Jan Awrejcewicz Igor V. Andrianov Leonid I. Manevitch

Asymptotic Approaches in Nonlinear Dynamics

New Trends and Applications

With 58 Figures

Contents

т.	introduction. Some General I includes of Asymptotology.					
	1.1	An Illustrative Example	2			
	1.2	Reducing the Dimensionality of a System				
	1.3	Continualization				
	1.4					
	1.5	Renormalization	7			
	1.6	Localization				
	1.7	Linearization				
	1.8	Padé Approximants				
	1.9	Modern Computers and Asymptotic Methods				
	1.10	0 Asymptotic Methods and Teaching Physics				
	1.11	Problems and Perspectives	11			
2.	Discrete Systems 1					
	2.1	The Classical Perturbation Technique: an Introduction	13			
	2.2	Krylov-Bogolubov-Mitropolskij Method	19			
	2.3	Equivalent Linearization				
	2.4	Analysis of Nonconservative Nonautonomous Systems	26			
		2.4.1 Introduction	26			
		2.4.2 Nonresonance Oscillations	27			
		2.4.3 Oscillations in the Neighbourhood of Resonance	31			
	2.5	Nonstationary Nonlinear Systems	42			
	2.6	Parametric and Self-Excited Oscillation				
		in a Three-Degree-of-Freedom Mechanical System	55			
		2.6.1 Analysed System and Equation of Motion	55			
		2.6.2 Transformation of the Equations of Motion				
		to the Main Coordinates	59			
		2.6.3 Zones of Instability of the First Order	62			
		2.6.4 Calculation Examples	74			
	2.7	Modified Poincaré Method	81			
		2.7.1 One-Degree-of-Freedom System	81			
		2.7.2 General Nonlinear Systems	86			
	2.8	Hopf Bifurcation	93			

	2.9	Stabili	ty Control of Vibro-Impact Periodic Orbit 100			
		2.9.1	Introduction			
		2.9.2	Control of Vibro-Impact Periodic Orbits 101			
		2.9.3	Stability Control 103			
		2.9.4				
	2.10	Norma	al Modes of Nonlinear Systems with n Degrees			
			edom 106			
			Definition			
		2.10.2	Free Oscillations and Close Natural Frequencies 108			
	2.11		aditional Asymptotic Approaches118			
			Choice of Asymptotic Expansion Parameters 118			
			δ -Expansions in Nonlinear Mechanics			
			Asymptotic Solutions for Nonlinear Systems			
			with High Degrees of Nonlinearity			
		2.11.4	Square-Well Problem of Quantum Theory 130			
	2.12		Approximants			
			One-Point Padé Approximants:			
			General Definitions and Properties			
		2.12.2	Using One-Point Padé Approximants in Dynamics 134			
			Matching Limit Expansions			
			Matching Local Expansions in Nonlinear Dynamics 143			
			Generalizations and Problems			
3.	Cor	Continuous Systems				
	3.1	Conti	nuous Approximation for a Nonlinear Chain 151			
	3.2					
		of Thi	n-Walled Structures			
		3.2.1	Nonhomogeneous Rod			
		3.2.2	Stringer Plate			
		3.2.3				
		3.2.4	· ·			
	3.3	Avera	ging Procedure in the Nonlinear Dynamics			
		of Thi	in-Walled Structures			
		3.3.1	Berger and Berger-Like Equations for Plates and Shells 171			
		3.3.2	"Method of Freezing" in the Nonlinear Theory			
			of Viscoelasticity			
	3.4	Boloti	n-Like Approach for Nonlinear Dynamics			
		3.4.1	Straightforward Bolotin Approach 177			
		3.4.2	Modified Bolotin Approach			
	3.5		ar and Singular Asymptotics in the Nonlinear Dynamics			
			in-Walled Structures			
		3.5.1	Circular Rings and Axisymmetric Cylindrical Shells 193			
		3.5.2	Reinforced and Isotropic Cylindrical Shells 197			
		3.5.3	Nonlinear Oscillations of a Cylindrical Panel			
		3.0.0	Trommost Osemations of a Cymidited Lanct 21			