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Abstract. L. Fejes Tóth gave asymptotic formulae as n → ∞ for the distance between a
smooth convex disc and its best approximating inscribed or circumscribed polygons with at
most n vertices, where the distance is in the sense of the symmetric difference metric. In this
paper these formulae are extended by specifying the second terms of the asymptotic expansions.
Tools are from affine differential geometry.

1 Introduction

Let C be a closed convex curve in the Euclidean plane IE 2 and let P i
n(C) be the

set of all convex polygons with at most n vertices that are inscribed in C. We
measure the distance of C and Pn ∈ P i

n(C) by the symmetric difference metric
δS and study the asymptotic behaviour of

δS(C,P i
n) = inf{δS(C, Pn) : Pn ∈ P i

n(C)}

as n →∞. In case of circumscribed polygons the analogous notion is δS(C,Pc
n).

For a C ∈ C2 with positive curvature function κ(t), the following asymptotic
formulae were given by L. Fejes Tóth [2], [3]

δS(C,P i
n) ∼ 1

12

(∫ l

0
κ1/3(t)dt

)3
1

n2
as n →∞ (1)

and

δS(C,Pc
n) ∼ 1

24

(∫ l

0
κ1/3(t)dt

)3
1

n2
as n →∞, (2)

where t is the arc length and l the length of C. Complete proofs of these results
are due to D. E. McClure and R. A. Vitale [9].

In this article we extend these asymptotic formulae by deriving the second
terms in the asymptotic expansions. For a C ∈ C4 these terms are of order 1/n4

and depend on the affine curvature of the curve.
Besides the above mentioned results several other asymptotic formulae for

the distance of a convex body to its best approximating polytopes are known.
In the case of the symmetric difference metric and inscribed and circumscribed
polytopes these formulae were derived by P. M. Gruber in [5], [6], and [8] for any
dimension; see also [10]. For detailed information see the surveys [4] and [7].
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2 Some Tools from Affine Differential Geometry

δS(C,P i
n) and δS(C,Pc

n) are invariant with respect to area-preserving affine trans-
formations. Therefore, we choose the affine arc length to be the parameter of C.

Let C ∈ C2 and let the curvature of C be positive. Then the affine arc length
is given by

s(t) =
∫ t

0
κ1/3(τ)dτ, 0 ≤ t ≤ l, (3)

where t is the ordinary arc length and κ(t) the curvature of C. The affine length
λ of C is

λ =
∫ l

0
κ1/3(τ)dτ.

In the following, let x(s) be an affine arclength parametrization of C.
The affine curvature of C is then given by

k(s) = |x′′(s), x′′′(s)|, (4)

where ′ denotes differentiation with respect to affine arc length. It determines a
curve up to an area-preserving affine transformation. Note that

|x′(s), x′′(s)| = 1 and |x′(s), x′′′(s)| = 0. (5)

See [1].

3 Asymptotic Expansion for δS(C,P i
n)

Using the notions and notation from affine differential geometry just introduced,
we are able to formulate our main result.

Theorem 1 Let C be a closed convex curve in IE 2 of class C4 with positive
ordinary curvature. Then

δS(C,P i
n) ∼ 1

12

λ3

n2
− 1

2

λ4

5!

∫ λ

0
k(s)ds

1

n4
+ o(

1

n4
)

as n →∞.

For the proof we need the following two lemmas.

Lemma 1 For 0 ≤ r ≤ s ≤ λ, let F (r, s) be the area of the piece between C and
the line segment with end points x(r) and x(s). Then

F (r, s) =
1

2

(
(s− r)3

3!
− k(r)

(s− r)5

5!
+ o((s− r)5)

)

uniformly for all 0 ≤ r ≤ s ≤ λ as (s− r) → 0.

2



Proof. Without loss of generality, let r = 0. Since C ∈ C4, the affine arclength
parametrization x(s) of C is of class C3. Let ω be a modulus of continuity
function for x′′′(s); that is, ω is a continuous non-decreasing function on [0,∞]
with ω(0) = 0 and such that

‖x′′′(s)− x′′′(r)‖ ≤ ω(|s− r|) for all r, s ∈ [0, λ].

