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ASYMPTOTIC APPROXIMATION OF THE MOVE-TO-FRONT
SEARCH COST DISTRIBUTION AND LEAST-RECENTLY

USED CACHING FAULT PROBABILITIES
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Consider a finite list of items n = 1;2; : : : ;N, that are requested ac-
cording to an i.i.d. process. Each time an item is requested it is moved to
the front of the list. The associated search cost CN for accessing an item
is equal to its position before being moved. If the request distribution con-
verges to a proper distribution as N→∞, then the stationary search cost
CN converges in distribution to a limiting search cost C.

We show that, when the (limiting) request distribution has a heavy tail
(e.g., generalized Zipf ’s law), P�R = n� ∼ c/nα as n→ ∞, α > 1, then the
limiting stationary search cost distribution P�C > n�, or, equivalently, the
least-recently used (LRU) caching fault probability, satisfies

lim
n→∞

P�C > n�
P�R > n� =

(
1− 1

α

)[
0

(
1− 1

α

)]α
↗ eγ as α→∞;

where 0 is the Gamma function and γ �= 0:5772 : : :� is Euler’s constant.
When the request distribution has a light tail P�R = n� ∼ c exp�−λnβ�

as n→∞ �c; λ;β > 0�, then

lim
n→∞

P�Cf > n�
P�R > n� = e

γ;

independently of c; λ;β, where Cf is a fluid approximation of C.
We experimentally demonstrate that the derived asymptotic formulas

yield accurate results for lists of finite sizes. This should be contrasted with
the exponential computational complexity of Burville and Kingman’s exact
expression for finite lists. The results also imply that the fault probability
of LRU caching is asymptotically at most a factor eγ �≈ 1:78� greater than
for the optimal static arrangement.

1. Introduction. One of the most commonly encountered problems in
modern distributed network environment is efficient information retrieval
(e.g., the Internet Web searching). As a solution to this problem, an entire
spectrum of different heuristic dynamically organizing data structures have
been proposed. Among the proposed algorithms, the most basic ones are the
move-to-front (MTF) self-organizing searching algorithm and the correspond-
ing least-recently used (LRU) caching scheme. The main objective of this paper
is to obtain an analytic asymptotic characterization of the MTF search cost
distribution function or, equivalently, the LRU caching fault probabilities.
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As sketched in the abstract, the MTF algorithm can be informally described
as follows. Assume that there is a finite linear list of items (say 1;2;3; : : : ;N,
sequentially ordered from first to last) and a sequence of requests for the items
of the list. Each time a requested item is found at the nth position in the list, it
is brought to the first position and items in positions 1; : : : ; n−1 are moved one
position down. One performance measure is the search cost function, which
is defined to be the position of the requested item. The caching scheme that
corresponds to MTF is the LRU algorithm. For this scheme, it is assumed that
n items are kept in fast memory (cache) and that the remainingN−n items are
stored in slow memory. Each time a request for an item is made, fast memory
is searched first. If the item is not found there it is brought from slow memory
and replaced with the least recently used item in the cache. The performance
quantity of interest for this algorithm is the LRU fault probability, that is,
the probability that the requested item is not in the cache. It can be shown
that computing the LRU fault probability is the same as computing the MTF
search cost distribution (the details of this connection will be discussed in
Section 2.1).

The performance analysis of self-organizing data structures (e.g., lists,
trees) has a long history. Basic references can be found in [22] and [11].
In the analysis of self-organizing lists there have been two approaches:
combinatorial and probabilistic analysis. For the combinatorial (amortized,
competitive) analysis the reader is referred to [2] and [28]. Recent results and
references for this approach can be found in [7] and [19]. In this paper we
will concentrate on probabilistic analysis.

Early work on the probabilistic analysis of the MTF rule dates back to
McCabe [23]. He computed the expected value and variance of the cost function
for finite lists. In [18], a Markov chain on the state space of all permutations
on the elements of the list is analyzed and the stationary distribution was
derived. Rivest [27] showed that in stationarity the transposition rule (search
algorithm in which the requested item is moved only one position closer to
the front) is more efficient (in a certain sense) than the MTF rule. Bitner [5]
investigated the transient behavior of the expected cost function. The n-step
transition probabilities for the underlying Markov chain are derived in [24]
(see also [26, 12]). Spectral analysis is conducted in [25] (see also [12]). A com-
binatorial expression for the distribution function of the search cost was first
derived by Burville and Kingman [8]. An integral form of the Laplace trans-
form of the search cost distribution function is computed in [15]. The authors
derive this result using combinatorial techniques and formal languages. The
same result was rederived in [13] using a Poisson embedding technique. A
comprehensive list of references on the probabilistic analysis of the LRU and
MTF algorithms can be found in [6].

The principal contribution of this paper is the complete asymptotic charac-
terization, both for the light- and heavy-tailed case (as defined in the abstract),
of the MTF search cost distribution and the LRU cache fault probabilities. One
of the main mathematical techniques used for the heavy-tailed case is the
Hardy–Littlewood–Karamata Tauberian theorem for an asymptotic inversion
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of the Laplace transform. In addition, we develop a novel fluid limit approach
for analyzing self-organizing data structures. This approach, combined with a
direct Laplace inversion, yields a characterization of the search cost distribu-
tion in the case of light tails. The practical implication of these results is that,
for a large class of distributions considered in this paper, the LRU caching
scheme is asymptotically only eγ ≈ 1:78 times worse than the optimal static
arrangement.

The remainder of this paper is organized as follows. Section 2 formally
defines the problem and gives a short technical note on existing results. A
summary of the main results from the literature on the stationary distribu-
tion of the search cost distribution is given in Section 2.1. Optimality of MTF
and LRU algorithms is discussed in Section 2.2. The main asymptotic results,
Theorems 3 and 6, are presented in Section 3 and 4, respectively. Extensive
simulation experiments that verify the accuracy of the asymptotic approxima-
tion formulas are presented in Section 5. The paper concludes in Section 6. To
simplify the reading process, the majority of the technical proofs are given in
Section 7.

2. Problem definition and historical notes. Consider a finite set of
items L = �1; : : : ;N�, and a sequence of i.i.d. requests �RN

t ; t = 0;1; : : :� dis-
tributed as qr = P�RN

t = r�; 1 ≤ r ≤N. The dynamics of the MTF algorithm
is described as follows. If at time t the requested item r (RN

t = r) is at the
nth position of the list, then it is brought to the first position and items in
positions 1; : : : ; n−1 are moved one position down. The process of list updates
can be modeled as a Markov chain �σNt ; t ≥ 0� on the state space of all list
permutations. A search cost process �CNt ; t ≥ 0� is defined such that CNt rep-
resents the position in the list of the item requested at time t. The notation
RN, CN, σN will be used to denote the random variables that have the same
distribution as the stationary distribution of RN

t , CNt , σNt , respectively. Our
main objective is to derive a simple asymptotic characterization of the search
cost distribution P�CN > n�.

McCabe [23] derived the following formula for the expected value of the
search cost distribution:

ECN = 1+ 2
∑
r<k

qrqk
qr + qk

:(2.1)

Bitner [5] obtained the transient expected cost

ECNt = 1+ 2
∑
r<k

qrqk
qr + qk

+
∑
r<k

�qr − qk�2�1− qr − qk�t
2�qr + qk�

:(2.2)

The stationary distribution for σNt was first computed by Hendricks [18]:

P�σN = x� = qx�1�
qx�2�

1− qx�1�
qx�3�

1− qx�1� − qx�2�

· · ·
qx�N�

1− qx�1� − qx�2� − · · · − qx�N−1�
;

(2.3)
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where x is a particular permutation (state) of the list, and x�i� is the item
at the ith position in the permutation. Spectral analysis of the Markov chain
�σNt ; t ≥ 0� is performed in Phatarfod [25], where it was shown that the
eigenvalues of the transition matrix of this Markov chain are the 2N − N
distinct numbers

∑
i∈S qi, S ⊆ �1; : : : ;N�, with �S� 6= N − 1. In the same

paper Phatarfod derived the multiplicities of eigenvalues (see also [12]).

2.1. Stationary distribution of the search cost and the fault probability of
the least recently used caching. This subsection presents the results from
the literature on the stationary distribution of the MTF search cost and the
fault probability for the LRU caching. A formal connection between these two
quantities is well known (e.g., see [15, 13]). Arguments in support of this
connection are also supplied within this subsection.

