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c Institut Préparatoire aux Études d’Ingénieur de Nabeul, 8000 Nabeul, Tunisia.
E-mail: Neji.Bettaibi@ipein.rnu.tn

Received April 18, 2005; Accepted in Revised Form June 7, 2005

Abstract

This paper aims to study the asymptotic approximation of some functions defined
by the q-Jackson integrals, for a fix q ∈]0, 1[. For this purpose, we shall attempt to
extend the classical methods by giving their q-analogues. In particular, a q-analogue
of the Watson’s lemma is discussed and new asymptotic expansions of the q−jα Bessel
function and of the q-complementary error function are established.

1 Introduction

The notion of asymptotic expansion was introduced by Poincaré in the 19th century and
developed by both mathematicians and physicists, such as Riemann, Laplace, Stokes and
Kelven, etc. So, different definitions and different notations were introduced. In this paper
we will use the Poincaré’s definition and the Landau’s notations. This concept enables
one to obtain numerical as well as qualitative results for many problems. When modeling
physical phenomena, it is often useful to know the asymptotic behavior of functions defined
by integrals. For example, many special functions have integral representations, as they
are solutions of various kinds of differential equations. Also, if we use Laplace, Fourier or
Hankel transformations to solve differential equations, we are often left with an integral
representation of the solution. In classical analysis, many techniques and methods were
introduced to derive asymptotic expansions of such functions. In this paper, we shall
attempt to extend the classical theory and we shall try to derive asymptotic expansions
of functions defined with the help of the q-Jackson integral. We are not in a situation to
claim that all our results are new, but the methods used are direct and constructive, and
have a good resemblance with the classical ones.

This paper is organized as follows: in Sec. 2, we present some preliminaries results
and notations that will be useful in the sequel. In Sec. 3, we discuss the method of q-
integration by parts, through three examples. In Sec. 4, we state the asymptotic behavior
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of the Laplace q-integral and we give the q-analogue of the Watson’s lemma. In Sec. 5,
we discuss the asymptotic behavior of the Fourier q-integral. Finally, in Sec. 6, we discuss
the asymptotic expansion of the third q-Bessel function and considering the asymptotic
behavior at 0 of a function f , we give an asymptotic expansion of its q-Hankel transform
and q-Cosine Fourier transform.

2 Notation and preliminaries

Throughout this paper, we will fix q ∈]0, 1[. We recall some usual notions and notations
used in the q-theory (see [8] and [11]).

Let a ∈ C, the q-shifted factorial are defined by

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1 − aqk), n = 1, 2, . . . (2.1)

(a; q)∞ = lim
n→+∞

(a; q)n =

∞
∏

k=0

(1 − aqk). (2.2)

We also denote

(a1, a2, . . . , ap; q)n = (a1; q)n(a2; q)n . . . (ap; q)n, n = 0, 1, 2, 3, . . .∞, (2.3)

[x]q =
1 − qx

1 − q
, x ∈ C (2.4)

and

[n]q! =
(q; q)n

(1 − q)n
, n ∈ N. (2.5)

The q-derivative Dqf of a function f is given by

(Dqf)(x) =
f(x) − f(qx)

(1 − q)x
, if x 6= 0, (2.6)

(Dqf)(0) = f ′(0) provided f ′(0) exists. If f is differentiable then (Dqf)(x) tends to f ′(x)
as q tends to 1.

For n ∈ N, we note

D1
q = Dq and Dn

q = Dq(D
n−1
q ). (2.7)

We remark that

Dq(f.g)(x) = g(x)Dqf(x) + f(qx)Dqg(x) (2.8)

and if f is n times continuously differentiable near 0, then (see also [3]),

Dn
q f(0) =

[n]q!

n!
f (n)(0). (2.9)
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The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by (see [10])

∫ a

0
f(x)dqx = (1 − q)a

∞
∑

n=0

f(aqn)qn, (2.10)

∫ ∞

0
f(x)dqx = (1 − q)

∞
∑

n=−∞

f(qn)qn, (2.11)

provided the sums converge absolutely.

The q-Jackson integral in a generic interval [a, b] is given by (see [10])

∫ b

a

f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx. (2.12)

The improper integral is defined in the following way (see [13])

∫ ∞

A

0
f(x)dqx = (1 − q)

∞
∑

n=−∞

f

(

qn

A

)

qn

A
. (2.13)

We remark that for n ∈ Z, we have

∫ ∞

qn

0
f(x)dqx =

∫ ∞

0
f(x)dqx. (2.14)

The q-integration by parts is given for suitable functions f and g by (see [1], [11])

∫ b

a

g(x)Dqf(x)dqx = f(b)g(b) − f(a)g(a) −
∫ b

a

f(qx)Dqg(x)dqx. (2.15)

Definition 1. A function f is q-integrable on [0,∞[ if the series
∑

n∈Z

qnf(qn) converges

absolutely.

