 

We studied the dynamics of a single closed interface using the numerical method. If the initial 

shape of the interface was convex, the interface would become circular after a while and would 

remain in this shape for all subsequent time. This agrees with the result stated in the introduc-

tion and proven in [9]. See Figure 4.1 for an example of the evolution of a single closed curve. 

With nonconvex initial conditions, the interface may also become circular as time progresses, 
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r = 0 r = 0.1 

Figure 4.1: Evolution of a closed interface by numerical mean curvature. 

but the interface may self-intersect during this evolution. When an interface self-intersects, 

changes in topology are needed in this case to split the interface into more than one noninter-

secting curves. This is not done in this thesis. A different method, such as in [15], is better 

suited to handle these situations. However, the method used here is more easily applied to 

considering the motion of curves intersecting a general boundary which is the primary aim of 

this chapter. 

We also examined the evolution of several disjoint closed interfaces. If initial conditions 

are set so that the interfaces do not self-intersect as time increases, a coarsening process was 

observed. Each interface becomes circular and then the interfaces enclosing large areas grow 

while interfaces enclosing small areas shrink. Eventually only one circular interface remains. 

The evolution of two closed curves is depicted in Figure 4.2. We can estimate the total area 

enclosed by a closed curve using the trapezoid rule and second order forward differencing and 

averaging: 

^ « - uiW+i +
 V

D/
2

 � (
4

-
18

) 
i = i 
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r = 0 T = 0.25 

Figure 4.2: Evolution of two closed interfaces by numerical mean curvature. 

Here X*- = (Uj,Vj). Using this we have verified that the total area enclosed by the closed 

interfaces is approximately constant for one and several interfaces. In fact, aside from the errors 

associated with the explicit fourth order Runge Kutta method and regridding, the discretization 

used here preserves discrete area denned by (4.18) [7]. 

4.2.2 Interfaces Intersecting the Boundary 

Boundaries W i th Constant Curvature 

We used the numerical method to track the evolution of interfaces intersecting a boundary that 

has constant curvature, for example circles and squares. For these two simple boundary curves, 

Newton's method is not needed to solve (4.15a) and (4.16a). Instead, the closest point on the 

boundary to the first and last interior grid points can be determined geometrically to ensure 

that the interfaces intersect the boundary orthogonally. See Figure 4.3 for the evolution of an 

interface intersecting the unit circle. For the unit circle, we found that interfaces quickly evolve 

into a smooth convex steady state close to the arc of a circle and the interface does not move 
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Figure 4.3: Evolution of an interface intersecting the unit circle. 

along the boundary. This is as expected since evolution by (1.4) wants to minimize the length of 

r that encloses a specified area [9] and for this boundary, the length of T does not change if the 

contact points with 3D move along dD. This can also be seen explicitly using the asymptotic 

result for small drops, (4.2) which yields £' = 0 since K'D = 0 for a circle. When the boundary 

was a square, the situation is similar. 

The convergence of the method is examined for the data used in Figure 4.3 at r = 1. Since 

the exact solution is not known, we estimate the error, e/j, by comparing the numerical solution 

with step size h to the numerical solution on a grid with step size h/2. Note that interpolation 

is needed to compare solutions on different grids since a staggered grid was used. Table 4.1 

displays the maximum errors in the euclidean norm and convergence rate of the method. The 

convergence is second order as expected. 

N = 1/h eh rate 

8 0.2091e-2 

16 0.5300e-3 1.98 

32 0.1325e-3 2.00 

64 0.3336e-4 1.99 

Table 4.1: Estimated errors and convergence rates at r = 1 for initial data of Figure 4.3. 
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T = 0 T = 2 

Figure 4.4: Evolution of an interface intersecting the boundary curve y = x3. 

Boundaries With Changing Curvature 

Next, we examined the evolution of interfaces intersecting boundaries with nonconstant cur-

vature. Given a parameterization of the boundary curve, the bisection method and Newton's 

method are used to solve (4.15a) and (4.16a) to find the closest points on the boundary to 

the first and last interior grid points respectively. We found that the interfaces develop into 

smooth convex shapes intersecting the boundary at right angles, then the interfaces will move 

along the boundary until a steady state is attained. For small drops, for which the length scale 

of the drop is small compared to the radius of curvature of the boundary, we observed that 

the interfaces move along the boundary in the direction of increasing boundary curvature and 

reach a steady state with the endpoints of the interface surrounding a local maximum of the 

boundary curvature. See Figures 4.4 and 4.5. 

We studied the evolution of an interface intersecting a boundary curve composed of an 

ellipse with major axis 2 and minor axis 1. This boundary curve, dD can be parameterized by 

z(0) = (2 cos (9, sin 6>), 0 < 6 < 2TT . (4.19) 

See Figure 4.5 for the evolution of some initial data intersecting this boundary curve. For this 

initial data and boundary curve, we found the convergence to be of second order as shown in 

Table 4.2. 

The numerical trajectories of the center of small interfaces intersecting the boundary, or 
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T = 0 r = 2 

Figure 4.5: Evolution of an interface intersecting an ellipse. 

N = 1/h Ch rate 

8 0.7214e-l 

16 0.2101e-l 1.78 

32 0.5476e-2 1.94 

64 0.1407e-2 1.96 

Table 4.2: Estimated errors and convergence rates at r = 1 for initial data of Figure 4.5. 

drops, were compared to the asymptotic result (4.2) for several different boundary curves. To 

do this, we took the location of the center of the drop to be the closest point on the boundary 

curve to the point midway between the two intersections of the interface with the boundary. We 

found the boundary parameter, 0{r), for the center using the bisection method and Newton's 

method. We estimated the area enclosed by the drop and the boundary curve using equation 

(4.18) and X ^ + 1 = X 0 . The radius of the drop, S, was estimated by assuming the interface 

was approximately semi-circular and using the area it enclosed to determine 6. We then track 

the trajectory of #(r) in time as the interface evolves under the numerical method. To compare 

with the asymptotic result, the differential equation, (4.2), is solved numerically using fourth 
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order Runge Kutta for the given boundary. 

For the elliptical boundary curve defined in (4.19), the curvature is given by 

KD(0) = 2(sin2 6 + 4 cos2 0 ) - 3 / 2 . (4.20) 

The asymptotic result, (4.2), then becomes 

,. . _ 248 sin 9 cos 0 

{ T ) = ~ V ( 4 s i n 2 0 + cos 20)
7 /

2 "
 ( 4

'
2 1 ) 

We start with the initial data of a small semi-circle centered around the point on dD where 

9(0) = 7r/4. We observed that these drops move along the boundary in the direction of increas-

ing boundary curvature and a steady state was reached at the local maximum of boundary 

curvature when 9 = 0. The trajectories of 6(T) for the numerical method and the asymptotic 

differential equation (4.21) are compared for several different drop radii in Figure 4.6. We notice 

that the numerical trajectory gets closer to the asymptotic trajectory as 6 is decreased. For 

very small radii, both trajectories are very similar. 