Burville and Kingman [8] derived the following combinatorial formula:

P�CN = n�=
N∑
r=1

n−1∑
a=0

�−1�n−1−a
(
N− 1− a
n− 1− a

) ∑

Ax �A�=a; r6∈A

q2
r

�1−QA�
;(2.4)

where QA =
∑
r∈A qr as defined. The connection between LRU caching and

MTF searching can be demonstrated as follows. Denote by D�k;N� the fault
probability in the LRU caching scheme with the cache size k. Then we claim

D�k;N� = P�CN > k�:
Here is a simple argument that justifies this claim. We can imagine that k
elements in the cache are arranged in increasing order of their last access
times. Each time there is a request for an item that is not in the cache, the
item is brought to the cache and the last element of the cache is moved to the
slow memory. The claim is that the fault probability D�k;N� stays the same
if the remaining N−k items in the slow memory are arranged in any specific
order. In particular, they can be arranged in increasing order of their last
access times. It is clear that the obtained algorithm is the same as the MTF
algorithm and thatD�k;N� = P�CN > k�. For those who are still not convinced
by the preceding argument, one can obtain the expression for D�k;N� directly
from (2.4) as follows. Compute P�CN ≤ k� = ∑k

n=1 P�CN = n�, by using (2.4),
interchange the sums with respect to n and a, and use the identity (which can
be proved easily by induction on k)

k∑
n=a+1

�−1�n−1−a
(
N− 1− a
n− 1− a

)
= �−1�k−1−a

(
N− 2− a
k− 1− a

)
:

This derivation leads to Corollary 5.2 from [15], which, for convenience, is
stated here:

1−D�k;N� = P�CN ≤ k�

=
N∑
r=1

k−1∑
a=0

�−1�k−1−a
(
N− 2− a
N− 1− k

) ∑

Ax �A�=a; r6∈A

q2
r

�1−QA�
:

(2.5)
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Unfortunately, except for relatively small N, n and a, the preceding formu-
las (2.4) and (2.5) are not suitable for numerical evaluation. This is due to a
combinatorial explosion; as pointed out in [15] the evaluation of P�CN > k�
takes about Nk/k! operations, which for example for N = 1000 and k =
20 computes to roughly 1040 operations. This is clearly infeasible. Further-
more, when k = bN, 0 < b ≤ 1, application of Stirling’s formula shows that
NbN/�bN�! grows exponentially in N; that is, (2.5) [or equivalently (2.4)] has
exponential complexity.

To alleviate this problem, in [15] a compact integral representation of the
Laplace transform of the search cost distribution function is derived. In the
same paper Cauchy contour integration was proposed for efficient inversion of
the search cost distribution function. Fill [13] rederived the same result using
the Poisson embedding technique. This result reads as

E exp�−sCN� = e−s
∫ ∞
t=0
e−t
[ N∑
r=1

q2
r

1+ e−s�exp�qrt� − 1�

]

×
[ N∏
r=1

�1+ e−s�exp�tqr� − 1��
]
dt;

for any s > 0.
In [14] the limiting search cost C as N → ∞ is investigated. In order to

state this result, choose a probability distribution sequence P�R = r� = qr,
1 ≤ r < ∞,

∑∞
r=1 qr = 1. Next, construct a sequence of MTF algorithms

with finite number of elements N, whose request probabilities are given as
P�RN

t = r� = qr/q+N, 1 ≤ r ≤ N, where q+N =
∑N
r=1 qr. Then Fill obtained the

following result ([13], Proposition 4.4; in the same paper, he also considered
the case when q+N →∞ as N→∞ and showed that appropriately scaled CN

converges to a proper limit).

Theorem 1. The sequence of search costs CN converges in distribution to
C, as N→∞, and the Laplace transform of C is given as

Ee−sC = e−s
∫ ∞
t=0

∞∑
i=1

q2
i exp�−qit�

×
[ ∏
rx r6=i
�1− �1− e−s��1− exp�−qrt���

]
dt:

(2.6)

This result is the basis of our further investigation.

2.2. Optimality of MTF and LRU algorithms. Before starting with the
analysis, let us give a few known results about the optimality of the MTF and
LRU algorithms. Note that without loss of generality we can assume that the
request probabilities qr form a monotonically nonincreasing sequence (if this
is not the case we can always relabel the items in such a way that the new
sequence qr is nonincreasing). Now, it is clear that the optimal algorithm is
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the one that keeps the items static and ordered in decreasing order of their
request probabilities. The search cost of this optimal algorithm is ERN. Next,
by using qr/�qr + qk� < 1 in (2.1) we easily derive an upper bound (see [22],
page 399)

ERN ≤ ECN ≤ 2ERN:

Using Hilbert’s inequalities in [9], the upper bound was improved from 2 to
π/2; π/2 was also shown to be the best possible bound.

Similarly, for the caching system with a cache size n, the optimal algo-
rithm keeps n most frequent items in the cache all of the time. Now, P�CN >
n�/P�RN > n� gives the ratio between the LRU fault probability and the fault
probability for the optimal static arrangement. A bound on this quantity is
obtained in [16], Theorem 3.

Theorem 2.

P�CN > n�
P�RN > n� ≤ 1+ n P�RN ≤ n�

1+ �n− 1�P�RN > n� = b�n;N�

as defined for arbitrary q1; : : : ; qN.

At this point, and for the rest of the paper, we introduce the following
customary notation. For any two real functions a�t� and b�t� and fixed t0 ∈ R∪
�∞�, we will use a�t� ∼ b�t� as t→ t0 to denote limt→t0 a�t�/b�t� = 1. Similarly,
we say that a�t� & b�t� as t→ t0 if lim inf t→t0 a�t�/g�t� ≥ 1; a�t� . b�t� has a
complementary definition.

For the case when P�RN ≤ n� converges to a proper distribution P�R ≤ n�
as N→∞, the limit of the upper bound b�n� = limN→∞ b�n;N�, as defined,
in Theorem 2 is equivalent to the following. If ER <∞, then

b�n� ∼ n as n→∞:(2.7)

If P�R = n� ∼ c/nα, 1 < α < 2, then

b�n� ∼ n
2−α

c
as n→∞:(2.8)

Under the additional tail conditions on P�R = n�, our main results, Theo-
rems 3 and 6, will show that the bounds in (2.7) and (2.8) can be replaced by
a constant, namely, eγ ≈ 1:78, where γ is Euler’s constant.

3. Heavy tails. This section presents a straightforward asymptotic char-
acterization of the search cost distribution function P�C > n� for the case
when the request distribution has a heavy (polynomial) tail. The main result
is stated in Theorem 3. The primary technique that is used is Karamata’s
Tauberian–Abelian theory for the asymptotic inversion of the Laplace trans-
forms.
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In order to be able to obtain the asymptotic inversion of (2.6) we need to
derive a simplified asymptotic representation of the infinite sum and infinite
products that appear in (2.6). To this end we define the following density
function

f�t� =
∞∑
r=1

q2
r exp�−qrt� as defined,(3.1)

whose asymptotic behavior is described in the subsequent lemma.

Lemma 1. Assume that qr ∼ c/rα as r→∞, with α > 1 and c > 0. Then

f�t� ∼ c
1/α

α
0

(
2− 1

α

)
t−2+1/α as t→∞;

where 0 is the Gamma function.

The proof is given in Section 7.1.
Our next object of investigation is

g�t� =
∞∑
r=1

�1− exp�−qrt�� as defined:(3.2)

Here g�t� also has a straightforward asymptotic characterization.

Lemma 2. Assume that qr ∼ c/rα as r→∞, with α > 1 and c > 0. Then

g�t� ∼ 0
(

1− 1
α

)
c1/αt1/α as t→∞:

The proof is given in Section 7.1.
Actually, a stronger version of Lemma 2 holds. Let A be any set of indexes

A ⊂ N with cardinality �A�. Denote with gA�t� =
∑
rx r6∈A�1− exp�−qrt��.

Corollary 1. Assume that qr ∼ c/rα as r → ∞, with α > 1 and c > 0.
Then for any fixed finite `,

gA�t� ∼ 0
(

1− 1
α

)
c1/αt1/α as t→∞;

uniformly in all A ⊂ N such that �A� ≤ `.