We write L1(Rq,+) the set of all functions that are q-integrable on [0,∞[, where Rq,+

is the set:

Rq,+ = {qn : n ∈ Z}. (2.16)

Proposition 1. (see [1], [3] or [11]) The q-analogue of the integration theorem by change
of variable is given when u(x) = αxβ , α ∈ C and β > 0 as follows

∫ u(b)

u(a)
f(u)dqu =

∫ b

a

f(u(x))D
q

1
β
u(x)d

q
1
β
x. (2.17)

The q-analogues of the exponential function (see [8], [11]) are given by

Ez
q =0 ϕ0(−;−; q,−(1 − q)z) =

∞
∑

n=0

q
n(n−1)

2
zn

[n]q!
= (−(1 − q)z; q)∞, (2.18)
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ezq =1 ϕ0(0;−; q, (1 − q)z) =
∞
∑

n=0

zn

[n]q!
=

1

((1 − q)z; q)∞
. (2.19)

For the convergence of the second series, we need | z |< (1 − q)−1; however, because
of its product representation, eq is continuable to a meromorphic function on C and has
simple poles at z = q−n(1 − q)−1, n ∈ N. They satisfy the relations (see [11])

Dqe
z
q = ezq , DqE

z
q = Eqz

q

and

E−z
q ezq = ezqE

−z
q = 1.

Jackson [10] defined the q-analogue of the Gamma function by

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, x 6= 0,−1,−2, . . . . (2.20)

It is well-known that it satisfies for ℜ(x) > 0,

Γq(x+ 1) = [x]qΓq(x), Γq(1) = 1 and lim
q→1−

Γq(x) = Γ(x). (2.21)

Moreover, it has the q-integral representations (see [1])

Γq(s) =

∫ 1
1−q

0
ts−1E−qt

q dqt =

∫ ∞

1−q

0
ts−1E−qt

q dqt. (2.22)

Now, we give a new proof of the following result due to De Sole and Kac (see [1]).

Proposition 2. We have

Γq(s) = Kq(s)

∫ ∞

1−q

0
xs−1e−x

q dqx, ℜ(s) > 0, (2.23)

where

Kq(t) =
(−q,−1; q)∞

(−qt,−q1−t; q)∞
, ℜ(s) > 0. (2.24)

Proof. Using the Ramanujan’s summation formula for 1ψ1(a, b; q, z) (see [8] and [11]) and
simple calculus, we obtain for s ∈ C, with ℜ(s) > 0,

∫ ∞

1−q

0
ts−1e−t

q dqt = (1 − q)
∞
∑

n=−∞

e
−

qn

1−q
q

(

qn

1 − q

)s

= (1 − q)1−s
∞
∑

n=−∞

qns

(−qn; q)∞

=
(1 − q)1−s

(−1; q)∞

∞
∑

n=−∞

(−1; q)nq
ns =

(1 − q)1−s

(−1; q)∞
1ψ1(−1; 0; q, qs)

=
(1 − q)1−s

(−1; q)∞

(q,−qs,−q1−s; q)∞
(−q, qs; q)∞

=
Γq(s)

Kq(s)
,

which achieves the proof. �
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Remark. Additionally, if log(1 − q)(log(q))−1 ∈ Z, we obtain

Γq(s) = Kq(s)

∫ ∞

0
xs−1e−x

q dqx =

∫ ∞

0
ts−1E−qt

q dqt, ℜ(s) > 0, (2.25)

where log(x) means loge(x).

We recall that the q-hypergeometric function 1ϕ1 satisfies the following properties (see
[6] and [14])

1. For all w, z ∈ C, we have

(w, q)∞ 1ϕ1(0;w; q; z) = (z, q)∞ 1ϕ1(0; z; q;w). (2.26)

2. For n ∈ N and z ∈ C, we have

(q1−n; q)∞ 1ϕ1(0; q
1−n; q; z) = (−1)nq

n(n−1)
2 zn(qn+1; q)∞ 1ϕ1(0; q

n+1; q; qnz). (2.27)

3. Both sides of the above equation are majorized by

q
n(n−1)

2 | z |n (− | z |; q)∞(−q; q)∞. (2.28)

We recall the definition of the q-trigonometric functions q-cosine and q-sine (see [6])

cos(x; q2) = 1ϕ1

(

0, q; q2, (1 − q)2x2

)

=

∞
∑

n=0

(−1)nqn(n−1) x2n

[2n]q!
(2.29)

and

sin(x; q2) = x 1ϕ1

(

0, q3; q2, (1 − q)2x2

)

=

∞
∑

n=0

(−1)nqn(n−1) x2n+1

[2n+ 1]q!
. (2.30)

Using the properties of 1ϕ1 mentioned above, we can easily prove (see [6]) that q-cosine
and q-sine are majorized by ((q, q)2∞)−1 and tend to 0 as x tends to ∞. Now, we can recall
the q-analogue of the Riemann-Lebesgue lemma using the fact that for x ∈ R,

| eixq |2≤ 1

1 + (1 − q)2x2
. (2.31)

Lemma 1. If f is q-integrable on [0,+∞[, then

lim
x→+∞

∫ ∞

0
f(t)eixt

q dqt = lim
x→+∞

∫ ∞

0
f(t) cos(xt, q2)dqt

= lim
x→+∞

∫ ∞

0
f(t) sin(xt, q2)dqt = 0. (2.32)

The second and the third equalities are proved in [6], but the first equality seems new
and can be proved in the same way, using (2.31).



Asymptotic Approximations in Quantum Calculus 591

3 q-Integration by parts’ method

The method of q-integration by parts is a simple technique for deriving asymptotic expan-
sions of definite q-integral. Each q-integration produces a term expansion, and the error
term is given explicitly as q-integral. The following examples can clarify this idea.