We also considered boundary curves of the following form [11]: 

z(9) = (p(9) cost?- p'(9) sin 9,p(9) sin 6 + p'{9) cos 9), 0<9<2n. (4.22) 

Given any p(9) such that p(9) = p(9 + 2TT), p(d) > 0, and p(9) + p"(9) > 0, (4.22) generates a 

strictly convex domain. The curvature of such a domain is given by 

KD(9)=[p(9) + p"(9)}-1 . (4.23) 

For these boundary curves, the asymptotic differential equation for the center of a drop, (4.2), 

becomes 

9, 4i(P'(9) + P»>(e)) 
d { T ) ^ (p(9) + p"(9)y � ( 4 " 2 4 ) 

We examined the numerical evolution of small interfaces intersecting dD for the following two 

forms of p(9): 

p = Pl(9) = 3 + OA sin3 6 - 0.5 cos2 6 , (4.25) 

p = p2(9) = 3+ 1.4 sin3 0. (4.26) 



Chapter 4. Numerical Motion by Area Preserving Mean Curvature 36 

These domains are plotted in Figure 4.7 and Figure 4.8. We started with the initial data of a 

small semi-circle centered around the point on dD for which #(0) = 7r /3 . The location of the 

center of the drop and the radius are determined as for the elliptical boundary. Trajectories of 

9{T) for the numerical method and for the asymptotic result, (4.24), are displayed in Figure 4.9 

and Figure 4.10. Referring to Figures 4.6, 4.9, and 4.10, we see that the motion by numerical 

area preserving mean curvature is very similar to the asymptotic result for motion of small 

drops along a boundary curve, (4.2), as S —� 0. Thus the. results in this chapter numerically 

verify (4.2). 
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Figure 4.6: Plots of 9 vs time for different 6. The boundary curve is the ellipse denned in (4.19). 

The solid lines are the asymptotic result given by (4.21) and the dashed lines are the result 

from numerical motion by curvature. 
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Figure 4.7: The domain with boundary given by (4.22) with p = p\(8) = 3+0.4 sin3 0—0.5 cos2 6. 

y 
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X 

Figure 4.8: The domain with boundary given by (4.22) with p = P2(@) = 3 + 1.4 sin3 9. 
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Figure 4.9: Plots of 9 vs time for different 6. Here dD is parameterized by 
P — Pi(0) = 3 + 0.4 sin3 9 - 0.5 cos2 9. The solid lines are the asymptotic result given by 
(4.24) and the dashed lines are the result from numerical motion by curvature. 
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6 = 0.0478 6 = 0.0238 

0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 

T T 

Figure 4.10: Plots of 6 vs time for different 8. Here dD is parameterized by 

P = Pi(9) = 3 + 1.4 sin3 6. The solid lines are the asymptotic result given by (4.24) and 

the dashed lines are the result from numerical motion by curvature. 



Chapter 5 

Metastable Motion In The Unconstrained Allen-Cahn Equation 

A model for phase separation of a binary mixture without a mass constraint is the (uncon-

strained) Allen-Cahn equation [14]: 

ut = e2Au + Q(u), X G . D C R 2 , (5.1a) 

dnu = 0, xecXD. (5.1b) 

In the above, x = (x,y), e <C 1, D is a bounded two-dimensional domain, and Q{u) has three 

zeroes located at u = s_ < 0, u = 0, and u = s+ > 0. In addition Q(u) satisfies 

rU 

Q ( s ± ) < 0 , Q(0)>0, F ( S + ) = 0,. y(«) = -J Q(r))dv. (5.2) 

As for the constrained Allen-Cahn equation, the method of matched asymptotic expansion 

can be used to show that, given initial data, the solution to (5.1) will quickly evolve into regions 

where u ~ s+ and u ~ s_ with internal layers of width 0(e) separating these two phases. For the 

Allen-Cahn equation, the normal velocity, v, of such an internal layer, also called an interface, 

is governed to leading order by, (see [14]) 

v ~ e 2

K . (5-3) 

Here K is the mean curvature of the interface. This is referred to as motion by mean curvature. 

If an interface intersects the boundary of the domain, 3D, then it must do so orthogonally. 

In this chapter, we describe the dynamics of (5.1) when (5.3) fails to give any information 

about the motion of an interface. This happens when the interface is a straight line as then 

K = 0. A scenario in which this can happen is examined. The goal then is to calculate further 

terms in the expansion of the interface velocity. The 2-dimensional domain, D, is taken be 

41 
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Figure 5.1: Plot of a typical domain D and an interface located at x0. 

D = RU D- U D+ where R is the rectangle [0,1] X [0,6], and D_ and D+ are two attachments 

on its sides (see Figure 5.1). From initial data, the solution to (5.1) is assumed to have developed 

a single vertical straight line interface located at x = x0 with 0 < XQ < 1. Notice that there are 

an infinite number of such solutions that are equilibria for (5.3). 

The points (0,0), (0,6), (1,0), and (1,6) are referred to as the corners of R. It is assumed 

that the domain boundary is smooth and that near the corners of the rectangle, dD can be 

represented as the graph of a function. That is, near each corner, dD = {(x,y) \ y = ipi(x)} 

where 

near (0,0), y = ipi(x), (5.4a) 

near (0,b), y = ip2(x) + b, (5.4b) 

near (1,0), y = i>z(x), (5.4c) 

near (l,b), y = ip4(x) + b. (5.4d) 

It is assumed that there exist numbers i i ' ; / 0, a; > 1, for i = 1,..., 4 such that 

� ~ -Ki(-x)ai, asx^O', (5.5a) 

il)'2{x) ~ K2(-x)a2, asx-^Q-, (5.5b) 

il)'3(x) ~ K3(x - 1)° 3 , a s x ^ l + , (5.5c) 
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ib'4(x)~ -K4(x-l)a*, asx^l+. (5.5d) 

When cii = 2, the constant K{ is proportional to the curvature of the ith corner. 

In this situation the conventional method of matched asymptotics fails to determine the 

motion of the straight line interfaces. Instead, the projection method, [17], [18], is used to 

calculate the dynamics. First, an equilibrium solution to (5.1) in R is constructed. Next, the 

spectral properties obtained by linearizing (5.1) around the equilibrium solution are analyzed 

asymptotically. The principal eigenvalue is found to be exponentially small, so metastable 

motion is expected. Finally, this information is combined with the projection method to derive 

an explicit ODE for the motion of the interface location. 

5.1 The Equilibrium Solution 

In the limit e —� 0, an equilibrium solution to (5.1) in the rectangle, R, is found. We assume 

that this solution is only a function of x and has exactly one internal layer centered at x = XQ, 

0 < xo < 1. Denoting this equilibrium solution as Ub(z) where z = e_1(x — x 0 ) , it satisfies 

Ub" + Q{Ub) = 0, -oo < z < oo, (5.6a) 

Ub(0) =� 0; , Ub(z) ~ s±, as z^ ±oo. (5.6b) 

Thus, asymptotically Ub(z) is given by 

* 

Ub(z) - < 
5+— a +e

 u+z, z —»� +oo , 

s_ + a-e"-2, z —>� —oo . 
(5.7) 

Here the positive constants v± and a± are defined by 

"± = l~Q'('±)}"
2

 , (5.8) 

l o g „ ± = l o r f i * ) + f ( ^ 7 5 + ^ ) *»� (5-9) 
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5.2 Spectral Estimates for the Linearized Problem 

The eigenvalue problem associated with linearizing (5.1) about the equilibrium solution Ub[e~1(x-

x0)] is 

Le<f> = e2Acf> + Q'(Ub)4> = X<f>, xeD, (5.10a) 

dn<j> = 0, xedD, (5.10b) 

(<M) = jD<t>2d*- (5.10c) 

Here (u,v) = fDuvd-x.. The eigenvalues and eigenfunction of (5.10) are labeled by Xj and (̂ ir-

respectively for j = 0,1,.. . , with Xj- —>� — oo as j —> oo. 