Proof. The proof follows immediately from Lemma 2 and

g�t� − ` ≤ gA�t� ≤ g�t�: 2

The preceding technical results led up to the following main result of this
section.
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Theorem 3. Assume that qr ∼ c/rα as r→∞, with α > 1 and c > 0. Then

P�C > n� ∼
(

1− 1
α

)[
0

(
1− 1

α

)]α
P�R > n� as n→∞:(3.3)

Furthermore, if we denote the constant of proportionality in (3.3) as K�α�, then
K�α� is monotonically increasing with

lim
α→∞

K�α� = eγ ≈ 1:78107; lim
α↓1

K�α� = 1;(3.4)

where γ is the Euler constant, that is,

γ = lim
n→∞

( n∑
i=1

i−1 − log n
)
= 0:5772156649 : : : :

Remark. This theorem implies that

P�C > n� . eγP�R > n� as n→∞:(3.5)

A plot of K�α� is given in Figure 1.
A rigorous proof of Theorem 3 is given in Section 7.2.

Heuristic sketch of the proof. First, for all sufficiently small s, and all
sufficiently large t,

∏
rx r6=i
�1− �1− e−s��1− exp�−qrt���≈ exp

(
−s

∞∑
r=1

�1− exp�−qrt��
)
:(3.6)

Fig. 1. Function K�α�.



438 P. R. JELENKOVIĆ

Now, by utilizing the above approximation and Lemmas 1 and 2, one can
obtain the following informal approximation for sufficiently small s:

∫ ∞
t0

∞∑
i=1

q2
i exp�−qit�

[ ∏
rx r6=i
�1− �1− e−s��1− exp�−qrt���

]
dt

≈
∫ ∞
t0

c1/α

α
0

(
2− 1

α

)
t−2+�1/α� exp

(
−s0

(
1− 1

α

)
c1/αt1/α

)
dt:

(3.7)

By changing the variable of integration to u = 0�1−1/α�c1/αt1/α in the integral
above, we conclude that the integral in (3.7) is approximately equal to

(
1− 1

α

)[
0

(
1− 1

α

)]α ∫ ∞
u0

c

uα
e−su du;

where u0 = 0�1− 1/α�c1/αt
1/α
0 . From this, the observation that

∫ ∞
u0

c

uα
e−su du ≈ E�e−sR1�R > u0��;

and the uniqueness of the inverse of the Laplace transform, we can roughly
conclude that the tail of C should be proportional to the tail of R with a con-
stant of proportionality given in the equation above. Unfortunately, to make
these arguments rigorous, much lengthier analysis is required. In particular,
one has to investigate the asymptotic behavior of the derivatives of Ee−sC. A
complete proof that utilizes Karamata’s Tauberian–Abelian theorem is pro-
vided in Section 7.2. 2

4. Fluid limit and light tails. In Theorem 4 in this section we develop
a fluid limit approximation of the search cost function. For the heavy-tailed
case the validity of this approximation is demonstrated in Theorem 5. The
main result is presented in Theorem 6. This theorem shows that for the light-
tailed case the ratio between the tail of the search cost distribution and the
request distribution is asymptotically invariant with respect to the shape of
the request distribution function.

Consider a density function q on �0;∞�, and the corresponding distribution
function Q�t� =

∫ t
0 q�u�du. Assume that the request probabilities are given

as qr = Q�r�−Q�r−1�; r ≥ 1. Now, construct a sequence of MTF algorithms
with request probabilities

qkr = Q�r/k� −Q��r− 1�/k�; k; r ≥ 1:

For each of the constructed MTF schemes, let C�k� be the stationary search
cost random variable. Informally, the kth MTF scheme is constructed from the
original one by dividing each item r into k items with request probabilities
qk�r−1�k+i; 1 ≤ i ≤ k. In order to compare the derived schemes with the orig-
inal one we will scale the search cost of the kth scheme as C�k�/k. Now we
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show that C�k�/k converges in distribution to a proper (fluid) limit as k→∞.
Assume that q is monotonically decreasing and continuous. [Note that this
assumption is not restrictive; i.e., for any given monotonically decreasing se-
quence of request probabilities we can always choose a continuous function q
such that qr = Q�r� −Q�r− 1�, r ≥ 1.]

Theorem 4. The sequence C�k�/k converges in distribution to the fluid
limit Cf ( finite with probability 1), as k → ∞, whose Laplace transform is
given as

E exp�−sCf� =
∫ ∞

0

(∫ ∞
0
q2�u�e−q�u�t du

)

× exp
(
−s

∫ ∞
0
�1− e−q�u�t�du

)
dt; s > 0:

(4.1)

The proof is given in Section 7.3.
We term Cf the fluid limit approximation of C (recall that Cf is obtained by

dividing each item into infinitely many smaller items; that is, the items become
divisible like fluid). The accuracy of this fluid approximation is demonstrated
in the following theorem. The theorem shows that in the heavy-tailed context
the fluid limit search cost distribution behaves asymptotically the same as the
original search cost distribution.

Theorem 5. If q�u� ∼ c/uα, α > 1, c > 0, then

P�C > n� ∼ P�Cf > n� as n→∞:

In order to investigate the asymptotic behavior of the distribution function
of Cf we define [in the same spirit as in (3.1) and (3.2)] the following functions:

ff�t� =
∫ ∞

0
q2�u�e−q�u�t du as defined;

gf�t� =
∫ ∞

0
�1− e−q�u�t�du as defined;

(4.2)

where the subscript f refers to the fluid limit.

Proof. Similarly to Lemmas 1 and 2, one can show that

ff�t� ∼
c1/α

α
0

(
2− 1

α

)
t−2+�1/α� as t→∞

and

gf�t� ∼ 0
(

1− 1
α

)
c1/α t1/α as t→∞:

By using exactly the same procedure as in the proof of Theorem 3, one can
complete the proof of this theorem. In order to avoid duplications we omit this
derivation. 2
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Theorem 6 (eγ law). If q�u� ∼ c exp�−λuβ� as u → ∞, for some positive
constants c; λ;β, then

P�Cf > n� ∼ eγP�R > n� as n→∞;

for any ( fixed) choice of the parameters c, λ, β.

Remarks. (i) Note that q�u� ∼ c exp�−λuβ� is a large class of distribu-
tions, containing most of the well-known light-tailed distributions, for exam-
ple, Weibull, exponential and Normal. (ii) Observe that polynomial (∼ c/uα)
and Weibull distributions (∼ c exp�−λuβ�, 0 < β < 1) belong to the class
of “subexponential” distributions. In the queueing context these distributions
demonstrate the same asymptotic behavior (see [20]). (iii) Based on the dis-
cussion in Section 2.2 we conclude that, under the conditions of this theorem
and Theorem 3, the LRU fault probability is only a factor eγ ≈ 1:78 larger
than for the optimal static setup.

Lemma 3. If q�u� ∼ c exp�−λuβ� as u → ∞, where �c; λ;β� > 0, then the
first derivative of gf behaves asymptotically as

g′f�t� ∼
�log�ct��β−1−1

tβλ1/β
as t→∞:

The proof is given in Section 7.4.

Lemma 4. If q�u� ∼ c exp�−λuβ� as u→∞, for any �c; λ;β� > 0, then ff
of (4.2) behaves asymptotically as

ff�t� ∼
�log�ct��β−1−1

t2βλ1/β
as t→∞:

The proof is given in Section 7.4.

Corollary 2. If q�u� ∼ c exp�−λuβ� as u→∞, for any �c; λ;β� > 0, then

ff�t�
g′f�t�

∼ 1
t

as t→∞:

The proof follows directly from Lemmas 3 and 4.