Example 1. q-Complementary error function

We define the q-Complementary error function as

Err(x; q) =

∫ ∞

x

e−t2

q2 dqt, (3.1)

and we state the following proposition:

Proposition 3. For all n ∈ N, we have

Err(x; q) =
e−x2

q2

[2]qx
+

n
∑

k=1

(−1)kq−k(2k+1) [3]q[5]q . . . [2k − 1]q

[2]k+1
q

e
−q2kx2

q2

x2k+1
+ o

(

x−(2n+1)
)

,

as x→ +∞. (3.2)

Proof. Using the q-integration by parts rule, we obtain

∫ ∞

x

e
−q2nt2

q2

t2n
dqt =

1

q2n[2]q

e
−q2nx2

q2

x2n+1
+

[−(2n+ 1)]q
q2n[2]q

∫ ∞

x

e
−q2(n+1)t2

q2

t2(n+1)
dqt. (3.3)

Then, for all n ∈ N, we obtain

∫ ∞

x

e−t2

q2 dqt =
e−x2

q2

[2]qx
+

1

[2]qx

n
∑

k=1

(−1)kq−k(2k+1) [3]q[5]q . . . [2k − 1]q
[2]kq

e
−q2kx2

q2

x2k
+

+ (−1)n+1q−(n+1)(2n+1) [3]q . . . [2n+ 1]q

[2]n+1
q

∫ ∞

x

e
−q2(n+1)t2

q2

t2(n+1)
dqt

=
e−x2

q2

[2]qx
+

1

[2]qx

n
∑

k=1

(−1)kq−k(2k+1) [3]q[5]q . . . [2k − 1]q
[2]kq

e
−q2kx2

q2

x2k
+

+ o

(

1

x2n+1

)

.

(3) is then proved. �

Example 2. The q − jα Bessel function

For α > −1
2 , the q−jα Bessel function has the following q-integral representation of Mehler

type (see [7])

jα(x; q2) = C(α; q2)

∫ 1

0
f0(t) cos(xt; q2)dqt, (3.4)

where f0(t) =
(t2q2; q2)∞

(t2q2α+1; q2)∞
and C(α; q2) =

(1+q)Γq2 (α+1)

Γ
q2 ( 1

2
)Γ

q2 (α+ 1
2
)
.

We prove the following result.
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Proposition 4. For n ∈ N, we put fn = Dn
q f0. Then for all n ∈ N

∗ and x ∈ Rq,+, we
have

jα(x; q2) = C(α; q2)

n−1
∑

k=0

(−1)k

qk2−2kx2k

[

f2k(1)
sin(xqk; q2)

xqk
+ qf2k+1(1)

cos(xqk; q2)

(xqk)2

]

+o
(

x−2n
)

.

(3.5)

Proof. It is easy to see that f0 is an even function and infinitely differentiable on a

neighborhood of 0. Then f2k+1(0) =
[2k+1]q!
(2k+1)! f

(2k+1)
0 (0) = 0, k = 0,1,2,. . . .

Two q-integrations by parts show for k = 0,1,2,. . . ,
∫ 1

0
f2k(t) cos(xqkt; q2)dqt = f2k(1)

sin(xqk; q2)

xqk
+ qf2k+1(1)

cos(xqk; q2)

(xqk)2
−

− 1

x2q2k−1

∫ 1

0
f2(k+1)(t) cos(xqk+1t; q2)dqt.

Thus by induction, we obtain for n = 0,1,2,. . . ,

∫ 1

0
f0(t) cos(xt; q2)dqt =

n−1
∑

k=0

(−1)k

qk2−2kx2k

[

f2k(1)
sin(xqk; q2)

xqk
+ qf2k+1(1)

cos(xqk; q2)

(xqk)2

]

+
(−1)n

qn2−2nx2n

∫ 1

0
f2n(t) cos(xqnt; q2)dqt.

As mentioned above,
∫ 1
0 f2n(t) cos(xqnt; q2)dqt tends to 0 as x tends to +∞. This completes

the proof. �

Example 3. Another type of q-integral to which the method of q-integration by parts
can be applied is the q-integral

F (x) =

∫ b

a

f(t)eixt
q dqt, (3.6)

where a, b are reals and f is an n-times continuously q-differentiable function in [a, b]. By
successive q-integration by parts, we have

F (x) =
n−1
∑

k=0

q−
k(k−1)

2

(

i

x

)k+1
[

Dk
q f(a)eixqka

q −Dk
q f(b)eixqkb

q

]

+

+ q−
n(n−1)

2

(

i

x

)n ∫ b

a

Dn
q f(t)eixqnt

q dqt.

On the other hand, the q-Riemann-lebesgue lemma gives
(

i

x

)n ∫ b

a

Dn
q f(t)eixqnt

q dqt = o(x−n) as x→ +∞,

so

F (x) =
n−1
∑

k=0

q−
k(k−1)

2

(

i

x

)k+1
[

Dk
q f(a)eixqka

q −Dk
q f(b)eixqkb

q

]

+ o(x−n). (3.7)
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4 Laplace q-integrals

In this section, we define the q-integral of Laplace type by

F (x) =

∫ ∞

0
f(t)exϕ(t)

q dqt, (4.1)

where ϕ is a real function and we assume x > 0. Typically x is a large parameter and we
are interested in the asymptotic behavior of F (x) as x→ +∞.