To estimate the principal eigenpair it is assumed that the distance from the interface to 

the corners of R is 0(1). Notice that LeUl\e-1(x - x0)) = 0. Then from (5.7), "7t'[€
_1(a; -

XQ)} fails to satisfy the boundary condition (5.10b) by only exponentially small terms. Thus, 

4>o ~ NQ [U'b + 4>L0] where NQ is a normalization constant and <f>L0 is a boundary layer function 

localized near the curved parts of 3D that is used to satisfy the boundary condition (5.10b). 

Green's identity can be applied to (5.10a) and U'b to estimate the principal eigenvalue: 

HK 4>o) = -e2 I 4>odnU'h ds . (5.11) 
JdD 

To calculate <j>L0t a local coordinate system defined near 3D is used. We set 77 = n/e, where 

—n is the distance from x 6 fl to 3D, and let £ be a coordinate perpendicular to n. Then, 

when 77 = 0(1) and x < XQ, Ub ~ s_ so (5.10) gives 

dvv(f>L0 - v1<j)Lo = 0 , 77 <0; <j)Lo -> 0, as 77 -r - 0 0 . 

dv(j>L0\v=o = —ednUH^o. 

Similarly, when 77 = 0(1) and x > Xo, Ub ~ s+ and so we get 

dm4>L0- v\<t>L0 = 0 , 77 < 0 ; (f>Lo 0 , as 77 -> - 0 0 , 

(5.12) 

(5.13) 
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Solving these equations we get 

<t>L0 = { 

Using (5.7), we obtain that 

[-ednU'b] \r)=oev-ri x < x0 , 

[-ednUl,]\v=oe^ x > x0 . 

a-z/.e^- 6 - 1^-^) x<x0, 

(5.14) 

(5.15) 

and 

dnUl (5.16) 

(5.17) 

a-vle-t-e"-' ^x~x^nx x < x0 , 

-a+v\e-le-l'+t~1(x-x^nx x > x0 . 

Here n = (nx,ny) is the outward unit normal vector to dD. Substituting (5.16) into (5.14) and 

using (5.14) and (5.15) in (f>0 ~ N0 [U'b + 4>L0] we get 

N0a_v_ev-t~^x-x°) (l - u-nxe
v-t~lr>sj x < x0 , 

Noa+u+e-^6'1^-^ ( l + v+nxe
v+t~i,*S} x > x0 . 

So on dD, 4>o is given by 

iV 0a_ v. ev~e_1 (x~x°) (1 - i /_ nx) x < x0 , 

iVoa+^+e-^ 6 - 1^-^) (1 + u+nx) x > x0 . 

To estimate No and Ao, (Uf,, Ul) needs to be evaluated. This is done using a Laplace type 

argument as Ul is localized near x = xo- This yields 

rb 

(5.18) 

where 

(K Ul) ~ / e [Ul(z)\2 dzdy ~ eb(3 , 

p = r [ui(z)]2dz. 
J—oo 

(5.19) 

(5.20) 

Since <po ~ NoU'b, the normalization constant, N0, satisfies 

No ~ {eb(3)-1/2 . (5.21) 
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To evaluate the right side of (5.11) we notice from (5.16) that dnU'b = 0 except along the two 

attachments to the rectangle, D+ and Z>_, since nx = 0 on R. Using this and substituting 

(5.16), (5.18), and (5.19) into (5.11), we obtain the following asymptotic estimate for Ao: 

1 
A° ~ b~J3 ^ 2 ~ ^ 

In equation (5.22), i i and I2 are given by 

h = I a l W - ^ - ^ X l - u-nx)nx 

JdD-

h = I alu%e-2l/^~^x-x°){l + v+nx)nxds 
JdD-L 

ds. 

(5.22) 

(5.23) 

(5.24) 

Here dD~ and dD+ are traversed in the counterclockwise direction. Near the corners, the x 

component of the outward normal vectors to D can be calculated from (5.5) to yield 

A 2 ( - a )
 2

 n e a r (Q^ fr) a s ^ n
_

 , 

K3(x-l)a3 / 1 n\ 1 + 

—^—^—TYJ2 near (1,0) as x —� 1 T , [ K | ( * - l ) * » 3 + l ] 

nx = ^ — ' - — - r y y near (1, o) as x —� 1 T . 

(5.25a) 

(5.25b) 

(5.25c) 

(5.25d) 

Because the integrands in (5.23) and (5.24) are exponentially decreasing away from the location 

of the interface, x = x0, the dominant contribution to these integrals arises from 0(e) regions 

near the corners. In these regions, nx nx, so I\ and I2 can be estimated using (5.25) and 

Laplace's method as follows: 

Kx\ (-x)aie2u-c~1^-:coUx + K2 / ( - j f e

2

" -
r l

( « o ) ^ ^ 

Jo Jo J 
/�oo , roo 

A'ay (x - l ) a 3 e- 2 l / + £ (x-X0Ux + K4J (x - l ) ^ e - 2 l / + e ^-*0)<te 

These integrals can be evaluated to obtain 

"1+1 /
 e
 \ « 2 + l 

2 ,,3 r z (5.26) 

(5.27) 

2v. 
r(a x + 1) + # 2 

2̂ ~ «+^+ A- 3 

2i/_. 

) + !> + * ( _ ) ]> 4 + i) 

r(a 2 + 1) -2v-e XQ (5.28) 

(5.29) 
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Therefore, the principal eigenvalue, Ao, is exponentially small and is given asymptotically by 

A r a2 v3 

IU 
2z/_ 

a i + l 

/ e \ "3+1 

K 3 

r ( a i + 1) + 

,27+ 

"2+1 

2i/. 

r ( a 3 + 1) + # 4 j T(a 4 + 1) 

r ( a 2 + 1) e-2v-e x° 

-2u+c-*(i-x0) \ ^5_30) 

5.3 The Projection Method 

The projection method is now applied to determine the trajectory of the interface location, 

#0 = %o(t), for the time dependent problem, (5.1), in the domain D. It is assumed that the 

initial data is an equilibrium solution u(x, 0) = Ub[c~1(x — XQ)] with xo(0) = XQ. We set 

u(x,t) = Ub[C1(x — xo(t))] + w(x,t). It is assumed that w < Ub and wt <C QtUb uniformly in 

time. Using this, we linearize (5.1) about Ub to produce 

Ltw = e2Aw + Q'(Ub)w = dtUb, xeD, 

dnw = -dnUb, x G dD . 