Lemma 5. For any d > −1, and t > 0,

∫ t
0

1− e−x
x

(
log

(
t

x

))d
dx− �log t�d+1

d+ 1
∼ γ�log t�d as t→∞:

The proof is given in Section 7.4.
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Lemma 6. If q�u� ∼ c exp�−λuβ� as u→∞, �c; λ;β� > 0, then the inverse
of gf�t� behaves asymptotically as

g−1
f �v� ∼ e−γc−1 exp�λvβ� as v→∞:

Proof. For any δ > 0 we can choose u0 such that for all u > u0,
c�1− δ� exp�−λuβ� ≤ q�u� ≤ c�1+ δ� exp�−λuβ�; let cδ = �1+ δ�c. Then

gf�t� ≤
∫ ∞

0
�1− exp�−cδt exp�−λuβ���du+ u0:

Now, by changing the variable of integration to x = cδt exp�−λuβ� in the
integral above, we compute

gf�t� ≤
1

βλ1/β

∫ cδt
0

1− e−x
x

(
log

(
cδt

x

))1/β−1

dx+ u0:(4.3)

Here, by choosing d = 1/β− 1 and applying Lemma 5 in (4.3) we obtain

gf�t� ≤ λ−1/β�log cδt�1/β

+ γ

βλ1/β
�log cδt�1/β−1�1+ o�1�� as t→∞:

(4.4)

Consequently, by using the above expression we compute

gf�e−γc−1
δ exp�λuβ�� ≤ λ−1/β�λuβ − γ�1/β

+ γ

βλ1/β
�λuβ − γ�1/β−1�1+ o�1�� as u→∞

= u
(

1− γ

βλuβ
�1+ o�1��

)

+ γ

βλuβ−1
�1+ o�1�� as u→∞

= u
(

1+ o
(

1
uβ

))
as u→∞:

(4.5)

If we introduce a new variable v ≡ v�u� = u�1+ o�1/uβ�� as u→∞, then

vβ
(
v

u
− 1

)
= vβo

(
1
uβ

)
= o�1� as u→∞

⇒ u = v
(

1+ o
(

1
vβ

))
as v→∞:

Finally, by replacing the preceding expression in (4.5), it directly follows that

g−1
f �v� ≥ e−γc−1

δ exp�λ�v�1+ o�v−β���β� as v→∞
= e−γc−1

δ exp�λ�vβ + o�1��� as v→∞;
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which implies that

lim inf
v→∞

g−1
f �v�eγc exp�−λvβ� ≥ �1+ δ�−1:

Finally, by passing δ→ 0 we obtain the lower bound of the proof of the lemma.
To prove the upper bound we use

gf�t� ≥
∫ ∞

0
�1− exp�−cδt exp�−λuβ���du− u0;

where cδ = �1−δ�c; by repeating exactly the same arguments as for the lower
bound we obtain

lim sup
v→∞

g−1
f �v�eγc exp�−λvβ� ≤ 1:

This completes the proof of the lemma. 2

Finally, we are ready to supply the proof of the theorem.

Proof of Theorem 6. By changing the variable of integration in Theo-
rem 4 to v = gf�t� we obtain

E exp�−sCf� =
∫ ∞

0

ff�g−1
f �v��

g′f�g−1
f �v��

e−sv dv:

Thus, by the uniqueness of the Laplace transform inverse, we conclude that
the density of Cf is equal to

qf�v� =
ff�g−1

f �v��
g′f�g−1

f �v��
:

Now by using Corollary 2 we derive

qf�v� ∼
1

g−1
f �v�

as v→∞;

which by application of Lemma 6 yields

qf�v� ∼ eγc exp�−λvβ� as v→∞:

This concludes the proof of the theorem. 2

5. Simulation experiments. In this section we illustrate our main re-
sults (Theorems 3 and 6) with several simulation examples. Note that the
asymptotic results were obtained first by passing the list size N to infinity
in Theorem 1, then by investigating the tail of the limiting search cost distri-
bution as n goes to infinity (or, equivalently, the LRU cache fault probability



MOVE-TO-FRONT SEARCHING ALGORITHM 443

as the cache size n grows). Thus, it can be expected that the asymptotic ex-
pressions from Theorems 3 and 6 will give a reasonable approximation for
P�CN > n� when both n and N are large and N is significantly larger than
n. However, it is surprising how accurately these approximations work for
relatively small values of N and almost all values of n ≤N.

The experiments were conducted on a modern multiprocessor Silicon
Graphics computer. We have used C++ programming language with a stan-
dard 48-bit pseudorandom number generator. The initial position of the items
in the list was chosen uniformly at random. In each experiment, before we
have conducted the measurements, we allowed a certain amount of time τd for
the system to reach its steady state. In general, we have adopted a heuristic
for choosing τd such that �ECNτd−ECN�/ECN < 1% [recall that ECNτd is given by
(2.2)]. Typically, τd was smaller than 106 time units, where the only exception
was the first experiment when the convergence to stationarity was very slow
and we had to choose τd = 108 to achieve �ECNτd−ECN�/ECN < 5%. Then, after
waiting τd units of time, in every experiment we have measured the search
cost probabilities for a time interval τ which, depending on the experiment,
was between 108 and 1010 time units. The measured data is presented in the
remainder of this section.

Example 1 (Heavy tails). In this example we will illustrate the heavy-
tailed case from Theorem 3, that is, the case when the request distribution
obeys a generalized Zipf ’s law, P�RN = n� = cN/nα, 1 ≤ n ≤ N. In this case
we will use the approximation P�CN = n� ≈ �K�α�cN�/nα.

In the first experiment we considered α = 1:4,N = 106. The search cost was
measured for τ = 108 time units (τd = 108). The expected value of the search
cost is larger than ECN ≥ ERN ≈ 2100, from which the expected number of
item lookups is greater than 1011. Hence, it took more than three days on a
modern high speed computer to complete this simulation. The simulation re-
sults are displayed with a solid line in Figure 2. The top part of the figure rep-
resents a zoomed-in view for small values of CN. The bottom plot in the same
figure represents a zoomed out view of the same experiment. On the other
hand, it is needless to say that it takes negligible computer time to evaluate
the normalization constant for the Zipf ’s law distribution cN = 0:322004 and
the asymptotic proportionality constant K�α� = 1:42362, which together yield
the approximation of the search cost density K�α�cN/nα = 0:4584139/nα. The
plot of the approximation is represented on the same figure with a dashed line.
From the figure we can see that the approximation converges very quickly to
the actual distribution, that is, it already becomes accurate for P�CN = 5�.
Hence, the approximation is almost identical, except for n < 5, to the simula-
tion results.

Similar experiments are repeated for α = 3, N = 103 and α = 4, N = 100;
the measurements were τ = 109 and τ = 1010 time units long, respectively. The
results are displayed on the top and bottom plots of Figure 3, respectively. The
corresponding approximations are presented with dashed lines on the same
figure. The accuracy of the approximation is apparent.
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Fig. 2. Illustration for Example 1.
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Fig. 3. Illustration for Example 1.
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Fig. 4. Illustration for Example 2.

Example 2 (Light tails). In this example we illustrate the light-tailed
search distribution behavior that was asymptotically characterized by The-
orem 6. As suggested by the asymptotic result for all the experiments we
use the same asymptotic approximation P�CN = n� ≈ eγP�RN = n�. Figure 4
contains the geometric (exponential) case for four different values of the
geometric distribution parameter p = 0:75, 0:8, 0:85, 0:9; the observation
interval was τ = 109 time units for all the experiments. Again, the agreement
between the approximation and the simulation results is evident.

Similar precision was observed for the distribution that has a Weibull tail
P�RN = n� = cN exp�−√n�, N = 1000; see the top part of Figure 5. The
experiment for a Normal-like tail P�RN = n� = cN exp�−0:005n2�, N = 100
is presented on the bottom part of the same figure. The measurements were
conducted for τ = 109 and τ = 1010 time units, respectively.

6. Conclusion. In this paper we obtained a complete asymptotic charac-
terization of the MTF search cost distribution function or, equivalently, the
LRU caching fault probability, for both heavy and light tails. In both cases the
tail of the MTF search cost distribution is asymptotically directly proportional
to the tail of the request distribution with an explicitly computable constant
of proportionality.

In the heavy-tailed (polynomial) case, the constant is a function of the
polynomial exponent. As the tail becomes lighter, the constant increases to
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Fig. 5. Illustration for Example 2.
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eγ ≈ 1:78, where γ is Euler’s constant. In the light-tailed case the constant is
invariant with respect to the request distribution shape and is always equal
to eγ.

We expect that the new asymptotic techniques developed in this paper will
be useful for the analysis of more complex data structures.