Proposition 5. Let f be a function defined on [0,∞[, continuous at 0 and verifies for
some α > 0 and n integer,

∫ ∞

0
tn | f(t) | e−αt

q dqt <∞,

then

lim
x→+∞

xn+1

∫ ∞

0
tnf(t)e−xt

q dqt =
[n]q!

q
n(n+1)

2

f(0). (4.2)

Proof. First, by q-integration by parts, we have for all n ∈ N and x > 0,

∫ ∞

0
tne−xt

q dqt =
[n]q!

q
n(n+1)

2

1

xn+1
.

Then (4.2) is true for f constant, so it is sufficient to prove the result when f(0) = 0. For
k ∈ N, we put xk = q−k(1− q)−1 and we fix r ∈ N such that xr ≥ α. Let ε > 0, since f is
continuous at 0, there exists p0 ∈ N such that p0 ≥ r and

| f(qp) |≤ ε, p ≥ p0.

For k ≥ p0, we have

|
∫ ∞

0
tnf(t)e−xkt

q dqt |≤ (1 − q)

p0−1
∑

p=−∞

q(n+1)pe−xkqp

q | f(qp) | +

+(1 − q)

+∞
∑

p=p0

q(n+1)pe−xkqp

q | f(qp) | .

The second sum of the right hand side of the above inequality is majorized by

ε

∫ ∞

0
tne−xkt

q dqt =
[n]q!

q
n(n+1)

2

ε

xn+1
k

. (4.3)

The definition of xr leads to

∫ ∞

0
tn | f(t) | e−xrt

q dqt = (1 − q)
∞
∑

p=−∞

q(n+1)p | f(qp) |
(−qp−r; q)∞

<∞. (4.4)
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And the properties of the q-shifted factorial give for all p ≤ p0,

(−xk(1 − q)qp; q)∞ = (−qp−r; q)∞(−qp−k; q)k−r (4.5)

≥ (−qp−r; q)∞(−qp0−k; q)k−r (4.6)

≥ (−qp−r; q)∞q
−

(k−p0)(k−p0+1)
2 . (4.7)

Together (4.4) and (4.7) yield

(1 − q)

p0−1
∑

p=−∞

q(n+1)pe−xkqp

q | f(qp) | = (1 − q)

p0−1
∑

p=−∞

q(n+1)p | f(qp) |
(−(1 − q)xkqp; q)∞

≤ q
(k−p0)(k−p0+1)

2

∫ ∞

0
tn | f(t) | e−xrt

q dqt.

Then

xn+1
k (1 − q)

p0−1
∑

p=−∞

q(n+1)pe−xkqp

q | f(qp) |→ 0 as k → +∞. (4.8)

Again, (4.3) and (4.8) yield: ∃k0 ∈ N such that ∀k ≥ k0, we have

| xn+1
k

∫ ∞

0
tnf(t)e−xkt

q dqt |≤
(

1 +
[n]q!

q
n(n+1)

2

)

ε.

Thus,

lim
k→+∞

xn+1
k

∫ ∞

0
tnf(t)e−xkt

q dqt = 0.

Finally, since for all x ≥ 1
1−q

, there exists k ∈ N such that

xk =
q−k

1 − q
≤ x ≤ xk+1 = q−1xk,

then,

lim
x→+∞

xn+1

∫ ∞

0
tnf(t)e−xt

q dqt = 0.

The formula (4.2) is then proved. �

Using the q-Taylor formula (see [2], [3] and [11]) and the above result, we obtain the
following

Corollary 1. If f is a n-times continuously q-differentiable function on [0,+∞[, satisfying
for some α > 0, the following condition

∫ ∞

0
e−αt
q | f(t) | dqt <∞,

then
∫ ∞

0
e−xt
q f(t)dqt =

n
∑

k=0

Dk
q f(0)

q
k(k+1)

2

1

xk+1
+ o

(

1

xn+1

)

.
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Proof. According to the q-Taylor formula , we have

f(t) =

n
∑

k=0

Dk
q f(0)

[k]q!
tk + tng(t),

where g(t) = 1
[n−1]q!

∫ 1
0 (qu; q)(n−1)

[

Dn
q f(tu) −Dn

q f(0)
]

dqu. It is easy to see that g is

continuous on [0,+∞[, g(0) = 0 and
∫∞

0 tne−αt
q | g(t) | dqt < ∞. Then the previous

proposition shows

∫ ∞

0
e−xt
q tng(t)dqt = o

(

1

xn+1

)

.

After a simple calculus, we obtain

∫ ∞

0
e−xt
q f(t)dqt =

n
∑

k=0

Dk
q f(0)

[k]q!

[k]q!

q
k(k+1)

2

1

xk+1
+ o

(

1

xn+1

)

=
n
∑

k=0

Dk
q f(0)

q
k(k+1)

2

1

xk+1
+ o

(

1

xn+1

)

.

�

In the two following results, we study the important case ϕ(t) = −t2 and we suppose that
1 − q2 ∈ Rq2,+.