Taylor’s formula yields

x′′(s) = x′′(0) + x′′′(0)s + u1(s), (6)

where ‖u1(s)‖ ≤ sω(s). Integrating (6) twice we see that

x′(s) = x′(0) + x′′(0)s + x′′′(0)
s2

2
+ u2(s) (7)

and

x(s)− x(0) = x′(0)s + x′′(0)
s2

2
+ x′′′(0)

s3

3!
+ u3(s), (8)

where ‖u2(s)‖ ≤ s2

2
ω(s) and ‖u3(s)‖ ≤ s3

3!
ω(s).

Since x(s) is the affine arclength parametrization, (4), (5), (6), and (7) imply
that

1 = |x′(s), x′′(s)| = 1 + |x′(0), u1(s)|+ k(0)
s2

2
+ α(s), (9)

where

|α(s)| ≤ µ1
s2

2
ω(s)

and µ1 is a constant which depends only on C. Rewriting (9) in the form

|x′(0), u1(s)| = −k(0)
s2

2
− α(s)

and integrating twice, we find that

|x′(0), u2(s)| = −k(0)
s3

3!
− β(s), (10)

and

|x′(0), u3(s)| = −k(0)
s4

4!
− γ(s), (11)

where |β(s)| ≤ µ1
s3

3!
ω(s) and |γ(s)| ≤ µ1

s4

4!
ω(s). Then combining (7), (8), (10),

and (11), we obtain

|x(s)− x(0), x′(s)| = s2

2
− k(0)

s4

4!
+ δ(s), (12)
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where
|δ(s)| ≤ µ2s

4ω(s) (13)

and µ2 is a constant which depends only on C.
Finally, integrating (12) gives

F (0, s) =
1

2

∫ s

0
|x(s)− x(0), x′(s)|ds =

1

2

(
s3

3!
− k(0)

s5

5!
+
∫ s

0
δ(s)ds

)
.

Now, noting that [0, λ] is compact and µ2 and ω depend only on C, the last
equality together with (13) yields Lemma 1. 2

Lemma 2 Let Pn ∈ P i
n(C), n = 3, 4, . . ., be a sequence of best approximating

polygons of C. Let x(sni), i = 1, . . . , n, be the vertices of Pn. Define λni =
sni − sn,i−1. Then

λni =
λ

n
+ o(

1

n
) uniformly in i as n →∞.

Proof. Since Pn is a best approximating, the line segment connecting x(sn,i−1)
and x(sn,i+1) is parallel to the tangent at x(sni), i. e.

|x(sn,i+1)− x(sn,i−1), x
′(sni)| = 0 for i = 1, . . . , n− 1, (14)

see [3].
We proceed by using Taylor’s formula to derive expressions for the λni’s from

(14). Let ω be a modulus of continuity function for x′′′(s). Then for given n and
i,

x(s) = x(sni) + x′(sni)(s− sni) + x′′(sni)
(s− sni)

2

2
+ x′′′(sni)

(s− sni)
3

3!
+ uni(s),

where

‖uni(s)‖ ≤
|s− sni|3

3!
ω(s− sni). (15)

Substituting sn,i−1 and sn,i+1 for s and subtracting, we find that

x(sn,i+1)− x(sn,i−1) = x′(sni)(λni + λn,i+1) +
x′′(sni)

2
(λ2

n,i+1 − λ2
ni) +

+
x′′′(sni)

3!
(λ3

ni + λ3
n,i+1)− uni(sn,i−1) + uni(sn,i+1).

Combining this with (14), we obtain

|x(sn,i+1)− x(sn,i−1), x
′(sni)| =
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=
λ2

ni

2
−

λ2
n,i+1

2
+ |x′(sni), uni(sn,i−1)| − |x′(sni), uni(sn,i+1)| = 0.