7. Proofs.

7.1. Proofs of Lemmas 1 and 2.

Proof of Lemma 1. Let us first prove the case qr = c/rα. Observe that for
t > 0, the function �c2/r2α� exp�−ct/rα� is increasing in r for r < �ct/2�1/α, it is
decreasing for r > �ct/2�1/α and it has its maximum 4e−2/t2 for r = �ct/2�1/α.
Using these observations we can obtain the following set of equations. Let
l�t� = ��ct/2�1/α� as defined, where �x� represents the integer part of x. Then

f�t� ≤
l�t�−1∑
r=1

�c2/r2α� exp�−ct/rα�

+
∞∑

r=l�t�+1

�c2/r2α� exp�−ct/rα� + 4e−2/t2

≤
l�t�−1∑
r=1

∫ r+1

r
�c2/u2α� exp�−ct/uα�du

+
∞∑

r=l�t�+1

∫ r
r−1
�c2/u2α� exp�−ct/uα�du+ 4e−2/t2

≤
∫ ∞

1
�c2/u2α� exp�−ct/uα�du+ 4e−2/t2

≤
∫ ∞

0
�c2/u2α� exp�−ct/uα�du+ 4e−2/t2:

(7.1)

By changing variables to v = ct/uα in the integral in (7.1), we compute
∫ ∞

0
�c2/u2α� exp�−ct/uα�du = c

1/α

α
0

(
2− 1

α

)
t−2+1/α:(7.2)

Finally, by substituting (7.2) in (7.1), and using t−2/tα
−1−2 = o�1� as t → ∞,

we obtain

lim sup
t→∞

f�t�t2−1/α ≤ c
1/α

α
0

(
2− 1

α

)
:(7.3)

Similarly, one can derive the lower bound

f�t� ≥
l�t�∑
r=1

�c2/r2α� exp�−ct/rα� +
∞∑

r=l�t�+1

�c2/r2α� exp�−ct/rα�

≥
∫ ∞

0
�c2/u2α� exp�−ct/uα�du− 4e−2/t2:

(7.4)
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Thus, by replacing (7.2) in (7.4), and by taking the limit infimum with respect
to t, we conclude

lim inf
t→∞

f�t�t2−1/α ≥ c
1/α

α
0

(
2− 1

α

)
:(7.5)

Now, the combination of (7.5) and (7.3) yields the proof for the case qr = c/rα.
For the general case (qr ∼ c/rα), for any c > ε > 0 we can choose r0 > 0

such that, for all r ≥ r0, −ε < qrrα − c < ε. Using this we obtain

f�t� ≤ r04e−2

t2
+

∞∑
r=r0+1

�c+ ε�2
r2α

exp
(−�c− ε�t

rα

)

≤ r04e−2

t2
+ �c+ ε�

2

�c− ε�2
∞∑
r=1

�c− ε�2
r2α

exp
(−�c− ε�t

rα

)(7.6)

Consequently, by applying what we already have proved in (7.3)–(7.6) we ar-
rive at

lim sup
t→∞

f�t�t2−1/α ≤ �c+ ε�
2

�c− ε�2
�c− ε�1/α

α
0

(
2− 1

α

)
:(7.7)

Finally, by passing ε→ 0, we prove the extension of (7.3). Similarly, starting
with

f�t� ≥ −r04e−2

t2
+
∞∑
r=1

�c− ε�2
r2α

exp
(
−�c+ ε�t

rα

)

we derive the analog of (7.5). This completes the proof of the lemma. 2

Proof of Lemma 2. Similarly to the proof of Lemma 1, let us first consider
the case qr = c/rα. Note that for t > 0, 1 − exp�−ct/rα� is monotonically
decreasing in r. Then,

g�t� =
∞∑
r=1

∫ r+1

r
�1− exp�−ct/rα��du

≥
∞∑
r=1

∫ r+1

r
�1− exp�−ct/uα��du

=
∫ ∞

1
�1− exp�−ct/uα��du

= 1
α
c1/αt1/α

∫ ct
0
�1− e−v�v−�1/α�−1 dv

= 1− e−ct + c1/αt1/α
∫ ct

0
v−1/αe−v dv;

(7.8)

where in the last equality we have used integration by parts with U =
1− e−v, dU = e−vdv, V = −αv−1/α, dV = v−�1/α�−1dv. Since

∫ ct
0 v−1/αe−v dv→
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0�1− 1/α� as t→∞, from (7.8) it follows that

lim inf
t→∞

g�t�
t1/α
≥ 0

(
1− 1

α

)
c1/α:(7.9)

Similarly,

g�t� − �1− e−ct� =
∞∑
r=2

∫ r
r−1
�1− exp�−ct/rα��du

≤
∞∑
r=2

∫ r
r−1
�1− exp�−ct/uα��du

=
∫ ∞

1
�1− exp�−ct/uα��du:

(7.10)

Finally, by replacing (7.8) in (7.10) we prove the upper bound, that is,

lim sup
t→∞

g�t�
t1/α
≤ 0

(
1− 1

α

)
c1/α;(7.11)

which together with (7.9) completes the proof for the case qr = c/rα.
To prove the general case (qr ∼ c/rα), for any 0 < ε < c, we choose r0 >

0, such that for all r ≥ r0, −ε < qrr
α − c < ε. Since, 1 − exp�−ct/rα� is

monotonically increasing in c and bounded above by 1, it follows that

−r0 +
∞∑
r=1

�1− exp�−�c− ε�t/rα�� ≤ g�t� ≤ r0 +
∞∑
r=1

�1− exp�−�c+ ε�t/rα��;

which, by applying (7.8), (7.9), (7.10), (7.11), and by passing ε → 0, implies
the conclusion of the lemma. 2

7.2. Proof of Theorem 3. As we have already mentioned, the proof of this
result is based on Karamata’s Tauberian–Abelian theorem for distribution
functions of regular variation. This theorem relates the tail behavior of a
distribution function to the asymptotic behavior of its Laplace transform at
the origin. For convenience we state the following result (Theorem 7) which is
a weaker version of the theorem due to Bingham and Doney [3] ([4], page 333).
This theorem has a wide application in probability; for example, some recent
applications to queueing can be found in [21]. Let F be a distribution function
on �0;∞�, and let F̃ be its Laplace–Stieltjes transform.

Theorem 7. Let m ∈ N0, and α =m+ β.

(i) If 0 < β < 1, then the following two asymptotic relations are equivalent:

�−1�m+1F̃�m+1��s� ∼ α0�1− β� c

s1−β as s ↓ 0;(7.12)

1−F�x� ∼ c

xα
as x→∞;(7.13)

where 0 stands for the gamma function and F̃�m+1� denotes the �m+1�st deriva-

tive of F̃.
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(ii) If β = 1, then (7.13) is equivalent to

�−1�m+1F̃�m+1��s� ∼ −αc log s as s ↓ 0:(7.14)

Proof. (i) is just a special case of [4], Theorem 8.1.6, page 333.
(ii) For α = m + 1 the implication (7.13) ⇒ (7.14) can be proved easily by

direct evaluation of �−1�m+1F̃�m+1��s�; we skip the details.
For the reverse implication (7.14) ⇒ (7.13), we have that, by [4], Theorem

8.1.6, page 333, (7.14) implies
∫ x

0
tm+1dF�t� ∼ �m+ 1�c log x as x→∞:

By changing the variables u = tm+1, y = xm+1, in the integral above, and by
F1�y� = F�y1/�m+1�� as defined, we get that

∫ y
0
udF1�u� ∼ c log y as y→∞:(7.15)

Now, by the remark after [4], Corollary 8.1.7, page 335, (7.15) is equivalent to

1−F1�y� ∼
c

y
as y→∞;

which by F1�xm+1� ≡ F�x� implies (7.13). This completes the proof. 2

For any set of indices A = �i1; : : : ; ik� let

5A�s; t� =
∏

rx r6∈A
�1− �1− e−s��1− exp�−qrt��� as definedy

when A is the empty set we denote 5A�s; t� simply as 5�s; t�. Let �A� denote
the cardinality of A.

Lemma 7. For any ε > 0 and any set of indices A, �A� ≤ ` <∞, there exist
s0 > 0, t0 <∞ such that for all 0 < s < s0, and t > t0,

exp�−s�1+ ε�c1t
1/α� ≤ 5A�s; t� ≤ exp�−s�1− ε�c1t

1/α�;
where c1 = 0�1− �1/α��c1/α.