Proposition 6. Let f be a function defined on [0,+∞[, continuous at 0 and satisfies

∫ ∞

0
tn | f(t) | e−αt2

q2 dqt <∞,

for some α > 0 and n integer, then

lim
x→+∞

x
n+1

2

∫ ∞

0
tnf(t)e−xt2

q2 dqt =
1

q + 1

Γq2(n+1
2 )

Kq2(n+1
2 )

f(0), in Rq2,+. (4.9)

Proof. The change of variables rule gives for x ∈ Rq2,+,

∫ ∞

0
e−xt2

q2 tndqt =
1

1 + q

∫ ∞

0
e−xt
q2 t

n−1
2 dq2t

=
1

x
n+1

2

1

1 + q

Γq2(n+1
2 )

Kq2(n+1
2 )

,

where Kq2 is given by (2.24). The rest of the proof can be obtained in the same way of
Proposition 5. �

Similarly to Corollary 1, the previous proposition and the q-Taylor formula give the fol-
lowing result.
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Corollary 2. If f is n-times continuously q-differentiable on [0,+∞[, satisfying the fol-
lowing condition

∫ ∞

0
e−αt2

q2 | f(t) | dqt <∞,

for some α > 0, then for all x ∈ Rq2,+,

∫ ∞

0
e−xt2

q2 f(t)dqt =
1

1 + q

n
∑

k=0

Γq2(k+1
2 )

Kq2(k+1
2 )

Dk
q f(0)

[k]q!

1

x
k+1
2

+ o

(

1

x
n+1

2

)

.

The following proposition is a q-analogue of the Watson lemma and it is a simple and
useful result to derive asymptotic expansion of Laplace q-integrals.

Proposition 7. Let f be a function defined on [0,+∞[ having the asymptotic expansion

f(t) ∼
∞
∑

n=0

ant
n+λ−µ

µ , as t→ 0, (4.10)

with λ > 0 and µ > 0. Then, provided the q-integral converges for all sufficiently large x,
we have

∫ ∞

0
f(t)e−xt

q dqt ∼
∞
∑

n=0

Γq(
n+λ

µ
)

Kq(
n+λ

µ
)

an

x
n+λ

µ

, as x→ +∞ in Rq,+. (4.11)

Proof. For a positive integer N and a positive real t, we put

fN (t) = f(t) −
N−1
∑

n=0

ant
n+λ−µ

µ .

Since fN (t) = O
(

t
N+λ−µ

µ

)

, there exist constants CN and tN = qr ∈ Rq,+ such that

| fN (t) |≤ CN t
N+λ−µ

µ , for0 < t < tN .

Then for x ∈ Rq,+,

|
∫ tN

0
fN (t)e−xt

q dqt | ≤ CN

∫ tN

0
t

N+λ
µ

−1
e−xt
q dqt (4.12)

≤ CN

Γq(
N+λ

µ
)

Kq(
N+λ

µ
)

1

x
N+λ

µ

. (4.13)

By hypothesis,
∫∞

0 | f(t) | e−xt
q dqt exists for all sufficiently large x, let X = q−p(1 − q)−1

such an element. So, for all x = q−k(1 − q)−1 ∈ Rq,+, with k ≥ max(r, p), the q-integral
∫∞

0 | fN (t) | e−xt
q dqt exists and we have

∫ ∞

tN

| fN(t) | e−xt
q dqt = (1 − q)

r
∑

n=−∞

| fN (qn) | e−xqn

q qn

= (1 − q)
r
∑

n=−∞

| fN (qn) | qn

(−qn−k; q)∞
.
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Since for all integer n ≤ r, we have

(−qn−k; q)∞ = (−qn−p; q)∞(−qn−k; q)k−p

≥ (−X(1 − q)qn; q)∞(−qr−k; q)k−p

≥ (−X(1 − q)qn; q)∞q
−

(k−r)(k−r+1)
2

≥ (−X(1 − q)qn; q)∞q
− k2

2 q−kr

≥ (−X(1 − q)qn; q)∞ [x(1 − q)]r q
− 1

2

(

log(1−q)x
log q

)2

,

then
∫ ∞

tN

| fN(t) | e−xt
q dqt ≤ [(1 − q)x]−rq

1
2

(

log(1−q)x
log q

)2 ∫ ∞

0
| fN (t) | e−Xt

q dqt. (4.14)

Together (4.13) and (4.14) yield

|
∫ ∞

0
fN(t)e−xt

q dqt |≤ CN

Γq(
N+λ

µ
)

Kq(
N+λ

µ
)

1

x
N+λ

µ

+

+[(1 − q)x]−rq
1
2

(

log(1−q)x
log q

)2 ∫ ∞

0
| fN (t) | e−Xt

q dqt.

Which, since q
1
2

(

log(1−q)x
log q

)2

= o(x−v) as x→ +∞ for any positive v, establishes the asymp-
totic expansion for F (x). �

By application of the change of variables rule, we obtain

Corollary 3. If f is a function defined on [0,+∞[, having the following asymptotic ex-
pansion

f(t) ∼
∞
∑

n=0

ant
n, as t→ 0

then, for α > 0 and β > 0, we have provided the q-integral converges for all sufficiently
large x

∫ ∞

0
tα−1f(t)e−xtβ

q d
q

1
β
t ∼

[

1

β

]

q

∞
∑

n=0

an

Γq(
n+α

β
)

Kq(
n+α

β
)

1

x
n+α

β

, as x→ +∞ in Rq,+.