This can be rewritten as

λ2
ni = λ2

n,i+1 + 2|x′(sni), uni(sn,i+1)− uni(sn,i−1)|

for i = 1, . . . , n− 1. Thus

λ2
ni = λ2

nj + 2
j−1∑
k=i

|x′(snk), unk(sn,k+1)− unk(sn,k−1)| (16)

for i < j ≤ n and

λ2
ni = λ2

nj − 2
i−1∑
k=j

|x′(snk), unk(sn,k+1)− unk(sn,k−1)| (17)

for 1 ≤ j < i. Summing on j from i + 1 to n in (16) and from 1 to i− 1 in (17),
we obtain

(n− i)λ2
ni =

n∑
j=i+1

λ2
nj + 2

n∑
j=i+1

j−1∑
k=i

|x′(snk), unk(sn,k+1)− unk(sn,k−1)|

(i− 1)λ2
ni =

i−1∑
j=1

λ2
nj − 2

i−1∑
j=1

i−1∑
k=j

|x′(snk), unk(sn,k+1)− unk(sn,k−1)|.

Adding λ2
ni to the sum of these equations gives

nλ2
ni =

n∑
j=1

λ2
nj + αni, (18)

where

αni = 2
n∑

j=i+1

j−1∑
k=i

|x′(snk), unk(sn,k+1)− unk(sn,k−1)| −

−2
i−1∑
j=1

i−1∑
k=j

|x′(snk), unk(sn,k+1)− unk(sn,k−1)|.

Multiplying (18) by n gives the desired expressions for the λni’s:

n2λ2
ni = n

n∑
j=1

λ2
nj + nαni, (19)

We will study the behaviour of these equations as n → ∞. For the right-hand
side of (19) we will show that

lim
n→∞

n
n∑

i=1

λ2
ni = λ2 (20)
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and
lim

n→∞
n max

i=1,...,n
|αni| = 0. (21)

In order to prove (20) we rewrite the inequalities

λ

n
=

1

n

n∑
i=1

λni ≤ (
1

n

n∑
i=1

λ2
ni)

1/2 ≤ (
1

n

n∑
i=1

λ3
ni)

1/3,

in the form

λ2 ≤ n
n∑

i=1

λ2
ni ≤ (n2

n∑
i=1

λ3
ni)

2/3. (22)

As a consequence of Lemma 1,

Fni =
λ3

ni

12
+ o(λ3

ni) uniformly as λni → 0.

Hence, recalling the asymptotic formula (1)

lim
n→∞

n2δS(C,P i
n) = lim

n→∞
n2

n∑
i=1

Fni =
λ3

12
,

we obtain

lim
n→∞

n2
n∑

i=1

λ3
ni = λ3, (23)

and (20) follows from (22).
Next we establish (21). Define ν = sup0≤s≤λ ‖x′(s)‖. Then (15) gives

||x′(sni), uni(sn,i−1)|| ≤
ν

3!
λ3

niω(λni). (24)

The definition of the αni’s implies that

|αni| ≤ 2n
n∑

k=1

||x′(snk), unk(sn,k+1)− unk(sn,k−1)||.

Combining this with (24), we have

n|αni| ≤ 4n2
n∑

k=1

ν

3!
λ3

niω(λni) ≤ 4
ν

3!
ω( max

i=1,...,n
λni)n

2
n∑

k=1

λ3
ni. (25)

Since δS(C,P i
n) → 0, limn→∞maxi=1,...,n λni = 0. Hence (21) follows from (23)

and (25).
By (20) and (21), it follows from (19) that

lim
n→∞

n2 max
i=1,...,n

λ2
ni = lim

n→∞
n2 min

i=1,...,n
λ2

ni = λ2,
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which proves the lemma. 2

Now we are able to prove the main theorem.

Proof of Theorem 1. First we choose for n = 3, 4, . . . polygons Qn with vertices
at the points x(iλ

n
), i = 0, 1, . . . , n, and denote the area of the i-th piece between

C and Pn by Fni. Let ε > 0 be chosen. Lemma 1 shows that there is an integer
n0 such that

Fni ≤
1

2

(
1

3!