(5.31a) 

(5.31b) 

The solution to (5.31) is expanded in terms of the eigenfunctions of (5.10) as w = Y^JLo cj<f>j/^j-

Integrating by parts, we get 

(<t>j,Ltw) - (w,L£<pj) = (<f>j,dtUb) - \j(w,<j>j). (5.32) 

Next, using Green's identity and \j(w,(f>j) = Cj in (5.32), it is found that the coefficients Cj for 

j = 0,1,..., satisfy 

Cj = (<f>j,dtUb) + e2 / <j>jdnVh ds . (5.33) 
JdD 

Since Aq, as estimated in (5.30), is exponentially small, to ensure that w <C Ub over expo-

nentially long time intervals it is required that Co = 0. Then (5.33) produces the slow motion 

equation: 

(ct>0,dtUb) = -c2 [ <p0dnUbds. (5.34) 
JdD 

Next the terms in (5.34) are evaluated to determine the motion of the interface. To calculate 

(4>o,dtUb), we substitute dtUb = — e - 1 £ 0 (£ ) [^ in (5.34) and use the result of (5.19) to obtain 

(<t>o,dtUb) ~-b(3x'0{t). (5.35) 
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To evaluate the right side of (5.34), (5.7) is used to determine that 

dnUb ~ < 
a_f_e

_ 1

e
i /

-
e 1(x~x°^nx x < x0 

a+vjre~1e~v+t 1^x~x°^nx x > x0 

Thus, an argument similar to that used to derive (5.22) produces 

e
2

 / 4>odnUb ds ~ cvZXh + evT1^ , 
JdD 

(5.36) 

(5.37) 

where Ix and I2 are defined in (5.23) and (5.24) respectively. Combining the results of (5.28), 

(5.29), (5.35), and (5.37) determines the differential equation governing the slow motion of the 

interface: 

,2 ,,2 

b/3 
IG 

2u4 

"3+1 

r ( « 3 +1) + KA 

2u+ 

"4+1 

T > 4 + 1) ^ i z + e - ^ l - i c o ) 

2 2 
a_v_ 

€ \ "2 + 1 

r(a x + 1) + K2 ( — ) T(a 2 + 1) (5.38) 
,2v-j

 v \2^_y 

It is seen that the motion of the interface location is determined by the shape of the boundary 

at the corners of the rectangle and the distance from the interface to these corners. The interface 

will move according to (5.38) until a steady state is attained or until the interface has moved to 

one of the sides of R. In the latter case, the subsequent evolution of the interface is determined 

by (5.3). This result agrees with [3] and [12] obtained using a different method. 

5.4 Steady States 

Steady state locations for the interface can be determined from (5.38). Labelling 

/ e \"1+1 / e \ " 2 + l 

A- = K1iK—j r ( a i + 1) + K2 L (a 2 + 1), 

/ E \ " 3 + l / £ \ " 4 + l 

A+ = K 3 [ — ) r ( a 3 + l ) + * 4 ( — ) r ( a 4 + l ) , 

(5.39a) 

(5.39b) 

a steady state exists when > 0. The unique equilibrium interface location is given by 

V v2 A_\ 
XE

N ± + (5.40) 
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This equilibrium solution is asymptotically stable when 4_ < 0 and A+ < 0. If ii"; < 0 for 

i = 1,..., 4, then this corresponds to a domain that is nonconvex near the corners. (See Figure 

5.3.) When A_ > 0 and A+ > 0, then the equilibrium is unstable. A sufficient condition for 

this is that ii'; > 0 for i = 1,.. .,4. This corresponds to the case of a domain that is convex 

near the corners. When a steady state exists we note that it is located an 0(e) distance from 

5.5 Examples of Slow Dynamics 

The following form was considered for Q(u): 

Q(u) = 2(« - u3). (5.41) 

In this case, from (5.6), the equilibrium solution, Ub(z), is given by 

Ub{z) = tanhz. (5.42) 

In addition, using (5.8), (5.9), and (5.20), the constants u±, a±, s±, and /3 are found to be 

" ± = 2 , a± = 2, s± = ± l , (3 = 4/3. (5.43) 

For this example, we suppose that a\ = a2 = as = 0:4 = a. Then the ODE for the interface 

location, (5.38), is 

12e
a + 2

r ( a + 1) 
Xn ~ " (Ji'3 + IU)e-4c 1 ( 1 " X o ) - (A-i + K2)e~4t H . (5.44) 

The steady state interface location, (5.40), becomes 

* 0 ~ 2 + 8 1 O

H i ^ d - � ^ 

If ii"; < 0 for i = 1,..., 4, then this steady state is stable. See Figure 5.2 for an example of such 

a domain. If K{ > 0 for i = 1,.. .,4, then the steady state is unstable. 

Notice that when ii'i, K2 < 0 and K3, K4 > 0, then from (5.44), x'0 > 0 for all time. In this 

case, the interface location, XQ will monotonically approach 1. See Figure 5.3 for an example of 
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Figure 5.2: Plot of a domain, D, that exhibits a stable steady state interface location. K{ < 0 

for i = 1,.. .,4, in this domain and for the parameter values in §5.5, the steady state interface 

location, XQ is given by (5.45). 

Figure 5.3: Plot of a domain, D, in which the interface moves toward the right. K\, K2 < 0 

and K3, K\ > 0 for this domain. 
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such a domain. For the domain in Figure 5.3, the interface will move according to (5.44) until 

it reaches XQ = 1. Then the interface dynamics will be determined by (5.3) and the interface 

will eventually disappear against the right side boundary of D. Similarly, when K\, K2 > 0, 

and K3, K4 < 0, x'0 < 0 and the interface location will monotonically approach 0. 



Chapter 6 

Metastable Motion Along dD In The Constrained Allen-Cahn Equation 

The Allen-Cahn equation with a mass constraint is: 

ut = e2Au + Q(u)- a, x e f l c R
2

, (6.1a) 

dnu = 0, xedD, (6.1b) 

«(x, i) dx = Af . (6.1c) 1 ID 

Here x = (x,y), e <C 1, D is a bounded two-dimensional domain, and Q(u) has three zeroes 

located at u = s_ < 0, u = 0, and u = s+ > 0. As in earlier chapters, Q(u) is taken to satisfy 

Q(s±)<0, Q(0)>0, V(s+) = 0, V(u) = - £ Q(r,)dn. (6.2) 

Recall from Chapter 2 that the solution to (6.1) quickly develops interfaces that evolve to 

leading order by 

v ~ e2 - -!̂- J nds^j , (6.3) 

where v is the normal velocity of an interface, T. Here K is the curvature of T. 