Proof. First let us observe that for any �A� ≤ `,
5�s; t� ≤ 5A�s; t� ≤ es`5�s; t�:(7.16)

From this we see that for all sufficiently small s (and fixed `) 5�s; t� uniformly
approximates 5A�s; t�. Therefore, to complete the proof it is enough to prove
that the lemma is satisfied for 5�s; t�. Now

log5�s; t� =
∞∑
r=1

log�1− �1− e−s��1− exp�qrt���

≤ −�1− e−s�
∞∑
r=1

�1− exp�qrt��;
(7.17)
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where in the inequality above we use the inequality log�1+ x� ≤ x. Here, by
applying Lemma 2 in (7.17), and observing that �1 − e−s� ∼ s, as s → 0 we
complete the proof of the upper bound, that is,

5�s; t� ≤ exp�−s�1− ε�c1t
1/α�(7.18)

Similarly, to prove the lower bound we can use the inequality x − x2 ≤
log�1 + x�, x ∈ �−0:683;0�. Therefore, by choosing s sufficiently small such
that 1− e−s ≤ 0:683, we obtain

log5�s; t� ≥ −�1− e−s�
∞∑
r=1

�1− exp�qrt��

− �1− e−s�2
∞∑
r=1

�1− exp�qrt��2

≥ −�1− e−s��2− e−s�
∞∑
r=1

�1− exp�qrt��:

(7.19)

Clearly, for any ε > 0 we can choose sufficiently small s such that �1−e−s��2−
e−s� ≤ �1 + ε�s. When this is replaced in (7.19) and by application of Lemma
2 we obtain the lower bound inequality of the lemma. This completes the
proof. 2

Lemma 8. For any ε > 0, for all i ≥ 1 and for any fixed m ≥ 0, there exist
s0 > 0, t0 <∞ such that for all 0 < s < s0, and t > t0,

�1− ε��c1t
1/α�m exp�−s�1+ ε�c1t

1/α� ≤ �−1�m ∂m

∂sm
e−s5i�s; t�

≤ �1+ ε��c1t
1/α�m exp�−s�1− ε�c1t

1/α�;
where c1 = 0�1− �1/α��c1/α and 5i�s; t� ≡ 5�i��s; t�.

Proof. Let us first investigate the form of themth derivative of e−s5i�s; t�.
For convenience of notation for any set A = �i1; : : : ; ik� we denote with
5i1;:::;ik�s; t� ≡ 5A�s; t�; also,

∑
ik/ik−1;:::;i1

≡ ∑
ikx ik 6∈�ik−1;:::;i1�. For m = 1 sim-

ple algebra gives

∂

∂s

[
e−s5i�s; t�

]
= −e−s5i − e−2s ∑

k1/i

�1− exp�−qk1
t��5k1i

:

Similarly, for m = 2

∂2

∂s2

[
e−s5i�s; t�

]
= e−s5i + 3e−2s ∑

k1/i

�1− exp�−qk1
t��5k1i

+ e−3s ∑
k1/i

�1− exp�−qk1
t��

∑
k2/k1; i

�1− exp�−qk2
t��5k1k2i

:

Following this derivation, one can easily prove the following claim. We skip
the details.
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Claim 1. For any m ≥ 1, there exist a set of nonnegative integers dm1 ; : : : ;
dmm−1, such that

∂m

∂sm
[
e−s5i�s; t�

]

= �−1�m
[
e−s5i + dm1 e−2s ∑

k1/i

�1− exp�−qk1
t��5k1i

+ · · · + dmm−1e
−ms ∑

k1/i

�1− exp�−qk1
t��

∑
k2/k1; i

�1− exp�−qk2
t��

· · ·
∑

km−1/k1;:::;km−2; i

�1− exp�−qkm−1
t��5k1···km−1i

+ e−�m+1�s ∑
k1/i

�1− exp�−qk1
t��

∑
k2/k1; i

�1− exp�−qk2
t��

· · ·
∑

km/k1;:::;km−1; i

�1− exp�−qkmt��5k1···kmi

]
:

(7.20)

Finally, by applying Lemma 7 and Corollary 1 we complete the proof of this
lemma. 2

Here, we are ready to complete the proof of Theorem 3. Observe that if
P�R = n� ∼ c/nα, α > 1, then P�R > n� ∼ �c/�α− 1��n−α+1, as n→∞.

Let us first consider the case α =m+β, 0 < β < 1, m ∈ N. Note that we can
take the mth derivative of Ee−sC by interchanging the order of differentiation
and integration–summation. Justification for this interchange follows by the
dominated convergence theorem and the following bound.

Lemma 9. For any ( fixed) s > 0, integer ` ≥ 0, there exist h0 > 0, δ ≡ δ�s� >
0, θ ≡ θ�s�, such that for all A = �i1; : : : ; ik�, �A� ≤ `, 0 < �h� < h0,

∣∣∣∣
5A�s; t� −5A�s+ h; t�

h

∣∣∣∣ ≤ θt
1/α exp�−δt1/α�:(7.21)

Proof of this lemma is given at the end of this section.
Thus, by taking the mth derivative of Ee−sC and applying Lemma 1 and

Lemma 8, we can choose, for any ε > 0, t0 < ∞, s0 > 0 such that for all
0 < s < s0 and t > t0,

�−1�m ∂m

∂sm
Ee−sC ≥ �1− ε�

∫ ∞
t0

c1/α

α
0

(
2− 1

α

)
t−2+1/α�c1t

1/α�m

× exp�−s�1+ ε�c1t
1/α�dt

= �1− ε�cn1c2

∫ ∞
t0

t−2+�m+1�/α exp�−s�1+ ε�c1t
1/α�dt;

(7.22)
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where c1 = 0�1− �1/α��c1/α and c2 = �c1/α/α�0�2− 1/α�; now, with the change
of variables u = s�1+ ε�c1t

1/α we arrive at

�−1�m ∂m

∂sm
Ee−sC ≥ �1− ε�c2c

m
1 α�s�1+ ε�c1�β−1

∫ ∞
s�1+ε�c1t

1/α
0

u−βe−u du

& �1− ε�c2c
m
1 α�s�1+ ε�c1�β−10�1− β� as s ↓ 0:

(7.23)

Finally by taking the limit with respect to ε we get

lim inf
s↓0

{
�−1�m

[
∂m

∂sm
Ee−sC

]
sm+1−α

}
≥ cα−1

1 c2α0�m+ 1− α�:(7.24)

For the upper bound we use

�−1�m ∂m

∂sm
Ee−sC

≤ η�t0� + �1+ ε�cm1 c2

∫ ∞
t0

t−2+�m+1�/α exp�−s�1− ε�c1t
1/α�dt

.�1+ ε�c2c
m
1 α0�m+ 1− α���1− ε�c1s�α−m−1 as s ↓ 0;

(7.25)

where η�t0� is a sufficiently large constant. Now, by letting ε → 0 in (7.25)
and combining it with (7.24) we obtain

lim
s↓0

{
�−1�m

[
∂m

∂sm
Ee−sC

]
sm+1−α

}
= cα−1

1 c2α0�1− β�:(7.26)

In conclusion, by applying Karamata’s theorem 7(i) we derive

P�C > n� ∼ αc
α−1
1 c2

c

c

α− 1
n−α+1 ∼ αc

α−1
1 c2

c
P�R > n� as n→∞;

which by replacing c1 and c2 yields the proof of the case α =m+β, 0 < β < 1.
For integer α = m + 1 by combining the same reasoning as in (7.23) and

(7.25), one can easily obtain

∂m

∂sm
Ee−sC ∼ �−1�mcm1 c2�m+ 1�

∫ ∞
sc1t

1/α
0

u−1e−u du

∼ �−1�mcm1 c2�m+ 1� log�1/s� as s ↓ 0:
(7.27)

Finally, by applying Theorem 7(ii) we obtain the proof for integer α and con-
clude the proof of the expression (3.3) of the theorem.

At this point, we are going to prove that K�α� is monotonically increasing
in α for α > 1, with its limits at 1 and ∞ given by (3.4). Observe that

K�α� =
(

1− 1
α

)[
0

(
1− 1

α

)]α

=
(

1− 1
α

)−α+1[
0

(
2− 1

α

)]α
;

(7.28)
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where in the last equality we have used the identity 0�x+ 1� = x0�x�. Next,
the monotonicity of K�α� will follow if we prove that

logK�α� = −�α− 1� log
(

1− 1
α

)
+ α log 0

(
2− 1

α

)
(7.29)

is monotonically increasing for α > 1. By taking a derivative in (7.29) we
arrive at

d

dα
logK�α� = −1

α
− log

(
1− 1

α

)
+ log 0

(
2− 1

α

)
+ 1
α
ψ�0�

(
2− 1

α

)
;(7.30)

where ψ�k�; k = 0;1; : : :, are Polygamma functions (see [1], equation 6.4.1,
page 260). Furthermore, since ψ�0��1� = −γ (Euler’s constant) and 0�1� = 1,
by letting α→∞ in (7.30) we conclude

d

dα
logK�α� → 0 as α→∞:(7.31)

Fortunately, the second derivative of logK�α� takes the following relatively
simple form:

d2

dα2
logK�α� = − 1

�α− 1�α2
+ 1
α3
ψ�1�

(
2− 1

α

)
:(7.32)

Now, we intend to prove that (7.32) is negative for all α > 1; for this we use
the following claim.