5 Fourier q-integrals

The q-integral of Fourier type has the form

F (x) =

∫ β

0
f(t)eixϕ(t)

q dqt, (5.1)

where ϕ is a real function and we assume x to be a large parameter, and we are interested
in the asymptotic behavior of F (x) as x → +∞. We start this section by the following
useful result, in which we suppose that 1 − q ∈ Rq,+:
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Lemma 2. If ℜ(r) > 0, then

∫ ∞

0
tr−1eitq dqt = Γq(r)

1 + i

(−1; q2)∞

(

iqr,−iq1−r; q
)

∞
. (5.2)

Proof. Using the Ramanujan’s sum for 1ψ1(a; b; q, z) (see [8] and [11]),
∫ ∞

0
tr−1e

it
1−q
q dqt = (1 − q)

∞
∑

n=−∞

qrn

(iqn; q)∞
=

1 − q

(i; q)∞

∞
∑

n=−∞

(i; q)nq
rn

=
1 − q

(i; q)∞
1ψ1(i; 0; q, q

r) =
1 − q

(i; q)∞

(q, iqr,−iq1−r; q)∞
(qr,−iq; q)∞

=
(1 − q)(1 + i)

(−1; q2)∞

(q; q)∞
(qr; q)∞

(iqr,−iq1−r; q)∞.

Since 1 − q ∈ Rq,+, the change of variable u = t(1 − q)−1 completes the proof. �

In the two following results, we study the case ϕ(t) = t2 and we suppose that 1−q ∈ Rq,+.

Proposition 8. Let β ∈ R
q

1
2 ,+

, then

∫ β

0
eixt2

q d
q

1
2
t = Γq

(

1

2

)

1 + i

1 + q

(−q; q2)∞
(−1; q2)∞

1√
x

+O

(

1

x

)

.

Proof. The change of variable t = u
1
2 leads to

∫ β

0
eixt2

q d
q

1
2
t =

1

1 + q

∫ β2

0
eixu
q

dqu√
u

=
1

1 + q

∫ ∞

0
eixu
q

dqu√
u
− 1

1 + q

∫ ∞

β2

eixu
q

dqu√
u
.

The proof will be completed by using Lemma 2 and the following result: for a sufficiently
large x ∈ Rq,+, we have

|
∫ ∞

x

eiuq
dqu√
u

|≤
[2]

q
1
2√
x
.

To prove this result let r ∈ N such that 1− q = qr and let x = q−N with N > 2r. We have

∫ ∞

x

eiuq
dqu√
u

= (1 − q)

∞
∑

n=N

eiq
−n

q q−
n
2 .

For n ≥ N , we have

| eiq−n

q |2 =
1

∏∞
k=0

[

1 + q2(k−n)(1 − q)2
] =

1
∏n−1

k=0

[

1 + q2(k−n)(1 − q)2
]

1

(−(1 − q)2; q2)∞

=
qn2+n

(1 − q)2n (−q2(1 − q)−2; q2)n (−(1 − q)2; q2)∞

≤ qn2+n

(1 − q)2n
.
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Then for all n ≥ N , we have

| eiq−n

q q−
n
2 |2≤ qn2

(1 − q)2n
= qn(n−2r) ≤ qn

and

| eiq−n

q q−
n
2 |≤ q

n
2 .

Thus

|
∫ ∞

x

eiuq
dqu√
u

|= (1 − q) |
∞
∑

n=N

eiq
−n

q q−
n
2 |≤ (1 + q

1
2 )q

N
2 =

[2]
q

1
2√
x
.

Finally, the change of variable t = xu yields

∫ ∞

β2

eixu
q

dqu√
u

=
1√
x

∫ ∞

xβ2

eitq
dqt√
t
.

Then, for sufficiently large x ∈ Rq,+,

|
∫ ∞

β2

eixu
q

dqu√
u

|≤
[2]

q
1
2

βx
.

�

Proposition 9. Let β ∈ R
q

1
2 ,+

and f be a function two times continuously differentiable

in [0, β]. Then for x ∈ Rq,+,

∫ β

0
f(t)eixt2

q d
q

1
2
t = Γq

(

1

2

)

1 + i

1 + q

(−q; q2)∞
(−1; q2)∞

f(0)√
x

+O

(

1

x

)

.

Proof. We can write

f(t) = f(0) + tg(t)

with g is continuously differentiable in [0, β]. Then

∫ β

0
f(t)eixt2

q d
q

1
2
t = f(0)

∫ β

0
eixt2

q d
q

1
2
t+

∫ β

0
tg(t)eixt2

q d
q

1
2
t.

Since, teixt2

q =
[

1
2

]

q
1
ix
D

q
1
2

(

eixt2

q

)

, a q-integration by parts gives

∫ β

0
tg(t)eixt2

q d
q

1
2
t =

[

1

2

]

q

1

ix

[

eixβ2

q g(β) − g(0) −
∫ β

0
D

q
1
2
(g)(t)eixqt2

q d
q

1
2
t

]

= O

(

1

x

)

.