λ3

n3
− 1

5!
k(i

λ

n
)
λ5

n5
+ ε

λ5

n5

)
for all n ≥ n0. Hence

δS(C,P i
n)− 1

12

λ3

n2
≤ δS(C, Pn)− 1

12

λ3

n2

≤
n∑

i=1

Fni −
1

12

λ3

n2

≤ 1

2

(
n∑

i=1

(
1

3!

λ3

n3
− 1

5!
k(i

λ

n
)
λ5

n5
+ ε

λ5

n5

)
− 1

3!

λ3

n2

)
=

=
1

2

(
n∑

i=1

(− 1

5!
k(i

λ

n
)
λ5

n5
) +

λ5

n5
ε

)
=

= −1

2

λ4

5!

1

n4

n∑
i=1

k(i
λ

n
)
λ

n
+

1

2

λ5

n4
ε.

Since ε > 0 was arbitrary,

lim sup
n→∞

n4

(
δS(C,P i

n)− 1

12

λ3

n2

)
≤ −1

2

λ4

5!

∫ λ

0
k(s)ds. (26)

In order to show the opposite inequality, let Pn be a sequence of best approx-
imating polygons. Let x(sni) be the vertices of Pn and let λni = sni − sn,i−1.
Choose ε > 0. Then by Lemma 1, there is an integer n0 such that

Fni ≥
1

2

(
λ3

ni

3!
− k(sn,i−1)

λ5
ni

5!
− ελ5

ni

)
for all n ≥ n0. Using the inequality

1

n2
λ3 =

1

n2
(

n∑
i=1

λni)
3 ≤

n∑
i=1

λ3
ni,

we see that

n4

(
δS(C,P i

n)− 1

12

λ3

n2

)
≥ n4

(
n∑

i=1

Fni −
1

12

n∑
i=1

λ3
ni

)

≥ n4

2

n∑
i=1

(
λ3

ni

3!
− k(sn,i−1)

λ5
ni

5!
− ελ5

ni −
λ3

ni

3!

)
=

=
n4

2

n∑
i=1

(
−k(sn,i−1)

λ5
ni

5!
− ελ5

ni

)
.

7



By Lemma 2

λni =
λ

n
+ o(

1

n
) uniformly in i.

Thus

n4

2

n∑
i=1

(
−k(sn,i−1)

λ5
ni

5!
− ελ5

ni

)
=

n4

2

n∑
i=1

(
−k(sn,i−1)

5!

λ5

n5
+ o(

1

n5
)− ε

λ5

n5

)

= −1

2

λ4

5!

n∑
i=1

(k(sn,i−1)
λ

n
)− ε

λ5

2
+ o(1) =

= −1

2

λ4

5!

n∑
i=1

k(sn,i−1)λni − ε
λ5

2
+ o(1).

Since ε > 0 was arbitrary, we have

lim inf
n→∞

n4

(
δS(C,P i

n)− 1

12

λ3

n2

)
≥ −1

2

λ4

5!

∫ λ

0
k(s)ds.

This together with (26) concludes the proof of Theorem 1. 2

4 Asymptotic Expansion for δ(C,Pc
n)

Theorem 2 Let C be a closed convex curve in IE 2 of class C4 with positive
ordinary curvature. Then

δS(C,Pc
n) ∼ 1

24

λ3

n2
+

1

2

λ4

5!

∫ λ

0
k(s)ds

1

n4
+ o(

1

n4
)

as n →∞.

The proof is analogous to that of Theorem 1. As a tool we use the property, that
the edges of best approximating circumscribed polygons of C touch C at their
midpoints (cf. [3]). Thus instead of (14) we have the equality

|x(sn,i−1)− x(sni), x
′(sn,i−1)|

|x′(sn,i−1), x′(sni)|
=
|x(sn,i+1)− x(sni), x

′(sn,i+1)|
|x′(sni), x′(sn,i+1)|

.
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