Claim 2. For any α ≥ 1,

ψ�1�
(

2− 1
α

)
<

4α2

�2α− 1�2 :(7.33)

Proof. Note that (7.33) is equivalent to

ψ�1��z� < 4
z2
;(7.34)

for all 1 ≤ z < 2. By using the integral representation given in [1], equation
6.4.1, page 260, of ψ�1��z� we arrive at

ψ�1��z� =
∫ ∞

0

te−zt

1− e−t dt;(7.35)

which by the change of variable t = u/z is equivalent to

ψ�1��z� = 1
z2

∫ ∞
0

ue−u

1− e−u/z du:(7.36)

For 1 ≤ z ≤ 2 the integral in (7.36) is bounded by
∫ ∞

0

ue−u

1− e−u/2du ≤
20
7

∫ 1

0
e−u du+ 20

7

∫ ∞
1
ue−u du = 20

7
�1+ e−1� < 4;
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since 1 − e−u/2 is monotonically increasing in u and 1 − e−u/2 > 7u/20 for
0 ≤ u ≤ 1. This completes the proof of Claim 2.

Next, by replacing (7.33) in (7.32) we arrive at

d2

dα2
logK�α� ≤ 1

α

(
− 1
�α− 1�α +

4
�2α− 1�2

)

= −1
α2�α− 1��2α− 1�2 < 0;

for α > 1. This implies that d�logK�α��/dα is strictly monotonically decreas-
ing (for α > 1), which in combination with (7.31) yields

d

dα
logK�α� > 0 for α > 1:

Thus, logK�α� is strictly monotonically increasing for α > 1, and therefore
the same holds for K�α�.

The limits in (3.4) follow by straightforward application of [1], equation
6.1.34, page 256. This concludes the proof of the theorem. 2

Proof of Lemma 9. Let 1 > h > 0. Then, by applying elementary inequal-
ities, we obtain

0 < 1− 5A�s+ h; t�
5A�s; t�

≤ 1− 5�s+ h; t�
5�s; t�

= 1− exp
(
− log

5�s; t�
5�s+ h; t�

)

≤ log
5�s; t�

5�s+ h; t�(7.37)

=
∞∑
r=1

log
(

1− �1− e−s��1− exp�−qrt��
1− �1− e−s−h��1− exp�−qrt��

)

≤
∞∑
r=1

log
(

1− �1− e−s��1− exp�−qrt��
1− �1− e−s��1− exp�−qrt�� − he−s�1− exp�−qrt��

)
(7.38)

= −
∞∑
r=1

log
(

1− he−s�1− exp�−qrt��
1− �1− e−s��1− exp�−qrt��

)

≤ −
∞∑
r=1

log�1− h�1− exp�−qrt���;(7.39)

where in (7.37), (7.38) we have used 1−e−x ≤ x, x ≥ 0, and in (7.39) we applied
1 − �1 − e−s��1 − exp�−qrt�� ≥ e−s. By using the inequality − log�1 − x� ≤ 2x
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for 0 ≤ x ≤ 0:79, in (7.39) we derive

0 < 1− 5A�s+ h; t�
5A�s; t�

≤ 2h
∞∑
r=1

�1− exp�−qrt��;(7.40)

for all 0 < h < h0 = 0:79. Consequently, combining (7.40) with Lemma 2 yields

0 < 1− 5A�s+ h; t�
5A�s; t�

≤ hθ1t
1/α;(7.41)

for a sufficiently large constant θ1 and all 0 < h < h0. In addition, equations
(7.16), (7.17) and Lemma 2 produce for any fixed s > 0,

5A�s; t� ≤ θ2 exp�−δt1/α�;(7.42)

for some finite θ2 ≡ θ2�s�, δ ≡ δ�s� > 0, and all A = �i1; : : : ; ik�, �A� ≤ `.
Finally, (7.41) and (7.42) give the proof of the lemma for 0 < h ≤ h0 = 0:79
(θ = θ1θ2). The proof of the lemma when h < 0 is completely analogous, and
therefore we leave it out. 2

7.3. Proof of Theorem 4. To prove this result it is enough to show that
E exp�−sC�k�/k� converges to the expression in (4.1) and that E exp�−sCf� →
1 as s ↓ 0 (see [10], Theorem 6.6.3, page 190). From (2.6) one obtains

E exp�−sC�k�/k� = e−s/k
∫ ∞
t=0

∞∑
i=1

�qki �2 exp�−qki t�

×
[ ∏
rx r6=i
�1−�1− e−s/k��1− exp�−qkrt���

]
dt

= e−s/k
∫ ∞
v=0

∞∑
i=1

k�qki �2 exp�−kqki v�

×
[ ∏
rx r6=i
�1−�1− e−s/k��1− exp�−kqkrv���

]
dv;

(7.43)

where the last equality follows by the change of variable v = t/k. First, we
show that for each (fixed) v ≥ 0,

lim
k→∞

∞∑
i=1

k�qki �2 exp�−kqki v� =
∫ ∞

0
q�u�2e−q�u�v du:(7.44)

In order to prove (7.44), observe that the monotonicity of q implies
∞∑
i=1

k�qki �2 exp�−kqki v� ≤
∞∑
i=1

[
q��i− 1�/k�2

k

]
e−q�i/k�v

≤ q�0�2
k
+
∫ ∞

0
q�u�2e−q�u+�2/k��v du

→
∫ ∞

0
q�u�2e−q�u�v du as k→∞;
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where the last asymptotic relation follows by the dominated convergence the-
orem. Analogously, we prove the lower bound and finish the proof of (7.44). In
a completely similar manner, one can prove that for each (fixed) v ≥ 0, s > 0,
and uniformly in i,

∏
rx r6=i
�1− �1− e−s/k��1− exp�−kqkrv���dv

→ exp
(
−s

∫ ∞
0
�1− e−q�u�v�du

)
as k→∞y

(7.45)

we omit the details.
Now, by applying Fatou’s lemma and (7.44) and (7.45) we derive

lim inf
k→∞

E exp
(
−sC�k�

k

)

≥
∫ ∞

0

(∫ ∞
0
q2�u�e−q�u�t du

)
exp

(
−s

∫ ∞
0
�1− e−q�u�t�du

)
dt:

For the upper bound, note that for all i the infinite products in (7.43) are
upper bounded by 1, and therefore, for any v0 > 0,

E exp�−sC�k�/k� ≤ e−s/k
∫ v0

v=0

∞∑
i=1

k�qki �2 exp�−kqki v�

×
[ ∏
rx r6=i
�1− �1− e−s/k��1− exp�−kqkrv���

]
dv

+
∫ ∞
v=v0

∞∑
i=1

k�qki �2 exp�−kqki v�y

(7.46)

by applying Fubini’s theorem in the second integral in (7.46) and using the
monotonicity of q we derive

∫ ∞
v0

∞∑
i=1

k�qki �2 exp�−kqki v�dv =
∞∑
i=1

qki exp�−kqki v0�

≤
∞∑
i=1

q��i− 1�/k�
k

exp
(
−q

(
i

k

)
v0

)

≤ q�0�
k
+
∫ ∞

0
q�u� exp

(
−q

(
u+

(
2
k

))
v0

)
du

→
∫ ∞

0
q�u� exp�−q�u�v0�du as k→∞y

(7.47)

again the last asymptotic relation follows by dominated convergence. By re-
placing (7.47) in (7.46) and by using the dominated convergence theorem in



MOVE-TO-FRONT SEARCHING ALGORITHM 459

the first integral in (7.46) we arrive at

lim sup
k→∞

E exp
(
−sC�k�

k

)
≤
∫ v0

v=0

(∫ ∞
0
q2�u�e−q�u�v du

)

× exp
(
−s

∫ ∞
0
�1− e−q�u�v�du

)
dv

+
∫ ∞

0
q�u� exp�−q�u�v0�du:

(7.48)

Finally, by letting v0 →∞ in (7.48) and by using
∫ ∞

0
q�u� exp�−q�u�v0�du→ 0 as v0 →∞;

we show that E exp�−s�C�k�/k�� converges to the desired limit in (4.1) as
k → ∞. To complete the proof we need to show that E exp�−sCf� → 1 as
s ↓ 0. But, this follows by the monotone convergence theorem and

∫ ∞
0

(∫ ∞
0
q2�u�e−q�u�t du

)
dt = 1;

where the last equality is implied by Fubini’s theorem. 2

7.4. Proofs of Lemmas 3, 4 and 5.

Proof of Lemma 3. By dominated convergence, from the definition of
gf�t� it follows that

g′f�t� =
∫ ∞

0
q�u�e−q�u�t du:(7.49)

First, let us assume that q�u� = c exp�−λuβ�. By changing the variables to
x = t exp�−λuβ� in (7.49), we compute

g′f

(
t

c

)
= c

tβλ1/β

∫ t
0
e−x

(
log

(
t

x

))d
dx;(7.50)

where d = �1/β� − 1 �> −1� as defined. Thus, to complete the proof, it is
enough to show that for d > −1,

∫ t
0
e−x�log�t/x��d dx ∼ �log t�d as t→∞:(7.51)

To finish this, let us decompose the integral above into three integrals,

∫ t
0
e−x�log�t/x��d dx =

∫ 1/ log t

0
+
∫ log t

1/ log t
+
∫ t

log t

= I1�t� + I2�t� + I3�t� as defined.