Which completes the proof. �
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Let us now assume that f has an asymptotic expansion of the form

f(t) ∼
∞
∑

k=0

akt
λk−1, as t → 0, (5.3)

where ℜ(λ0) > 0 and ℜ(λk+1) > ℜ(λk) for k = 0, 1, 2, . . . .
We suppose that f satisfies the following conditions:

1. f is m-times continuously q-differentiable in [0,+∞[, m ∈ N
∗.

2. For all j ∈ {0, 1, 2, . . . ,m}, D(j)
q f is q-integrable on [0,+∞[.

We state the following result

Theorem 1. Let n be the smallest nonnegative integer such that ℜ(λn) > m. Then

∫ ∞

0
f(t)eixt

q dqt =

n−1
∑

k=0

bk

xλk
+ o(x−m), as x→ +∞ in Rq,+, (5.4)

where bk = Γq(λk) 1+i
(−1;q2)∞

(

iqλk ,−iq1−λk ; q
)

∞
ak.

Proof. Define the function fn by

f(t) =
n−1
∑

k=0

akt
λk−1 + fn(t). (5.5)

Observe that for all j = 0, 1, 2, . . . ,m,

D(j)
q fn(t) = O

(

tλn−j−1
)

, as t→ 0,

which implies since ℜ(λn) > m, D
(m)
q fn is q-integrable on [0, 1] and

D(j)
q fn(0) = 0, j = 0, 1, 2, . . . ,m− 1. (5.6)

The equation (5.5) and Lemma 2 give

∫ ∞

0
f(t)eixt

q dqt =

n−1
∑

k=0

ak

∫ ∞

0
tλk−1eixt

q dqt+

∫ ∞

0
fn(t)eixt

q dqt

=
n−1
∑

k=0

bk

xλk
+

∫ ∞

0
fn(t)eixt

q dqt.

The condition 2) and the equation (5.5) give

lim
t→+∞

D(j)
q fn(t)eixt

q = 0, j = 0, 1, 2, . . . ,m− 1,
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for all x > 0. Then by q-integrations by parts we obtain
∫ ∞

0
fn(t)eixt

q dqt =
i

x

∫ ∞

0
Dqfn(t)eiqxt

q dqt

= q−
m(m−1)

2

(

i

x

)m ∫ ∞

0
D(m)

q fn(t)eiq
mxt

q dqt.

Note that

D(m)
q fn(t) = D(m)

q f(t) −
n−1
∑

k=0

ckt
λk−m−1,

where ck = ak
Γq(λk)

Γq(λk−m) , k = 0, 1, . . . , n− 1. Then

∫ ∞

0
D(m)

q fn(t)eiq
mxt

q dqt =

∫ 1

0
D(m)

q fn(t)eiq
mxt

q dqt+

∫ ∞

1
D(m)

q fn(t)eiq
mxt

q dqt

=

∫ 1

0
D(m)

q fn(t)eiq
mxt

q dqt+

+

∫ ∞

1

(

D(m)
q f(t) −

n−2
∑

k=0

ckt
λk−m−1

)

eiq
mxt

q dqt− cn−1

∫ ∞

1
tλn−1−m−1eiq

mxt
q dqt.

The definition of the integer n and Lemma 1 imply that the two first q-integrals in the right
hand side of the above equality tend to 0 as x tends to ∞. Also, since for all x > 0, t > 1,
we have

| tλn−1−m−1eiq
mxt

q |≤ 1

(1 − q)qmxt2
,

then

lim
x→+∞

∫ ∞

1
tλn−1−m−1eiq

mxt
q dqt = 0.

�

6 q-Hankel transform

The third q-Bessel function is defined by (see [9] and [14])

Jα(x; q2) = xα (q2α+2; q2)∞
(q2; q2)∞

1ϕ1(0; q
2α+2; q2; q2x2). (6.1)

Taking into account (2.26), (2.27) and (2.28), one can easily prove (see [6] and [14]), that
for x = q−n,n ∈ N,

Jα(x; q2) =
q−nα

(q2; q2)∞
(q2(1−n); q2)∞ 1ϕ1(0; q

2(1−n); q2; q2α+2), (6.2)

which is majorized by

qn(n+α+1) (−q2; q2)∞(−q2(α+1); q2)∞
(q2; q2)∞

.

We summarize some properties of Jα(x; q2) in the following lemma:



602 A Fitouhi, K Brahim and N Bettaibi

Lemma 3. (see [6] and [14]) Suppose that α > −1, then

1. Jα(x; q2) ∼ xα (q2α+2;q2)∞
(q2;q2)∞

as x→ 0.

2. ∀x ∈ Rq,+, | Jα(x; q2) |≤ (−q2;q2)∞(−q2(α+1);q2)∞
(q2;q2)∞

{

1 if x ≤ 1

q
( log x
log q

)2 if x > 1.

3. ∀ν ∈ R, Jα(x; q2) = o(x−ν) as x→ +∞ in Rq,+.

4. if f is q-integrable on [0,+∞[, we have

lim
x→+∞

∫ ∞

0
f(t)Jα(xt; q2)dqt = 0 in Rq,+.