For an interface where K is a constant, (6.3) yields v = 0 and hence it gives no indication 

of the nature of the motion of such an interface. This happens when the interface is a circle 

lying completely inside the domain, or when the interface is an arc of a circle intersecting the 

boundary at right angles. Metastable motion for the case of a circular interface inside a domain 

was examined in [18] using the projection method. In this chapter, the case of a semi-circular 

interface intersecting a flat boundary is studied. The following situation is considered. The 

two-dimensional domain, D, is taken to have a smooth boundary which has a straight-line 

segment between (a;£,,0) and (XR,0) (seê Figure 6.1). The solution to (6.1) is assumed to have 

52 
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(xL,0) (x0,0) (XR,0) 

Figure 6.1: Plot of a two-dimensional domain D with a flat boundary segment and a 

semi-circular interface of radius r = rb centered at xo. 

developed a single semi-circular interface of radius r = rf, that intersects the boundary of D 

on this straight-line segment. This interface is taken to be centered around xo = (a?o,0) where 

XL < XQ < XR (see Figure 6.1). In this chapter we let dD = dDc U dDs where dDs refers to the 

straight-line segment of the boundary and 8DC denotes the remaining curved part of dD. The 

distance between the interface and dDc is assumed to be 0(1). In addition we assume that the 

distances from the interface to (<EL,0) and (XR, 0) are less than the distance from the interface 

to the rest of dDc. 

Near each end of the flat segment, it is assumed that the domain boundary can be rep-

resented by the graph of a function. Then near (XL,0) 

2LS X —^ X T i dD can be written as 

V — 4L{X)- Similarly near (XR, 0) as x —> Z J J , dD is given by y = TPR(X). We assume that there 

exist constants K L , KR ̂  0, and ai, OSR > 1 such that 

ip'L(x) ^—KL(XL — x)"L, as x —• (6.4a) 

if>'R(x) ~ KR(x - xR)
aR, as x T+ x\. (6.4b) 

When OIL = OSR = 2, then KL and KR are proportional to the curvature of the left and right 

ends of the straight-line segment respectively. 
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As in Chapter 5, the projection method [18] is used to determine the motion of the semi-

circular interface. First, an equilibrium solution to (6.1a) with a semi-circular interface centered 

at (XQ., 0) is found. We asymptotically analyze the eigenvalue problem associated with the 

linearization of (6.1) about the equilibrium solution. An explicit ordinary differential equation 

for the slow motion of the center of the interface, XQ = Xo(t), is then found using the projection 

method and the spectral information. 

6.1 The Equilibrium Solution 

To use the projection method, an equilibrium solution, Ub(r\ e) and crb(e), to (6.1a) is required. 

This solution must have a semi-circular interface of radius r = |x — xo| = rb centered at x = xo-

Such a solution is referred to as the canonical bubble solution [18] and is derived in Appendix 

A.l. We summarize the essential asymptotic properties of this equilibrium solution as e —> 0: 

S+(e) - a+in/rflh-^-1^-^ , r > rb, 

Ub(r;e)~ { u0(p)+ 0(e), p = e~\r - rb) = 0(1), (6.5) 

S-(e) + a d n l r f l ^ - ^ 1 ^ - ^ , r < rb, 

^ = e ( ^ K + 0 ( e 2 ) - ( 6 - 6 ) 

Here uo(p) satisfies (A.4) and f3 is defined as 

� 6= [u'0(p)\2 dp. (6.7) 
J—oo 

The values of the constants 5±(e), a±, and i>± can be determined from (A.5), (A.9), and (A.11). 

6.2 Spectral Estimates for the Linearized Problem 

The eigenvalue problem associated with linearizing (6.1) about the canonical bubble solution 

Uh(r\ e) is given by 

Lt<t> = e2A4>+Q'[Ub(r;€)}4>= \<f>, x € D, (6.8a) 
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dn<j> = 0, x € dD , (6.8b) 

(<f>,<f>) = J <f>2dx. (6.8c) 

Here (u,v) = fDuvdx.. The eigenvalues and eigenfunction of (6.8) are labeled by Xj and <f>j 

respectively for j = 0,1,..., with Xj —> — oo as j —> oo. 

The principal eigenfunction and eigenvalue for (6.8) are estimated in Appendix A . l [18] and 

summarized below. The principal eigenvalue is given asymptotically by 

A0(6) = ^ + O(e 3). (6.9) 

The principal eigenfunction is estimated by 

R0a+v%(rb/r)Vie-''+<-1lT-T>>\- r > rb, n = 0(1), 

R0[u'0(P) + eu>1(p) + e2u>2(p) + (e*)] , p = e~\r - rb) = 0(1), (6.10) 

R0a_vL(rb/r)1'2e-v-c~1 (rb~r) , r < rb . 

In (6.10), — n is the distance from x £ D to dDc. The normalization constant, Ro, satisfies 

R0 ~ ( c T r r ^ ) - 1 / 2 . (6.11) 

To evaluate the boundary integrals below in §6.3, we use following estimate for <f>o on dD near 

(XL,0) and ( X R , 0) for r > rb: 

4>0 - Boa+vXin/r)1^-^1^-^ . (6.12) 

This result is derived in Appendix A.2. 

For this problem, the second eigenfunction corresponds to an exponentially small eigenvalue. 

This eigenfunction can be approximated by <p\ ~ RidxUb(r;e) where R\ is a normalization 

constant. This function satisfies (6.8a) and fails to satisfy (6.8b) by only exponentially small 

terms. A boundary layer function can be added as in §5.2 to satisfy the boundary condition, 

but as in §5.2, this function has a negligible effect on the boundary integrals that are needed 

to be evaluated to determine the slow motion. 



Chapter 6. Metastable Motion Along dD In The Constrained Allen-Cahn Equation 56 

We use Green's identity on (6.8a) and dxUb to estimate the second eigenvalue: 

h(dxUb, <h) = ~e2 / <kdn[dxUb] ds . (6.13) 
JdD 

To estimate Ai we differentiate (6.5) to obtain that on dD for r > rb, 

0i ~ R^Uh, where dxUb ~ a+i/e

+e-1(rb/r)1'2r-1(x - x0)e-vXl~^r-r^ , (6.14) 

and 

dn[dxUb] ~ -a+(4) 2 e- 2 ( r 6 / r ) 1 / 2 r - 1 ( a ; - z o K ' ^ ' - ^ r � n . (6.15) 

Here fi is the outward unit normal vector to dD and f = (x — xo, y)/r is a unit vector pointing 

from (xo,0) to (x,y). To evaluate the left hand side of (6.13) Laplace's method is used as the 

dominant contribution to this integral arises in the region near r = rb. Then using (6.5) we 

find 

(dxUbAi)-^j~. (6.16) 

Since 4>\ ~ R\dxUb, the normalization constant satisfies 

R1 ~ [2e / (7 r r 6 / ? ) ] 1 / 2 . (6.17) 

Substituting the results of (6.15), (6.16), and <f>i ~ R\dxUb into (6.13) we obtain an asymptotic 

estimate for Ai: 

TT/? 7 9 D V r J 

To evaluate the integral in (6.18) we notice that f � fi = 0 along dDs. Because the integrand 

is exponentially decreasing for r > rb the dominant contribution to this integral comes from 

0(e) regions near (xi,0) and (XR,0) where the boundary of the domain, dD, first starts to 

curve. We then use Laplace's method used to evaluate this integral. The following estimates 

are used near (XL,0) as x —> x^: 

r ~ TI, — (x — XL) , where TL = XQ - x^ (6.19a) 

r ~ ( - l , 0 ) , (6.19b) 
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(-KL(xL-xr^-l) 
n