(7.52)
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Let us first investigate the asymptotic behavior of I2�t�. Assume first that
d ≥ 0. Then,

I2�t� ≤ �log�t log t��d
∫ log t

1/ log t
e−x dx ∼ �log t�d(7.53)

as t→∞; similarly for the lower bound

I2�t� ≥
(

log
(

t

log t

))d ∫ log t

1/ log t
e−x dx ∼ �log t�d(7.54)

as t→∞. For 0 > d > −1 the inequalities in (7.53) and (7.54) will hold with
the inequalities being reversed. Thus, we have proved that

I2�t� ∼ �log t�d as t→∞:(7.55)

For I1�t� we have the following set of estimates:

I1�t� ≤
∫ 1/ log t

0

(
log

(
t

x

))d
dx

= t
∫ ∞

log�t log t�
ude−u du

∼ t�log�t log t��d 1
t log t

= o��log t��d as t→∞;

(7.56)

where the asymptotic equivalence follows from [1], equation (6.5.32), page 263.
Similarly, one can easily prove that

I3�t� = o��log t�d� as t→∞:(7.57)

Finally, by combining (7.55)–(7.57) we conclude the proof of the case q�u� =
c exp�−λuβ�.

For the general case q�u� ∼ c exp�−λuβ� as u → ∞, for any ε > 0 we
can choose u0, such that for all u > u0, �1 − ε�c exp�−λuβ� ≤ q�u� ≤ �1 +
ε�c exp�−λuβ�. Using this in conjunction with the inequality xe−xt ≤ �1/t�e−1,
x ≥ 0, and the case q�u� = c exp�−λuβ�, we obtain

g′f�t� ≤
u0e

−1

t
+ 1+ ε

1− ε
∫ ∞

0
�1− ε�c exp�−λuβ� exp�−t�1− ε�c exp�−λuβ��du

∼ 1+ ε
1− ε

�log��1− ε�ct��1/β−1

tβλ1/β
as t→∞:

Similarly, one can obtain the lower bound. Finally by passing ε→ 0 we obtain
the conclusion of the theorem. 2

Proof of Lemma 4. By assuming that q�u� = c exp�−λuβ�, and by chang-
ing the variable of integration to x = t exp�−λuβ� in (4.2), as in the proof of
Lemma 3, we compute

ff

(
t

c

)
= c2

t2βλ1/β

∫ t
0
xe−x

(
log

(
t

x

))d
dx;(7.58)
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where d = �1/β�−1 �> −1� as defined. Thus, to complete the proof it is enough
to show that for d > −1,

∫ t
0
xe−x�log�t/x��d dx ∼ �log t�d as t→∞:(7.59)

To finish this, let us decompose the integral above into three integrals:

∫ t
0
xe−x�log�t/x��d dx =

∫ 1/ log t

0
+
∫ log t

1/ log t
+
∫ t

log t

= I1�t� + I2�t� + I3�t� as defined:

(7.60)

The arguments from here are exactly the same as in the proof of Lemma 3.
We skip the details. 2

Proof of Lemma 5. It is easy to compute that

∫ t
0

1− e−x
x

(
log

(
t

x

))d
dx− �log t�d+1

d+ 1

=
∫ 1

0

1− e−x
x

(
log

(
t

x

))d
dx

−
∫ t

1

e−x

x

(
log

(
t

x

))d
dx

= I1�t� − I2�t� as defined.

(7.61)

By changing the variable of integration to u = t/x in I1�t� we obtain

I1�t� =
∫ ∞
t

1− e−t/u
u

�log u�d du;

which can be decomposed in

I1�t� =
∫ t log2 t

t

1− e−t/u
u

�log u�d du+
∫ ∞
t log2 t

1− e−t/u
u

�log u�d du

= I11�t� + I12�t� as defined.

(7.62)

Consider first the case d ≥ 0. It is easy to see that

I11�t� ≤ �log�t log2 t��d
∫ t log2 t

t

1− e−t/u
u

du

= �log�t log2 t��d
∫ 1

1/�log2 t�

1− e−x
x

dx

∼ �log t�d
∫ 1

0

1− e−x
x

dx as t→∞:

(7.63)
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Similarly, one gets the lower bound

I11�t� ≥ �log t�d
∫ 1

1/�t log2 t�

1− e−x
x

dx

∼ �log t�d
∫ 1

0

1− e−x
x

dx as t→∞:
(7.64)

Also, by using the inequality 1− e−x ≤ x, for x ≥ 0, we obtain

I12�t� ≤ t
∫ ∞
t log2 t

1
u2
�log u�d du

= t
∫ ∞

log�t log2 t�
xde−x dx

∼ t�log�t log2 t��d exp�− log�t log2 t�� as t→∞
= o��log t�d� as t→∞y

(7.65)

the asymptotics in (7.65) follow from [1], page 263, equation 6.5.32. Next, we
investigate

I2�t� =
∫ log t

1

e−x

x

(
log

(
t

x

))d
dx+

∫ t
log t

e−x

x

(
log

(
t

x

))d
dx

= I21�t� + I22�t� as defined:

(7.66)

Here, the asymptotic behavior of I21�t� is determined by

I21�t� ≤ �log t�d
∫ log t

1

e−x

x
dx ∼ �log t�d

∫ ∞
1

e−x

x
dx;(7.67)

and

I21�t� ≥
(

log
(

t

log t

))d ∫ log t

1

e−x

x
dx ∼ �log t�d

∫ ∞
1

e−x

x
dx:(7.68)

The estimate for I22�t� is given by

I22�t� ≤
(

log
(

t

log t

))d 1
t log t

= o��log t�d� as t→∞:(7.69)

Finally, by combining equations (7.61)–(7.69), it follows that

I1�t� − I2�t� ∼ �log t�d
(
−
∫ ∞

1

e−x

x
+
∫ 1

0

1− e−x
x

dx

)
as t→∞

= γ�log t�d;
(7.70)

where the last equality follows from [17], page 946, equation 8.367 (12). This
completes the proof for the case d ≥ 0.

For the case −1 < d < 0, the inequalities in (7.63) and (7.64) are going to
be reversed, but the asymptotic behavior of I11 is still going to be the same.
Since (7.65) still holds, I1�t� will behave asymptotically the same as for the
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d ≥ 0 case. Similarly, the inequalities in (7.67) and (7.68) are going to be
reversed, but the asymptotic behavior of I21�t� is unchanged. The asymptotic
upper bound for I22�t� is given by

I22�t� ≤
1
t

∫ t
log�t�

1
x

(
log

(
t

x

))d
dx

= 1
t

∫ log �t/ log t�

0
ud du

= 1
t

�log�t/ log t��d+1

d+ 1
= o��log t�d� as t→∞:

This implies that I2�t� will have the same asymptotics as in the d ≥ 0 case,
and therefore (7.70) holds. This completes the proof of the lemma. 2
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[17] Gradshteyn, I. S. and Ryzhik, I. M. (1967). Table of Integrals Series and Products. Academic
Press, New York.

[18] Hendricks, W. J. (1972). The stationary distribution of an interesting Markov chain.
J. Appl. Probab. 9 231–233.

[19] Irani, S., Karlin, A. R. and Philips, S. (1996). Strongly competitive algorithms for paging
with locality of reference. SIAM J. Comput. 25 477–497.
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