 Z—^ TTo > (6.19c) 

ds K2

L(xL - x)2a^ + l] dx. (6.19d) 

Similarly, near (a;^,0) as x —»� we use 

r ~ rR + (x - xR), where rR = xR- x0 (6.20a) 

r~(l,0), (6.20b) 

(KR(x-xR)
a*,-l) 

n ^ —? i-pr , (6.20c) 

[KKx-XRf-n + l]1'2 

ds ~ - Z K ) 2 0 * + l ] V 2 dec . (6.20d) 

Here (6.4) was used to evaluate the outward unit normals into (6.19c) and (6.20c). We substitute 

(6.19) and (6.20) in (6.18) and apply Laplace's method to obtain 

A l „
 2 f l

+(4)
3

 \ _ K L _ e - 2 v % < - ^ 0 - x L - T B ) L L + J ^ e - 2 v < + c - * ( * R - x 0 - t b ) l r \ ( 6 2 1 ) 

IT/3 { X 0 - X L XR-XQ j 

where 

I L = fXL{xL-x)aLe-2v%c~1{-XL-^dx, (6.22a) 
J —CO 

r co 

IR= (x - xR)
aRe~2,/+e (x~XRUx. (6.22b) 

J X R 

The integrals II and IR can be evaluated with a change of variables ( = 2V+€~1(XL — x) in 

(6.22a) and ( = 2v+€~1(x — xR) in (6.22b). Using this, we obtain 

( \ <*L+1 

^ r ) T(a L + 1), (6.23a) 

( \ otR+l 

^ r ) n*R + i). (6.23b) 

Thus, from the substitution (6.23) in (6.21), the exponentially small second eigenvalue is given 
by 

IT/3 1 x0 - xL \2z/ + J 

+ — ^ - e -
2

" ^
- 1

^ - ^ - ^ ) (*\ T(aR + l)). (6.24) 
xR-x0 \2vX / I 
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6.3 The Projection Method 

We apply the projection method to determine the motion of the semi-circular interface along 

the flat part of dD. The center of the semi-circle slowly slides along dDs without change of 

shape until either a steady state is attained or the edge of the semi-circle first hits dDc. The 

trajectory x0 = x0(t), with x0(0) = XQ, of the center of the circle is to be determined. It 

is assumed that the initial data is a canonical bubble solution w(x, 0) = Z7b[|x —

 xoll6] w ^ n 

cr =-crj(e), and x° = (XQ,0). We set u(x,t) = Ub[\x - x0|;e] + w(x, t) and er(i) = Ob + fi(t). 

Linearizing (6.1) about [/&, and assuming that w <C Ub and / i <C Ob uniformly in time, we 

produce 

Lew = e2Aw + Q'(Ub)w = dtUb + fi , x£j), (6.25a) 

dnw=-dnUb, xedD. (6.25b) 

/ wdx = 0. (6.25c) 
JD 

Next, we expand w = X}̂=o c i * ^ i / ^ i m

 terms of the eigenfunctions of (6.8). Integrating by parts 

produces 

(</>j,Lew) - (w,Le(f>j) = ((f)j,dtUb) + (<j>j,u) - \j(w,<f>j). (6.26) 

Applying Green's identity to (6.26) and using Xj(w,<f>j) = c] we determine that the coefficients 

Cj for j = 0,1,... , satisfy 

Cj = X4>j,dtUb) + A*(&, 1) +
 e 2

 / 4>jdnUb ds . (6.27) 

In order to satisfy (6.25c), we also need that 

oo 

3=0 A j 

To guarantee that w <C Ub on an 0(e~
2

) time scale we need CQ = 0 since Ao = 0(e
2

). Similarly, 

we also require that c\ = 0 to prevent growth on exponentially long time intervals since A i , as 

in (6.24), is exponentially small. Thus we have the following two coupled solvability conditions 
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which will determine xo(t) and p(t): 

((t>0,dtUb)-r u(<f>0,l) + €
2

 I (f>odnUbds = 0, (6.29a) 
JdD 

(4>i,dtUb) +p(^,l) + e2 I cj>1dnUbds = Q. (6.29b) 
JdD 

These two equations can be decoupled as follows. First, from (6.10), (6.11), (6.14), (6.17), 

and (6.34) it can be seen that the two boundary integral terms in (6.29) have the same asymp-

totic order as e —>� 0. Next, since 4>o is even while <p\ is odd in x — x0, it follows from the 

exponential decay of both eigenfunctions for r > rb that (</>0,1) is exponentially larger than 

(<p\, 1). Finally, a similar symmetry argument can be used to show that (<po,dtUb) is exponen-

tially smaller than (<f>i,dtUb). Therefore, we can neglect (4>o,dtUb) in (6.29a) and //(<^i,l) in 

(6.29b). This yields the following two uncoupled problems for p, and x0(t) respectively: 

fi(<f>o, 1) ~ -e 2 / <f>0dnUbds, (6.30a) 
JdD 

(<h,dtUb)~ -e 2 / fadnUbds. (6.30b) 
JdD 

The terms in (6.30) are evaluated next. Recalling that <f>0 is localized near r = rb and using 

(6.10), we calculate that 

(4>o,l)~ eirR0rb(s+-s_). (6.31) 

To evaluate (4>\,dtUb) we use dtUb = — Ul (x~r

x<1) x'0(t), <pi ~ RidxUb, and note that the domi-

nant contribution to this integral also arises from the region near r = rb. Then 

(<hM) ~ -x'0(t)Ri JH? i^1)2 dx~-x'0(t)^!p- J* J°J<(P)?cos2(0)dpd9. 

(6.32) 

Thus, 

(fa,b\Ub)~-x'0(t)?^-, (6.33) 

where /? is defined in (6.7). To evaluate the right sides of (6.30) we use (6.5) to obtain that, for 

r > rb on dD, 

8nUb ~ a + ^ e - ^ n / r ) 1 / ^ - " ^ " ^ ^ ? � f i . (6.34) 
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Then by substituting (6.31), (6.33), (6.34), (6.10), and (6.14) into (6.30) we obtain the slow 

motion equations: 

p(t) ~ - "+ ( i /+ ) 2

 x / r-'e-^-^-^r-nds, (6.35a) 
ir(s+ - s_) JdD 

x'o{t) ~ / r - ^ - ^ e - ^ - ^ h - n d s . (6.35b) 

Since the dominant contribution to the integrals in (6.35) arises from the regions near (x£,0) 

and ( X R , 0), we can estimate them using a Laplace type argument similar to that used to 

calculate (6.21). Substituting the estimates written in (6.19) and (6.20) into (6.35) we get 

df) ^ ± K 1 L ( _ ^ e - 2 ^ e - - ( - o - ^ - r 6 ) / L + . i L - g - J ^ r ' ^ - r ^ ^ k j ^ 

7T(S + - S-) {X0 - XL XR - XQ J 

^
 2 € Q

I K )
2

 I_2C*_e-2»<+*-l(*R-*0-r>)lR _ _ ^ e - 2 4 ^
1

( - 0 - , i - r b ) / i . l ^ g g f c ) 

7T/3 l X R - X o X 0 - X L J 

Here i i , a n d IR are defined in (6.22). Finally, the result of (6.23) is used in (6.36) to obtain the 

slow motion result: 

M ( t )

 0

+ W J _ ^ e - 2 ^ e - 1 ( . o - ^ ^ ) ( j \ a L + 1

T { a L + 1 ) 

^ W 7T(5+ - 5 _ ) j x 0 - X L 7
 V

^ ' 

X « - XQ \ 2v. 

7T/3 Xf l - X 0 \ 2v\ I 

X0-XL^
,i''-'L-n){^S+,T(aL+i)} � (6-37b) 

Referring to the ODE (6.37b), for xo(t), we see that the motion of the center of the semi-

circular interface along the straight-line boundary segment between (x/,,0) and (XR,0) is deter-

mined by the shape of the boundary at ( X L , 0 ) and (XR, 0) and the distance from the interface 

to these points. The interface will move, according to (6.37b), without change of shape until a 

stable steady state is reached or until the interface touches (x£,0) or (XR,0). If the interface 

reaches the curved part of the boundary, it will subsequently continue to evolve according to 

(6.3). 
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6.4 Steady States 

We can find steady state locations for the center of the semi-circular interface between (XL, 0) 

and (XR, 0). These steady state locations are the values of x0 for which x'0(t) = 0. From (6.37b), 

a steady state XQ must satisfy 

x% - xL_e4lye+e-ixe _ KLT(aL + 1) I_J_Y L
 e2u%^(xR+xL) (6.38) 

xR - xl KRT(OIR + 1) \2ve

+ J 

Since the left side of (6.38) increases from 0 to oo as XQ goes from XL to XR, a unique steady state 

exists whenever KL and KR are of the same sign. This steady state is stable when K L , KR < 0, 

and unstable when K L , KR > 0. In particular, this implies that if D is convex near (XL,0) 

and (XR, 0), then there is no stable equilibrium location on dDs. Expanding XQ = J2j=o€*xoj 

in (6.38) and solving up to second order, we obtain that 

E XL + XR e 

Xn ~ z h T T log 

4z4 

KLT(aL + 1) ( e 
<*L-<XR 

+ 0(6
2

) (6.39) 
KRT(aR + 1) \2S+ J 

Thus, the equilibrium location, XQ is located at an 0(e) distance from the midpoint of the 

straight-line boundary segment. 

6.5 Examples of Slow Dynamics 

As an example, the following form was examined for Q(u): 

Q(u) = 2(u-u3). 

Using (A.4a), (A.5), (A.9b) and (A.11), the constants a±, s±, and /? satisfy 

4 = 2[1 - e(4r6)-
1 + • • •], o± = 2 , s± = ±l, P = 4/3 . 

(6.40) 

(6.41) 

We consider the case when ar, = O.R = a. In this situation, the ODE for the center of the 

semi-circular interface, (6.37b), is given by 

KR _-2ve. r ' d B - i n - r J K L 
, 6e a + 2

r(a + 1) 

Xn ~ 
_ e - 2 ^ + e  1 ( x R - x 0 - r b ) _ _ i L L _ e

_ 2 i / + e 1

 (xo~xL-rb) 

XR - X0 x 0 - X L 

(6.42) 
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D 

dD 

Figure 6.2: Plot of part of a domain boundary, dD, upon which the center of the semi-circular 

interface is at an unstable steady state. K L , KR > 0 for this domain. 

Figure 6.3: Plot of part of a domain boundary, dD, upon which the center of the semi-circular 

interface is at a stable steady state. K L , KR < 0 for this domain. 

The steady state location for XQ, assuming that KL and KR have the same sign, is 

Assume that the initial location of the center of the semi-circular interface is cco(O) = XQ. 

Then the following motion can be deduced from (6.42) and (6.43). When KL > 0 and KR > 0, 

xo(t) will move monotonicaHy towards XL if XQ < XQ, or monotonically towards XR if XQ > XQ. 

(See Figure 6.2.) When KL < 0 and KR < 0, xo(t) will approach the stable steady state at 

x^. (See Figure 6.3.) If KL < 0 and KR > 0, then xo(t) will move towards XR. (See Figure 

6.4.) Similarly, xo(t) will move towards XL if KL > 0 and KR < 0. When the interface touches 

(XL,0) or (XR,0), the subsequent evolution of the interface is determined by (6.3). 

D 

dD 

(6.43) 
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Figure 6.4: Plot of part of a domain boundary, dD, upon which the center of the semi-circular 

interface moves toward the right. KL < 0 and KR > 0 for this domain. 



Chapter 7 

Summary 

In this thesis we have asymptotically and numerically analyzed the Allen-Cahn equation with 

a mass constraint in a two-dimensional domain. Using the method of matched asymptotic 

expansions with multiple time scales, we have shown that solutions to the Allen-Cahn equation 

quickly develop internal layers, or interfaces, separating regions in which the solution is constant. 

These interfaces evolve satisfying the area preserving mean curvature flow, equation (1.4). 

Small approximately semi-circular interfaces intersecting the domain boundary were shown to 

asymptotically satisfy the ODE (1.6), and move along the boundary in the direction of increasing 

boundary curvature. A numerical method for simulating the motion of interfaces was presented. 

Using this method, we numerically verified asymptotic results including the small drop result, 

(1.6). The projection method was introduced and used to solve a metastable problem for the 

unconstrained Allen-Cahn equation. Finally, the projection method was used to determine 

the motion of a semi-circular interface intersecting a straight-line domain boundary segment 

between (XL,0) and (XR,0). It was found that the center of such a semi-circular interface 

satisfied the asymptotic ODE given by (1.7). 
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Appendix A 

Asymptotic Estimates for the Constrained Allen-Cahn Equation 

This appendix summarizes some of the calculations done in [18] needed in this thesis. 

A . l The Canonical Bubble Solution 

In this appendix, the canonical bubble solution is derived. As e —� 0, this is an equilibrium 

solution to (6.1a) in [—00 ,00] x [0,oo] with one radially symmetric interface of radius r = rb 

centered at (XQ, 0). The functions Ub{r; e) and Cf>(e), called the canonical bubble solution, satisfy 

e2AUb + Q(Ub) = <Jb, 0 < r < o o ; ^ > 0 , (A.la) 

Ub(n;e) = 0; Ub(r;e) -»� S±(e) as e " 1 ^ - rb) - + ± 0 0 . (A.lb) 

Here 5 ± ( e ) are defined as the roots of 

Q[S±(e)] = ob(e), (A.2) 

for which S±(e) —> s± and Ob(e) —� 0 as e —� 0. The method of matched asymptotic expansions 

is used to construct the solution. 

In the inner region near the interface, p = e _ 1 (r — rb) = 0(1) and we denote ub(p; e) = 

Ub(rb + ep; e). From (A.l) we obtain 

u" H e-—u'b + Q(ub) = Ob, - 0 0 < p < 0 0 ; u'b > 0 , (A.3a) 
n + ep 

7j;,(0;e) = 0; Ub(p;e) —> S±(e) as p —� ± 0 0 . (A.3b) 

Then to leading order as e —� 0 we have that S±(e) —� s±, (76(e) —� 0, and Ub(p; e) — � M O ( P ) 5 
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where u0(p) satisfies 

u'o + Q(u0) = 0 , -oo < p < oo ; u'Q > 0 , «0(0; e) = 0 , (A.4a) 

uo(p) ~ s + - a+e _ 1 / + p p-+oo; tt0(/>) ~ s_ + a_e"-'> p -» -oo . (A.4b) 

Here the positive constants i>± and a± are defined by 

„ ± = \-Q\s±f" , log „ ± = log(±« ± ) + / J * ( j ^ l ^ + _ L _ ) A, , (A.5) 

where V(u) = — Q(n) drj. 

We expand the solution to (A.3) as 

oo oo oo 

i=o j=i j=i 

Substituting (A.6) into (A.3) we obtain for some functions GJ(M 0 , . . . , v-j-i) and gj±(o~i,..., <TJ-I), 

that U j for j > 1 satisfies 

Xwj = i i " + Q'(UO)UJ = o~j + Gj(uo,..., Uj-i), —oo < p < oo ; (A.7a) 

uj{p) ~*-Vjvi2 + 9j±(aii-•-lOj-i), a s p ^ i o o ; ttj(0) = 0. (A.7b) 

From (A.4a) we see that Lu'0 = 0 and M 0 (±OO) = 0. Thus the right side of (A.7a) produces a 

solvability condition that determines Oj as 

-1 
s+ 

Equations (A.7) and (A.8) determine the asymptotic expansions for ub(p;e), crj(e), and S±(e). 

These conditions give 

S±(e) = s± - e<nvg2 + 0(e2), (A.9a) 

ax = T — r — , where /? = f°° W0(p)}2 dp = V2 f + [V(u)] 1/ 2 du . (A.9b) 
(s+ - s_)r& J-oo J s_ 

In the outer region for r > rb we write £/&(r; e) = S+(e) + u+(r; e), where w + <C 5 + . Similarly, 

in the region where r < rb we use Ub(r;e) = ^-(e) + u_(r;e), where M _ <C 5_. We linearize 

— 1 y00 

— / u'0Gj(u0,..., ttj_i) dp , for j > 1. (A.8) 
J—oo 
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(A.la) about S± to obtain that 

r V + - (e 1ue

+)
2u+ = 0, r > rb, 

u"_ + r_V_ - (e~ V )2?j_ = 0 , r <rb. 

Here v%. = ( -0 / [S±(e)]) 1 / 2 . Then using (A.9a) we have 

^^Q'\s±) + 0{e2) 

(A.lOa) 

(A.lOb) 

( A . l l ) 

Equations (A.10) can be solved exactly in terms of I(m, the modified Bessel function of the 

second kind of order ra, and Im, the modified Bessel function of the first kind, respectively. 

These can be estimated asymptotically using large argument expansions. Matching this to the 

inner solution in (A.4) produces 

5+(e) - a+{nlrfl2e-^-^r-r^ , r > rb, 

£ £ o ej*,<P), p = e-\r- rb) = 0(1), (A.12) 

S_(e) + a_(r 6/r) 1/ 2e- y- e" 1^-'-) , r < rb. 

Ub(r;e) 

A .2 The Principal Eigenpair 

This appendix summarizes the calculations done in [18] to asymptotically estimate the prin-

cipal eigenfunction, <J>Q, and eigenvalue, Ao, for the eigenvalue problem (6.8). The principal 

eigenfunction is radially symmetric except in an 0(e) region near the curved part of dD. 

In the internal layer region we set p = e _ 1 (r - rb) and $o(p; e) = (j>o{_H + ep)- The following 

expansions are used as e —> 0: 

$

o ( p ; c) ~ £ '
 A

° (
e

) ~ £
 €JXOJ(P) , 

3=0 j=0 

Q'(Ub) = Q'0 + (ctt! + e2u2)Q0' + ju2Q'0' + ���. 

(A.13a) 

(A.13b) 

Here Q'0 = Q 0 (
u o), <5o = Qo(uo), etc, and from (A.12), Ub(r;e) ~ Y^JLo ejuj(p) m this region. 

Substituting (A.13a) into (6.8) and collecting powers of e we produce 

oo = A o o $ 0 0 ^ 0 0 j (A.14a) 
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L$oi = - w i $ o o Q o - r 6

_ 1 $ 0 0 + A0i$oo + +Aoo$oi, (A.14b) 

L$02 = - ^ " 1 $ o i + prb~
2&oo ~ «i*oiQo - «2*ooQo - \ ^ 0 0 Q o 

+A0o$02 + A 0 i$oi + A02$oo � (A.14c) 

In (A.14), Lv is defined in (A.7a) and we need $oj(p) —� 0 as p —±oo . Since Lu'0 = 0 and 

u'0(±oo) = 0, we have the solvability condition that L$0j for j = 0,1,2 is orthogonal to u'0. 

This solvability condition is used to determine 3>oj and A 0j for j = 0,1,2. The results are 

$o(p ;e ) = RQ [u'0(p) + eu'^p) + e2u'2(p) + 0 ( e 3 ) ] , (A.15) 

Ao = e 2 ^ - 1 + 0 ( e 3 ) , (A.16) 

where RQ. is a normalization constant. 

In the outer regions we let </>0 ~ R0<f>+(r; e) and <f>0 ~ Ro<f>-(r;e) for r > rb and r < rb 

respectively. The eigenvalue problem (6.8) becomes 

0+ + r-y+-(e" 1 ^+) 2 ^+ = 0, r>rb, (A.17a) 

<t>- + r ~ V _ ~ ( e _ 1 i > i ) 2 < £ - = 0 , r <rb. (A.17b) 

Here we have defined v± = v±[l + Ao/(i /±) 2] 1 / ' 2 . These equations can be solved and matched to 

(A.15), to produce 

f 

Roa+^in/rY^e-^'1^-^ , r > rb, n = 0(1), 

4>o ~ { R0 [u'0(p) + eu'(p) + e V 2(p) + (e3)] , p = e~\r - rb) = 0(1), (A.18) 

Roa-vlin/ry^e-"-^1^-^ , r < rb. 

In (A.18) —n is the distance from x € D to 9-Dc. The normalization constant RQ. is calculated 

asymptotically to be 

R0 ~ ( e T r r ^ ) - 1 / 2 . (A.19) 

To satisfy the boundary condition (6.8b) we need to add to (A.18) an exponentially small 

boundary layer function. This calculation was done in [18] where it was shown that on dD, 4>o 

satisfies 

0o ~ i iW4 (n / 7 - ) 1 / 2 e~ i / + '~ 1 ( r ~ r i , ) [ l + r � n ] . (A.20) 
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To evaluate the boundary integrals in §6.3, we need an estimate for cj>0 on dD near (XL, 0) and 

(XR,0). Using (6.19) and (6.20) we obtain to leading that on dD and near the corner points 

(xx,,0) and (XR, 0), 4>o satisfies 

<h ~ Roa+vXin/r)1'^-^-1^-^. � (A.21) 