As in Sec. 5, we shall again assume that f is m times continuously q-differentiable on
]0,+∞[, m ∈ N

∗, such that for all 0 ≤ j ≤ m, Dj
qf is q-integrable on [1,+∞[ and it has

the following asymptotic expansion

f(t) ∼
∞
∑

k=0

akt
λk−1 as t→ 0,

where ℜ(λ0 + α) > 0 and ℜ(λk+1) > ℜ(λk) for k = 0, 1, 2, . . . .
We establish the following proposition:

Proposition 10. Let α ∈ C such that ℜ(α) > −1 and suppose that ℜ(λ0 + α) > 0 . If n
is the smallest positive integer such that ℜ(λn) > m, then

∫ ∞

0
f(t)Jα(xt; q2)dqt =

n−1
∑

k=0

bk

xλk
+ o(x−m), x ∈ Rq,+, (6.3)

where bk = (1 + q)(1 − q2)λk−1
Γ

q2

(

λk+α

2

)

Γq2

(

α+2−λk
2

)ak.

Proof. Define the function fn by

f(t) =
n−1
∑

k=0

akt
λk−1 + fn(t) (6.4)

and the functions fn,j, j = 0, . . . ,m by

fn,0(t) = fn(t) and fn,j+1(t) = [α+ j + 1]q
fn,j(t)

t
−Dqfn,j(t).

By induction, we prove that there are constants (Cj,i)0≤i≤j≤m such that

fn,j(t) =

j
∑

i=0

Cj,i

Di
qfn(t)

tj−i
, 0 ≤ j ≤ m.
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Since fn(t) = f(t) −∑n−1
k=0 akt

λk−1 = O(tλn−1) as t → 0, we have for all j = 0, 1, . . . ,m,
fn,j(t) = O(tλn−j−1) as t → 0. In particular fn,m is q-integrable on [0, 1] and for all
0 ≤ j ≤ m− 1 and x ∈ Rq,+, limt→0 fn,j(t)Jα+j+1(xt; q

2) = 0.
We have also,

fn,j(t) =

j
∑

i=0

Cj,i

Di
qf(t)

tj−i
−

n−1
∑

k=0

dj,kt
λk−j−1, 0 ≤ j ≤ m,

where dj,k are complex constants. The q-integrability of Dj
qf on [1,+∞[ and the relation

3) of Lemma 3 yield for ν > 0 and x ∈ Rq,+,

fn,j(t)Jν(xt; q2) → 0 as t→ +∞, 0 ≤ j ≤ m.

Now, from the identity

Dq

[

tν+1Jν+1(t; q
2)
]

=
tν+1

1 − q
Jν(t; q2),

it follows by m q-integrations by parts

∫ ∞

0
fn(t)Jα(xt; q2)dqt =

(1 − q)mq
−m(m−1)

2

xm

∫ ∞

0
fn,m(t)Jα+m(xqmt; q2)dqt.

It remains to prove that the q-integral
∫∞

0 fn,m(t)Jα+m(xqmt; q2)dqt tends to 0 as x tends
to ∞ in Rq,+.
One can write

∫ ∞

0
fn,m(t)Jα+m(xqmt; q2)dqt =

∫ 1

0
fn,m(t)Jα+m(xqmt; q2)dqt+

+
m
∑

i=0

Cm,i

∫ ∞

1

Di
qf(t)

tm−i
Jα+m(xqmt; q2)dqt−

−
n−1
∑

k=0

dm,k

∫ ∞

1
tλk−m−1Jα+m(xqmt; q2)dqt.

Using the Lebesgue theorem, the relation 4) of Lemma 3, the q-integrability of Dj
qf,

0 ≤ j ≤ m on [1,+∞[ and the q-integrability of fn,m on [0, 1], we obtain

∫ 1

0
fn,m(t)Jα+m(xqmt; q2)dqt→ 0 as x→ +∞

and
∫ ∞

1

Di
qf(t)

tm−i
Jα+m(xqmt; q2)dqt→ 0 as x→ +∞, 0 ≤ i ≤ m.

Now, by using the definition of the integer n, we have for all k ∈ {0, . . . , n − 1} and
x, t ∈ [1,+∞[∩Rq,+,

| tλk−m−1Jα+m(xqmt; q2) |≤ t−1 | Jα+m(xqmt; q2) |≤ Cα,m

x

1

t2
.
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where Cα,m = (−q2;q2)∞(−q2(α+m+1);q2)∞
(q2;q2)∞

.

Which proves that for all k ∈ {0, . . . , n− 1},
∫∞

1 tλk−m−1Jα+m(xqmt; q2)dqt → 0 as
x→ +∞.
Thus

∫ ∞

0
fn,m(t)Jα+m(xqmt; q2)dqt→ 0 as x→ +∞ (inRq,+)

and
∫∞

0 fn(t)Jα(xt; q2)dqt = o(x−m).
By integration of the equality (6.4) on [0,+∞[ and the fact (see [5])

∫ ∞

0
tλ−1Jα(t; q2)dq = (1 + q)(1 − q2)λ−1 Γq2

(

λ+α
2

)

Γq2

(

α+2−λ
2

) ,ℜ(λ) > −ℜ(α),

we have

∫ ∞

0
f(t)Jα(xt; q2)dq =

n−1
∑

k=0

bk

xλk
+ o

(

x−m
)

.

�

Additionally, if
log(1 − q)

log(q)
∈ Z, then from the well-known relations (see [5], [14])

cos(x; q2) =
Γq2(1

2 )

q(1 + q−1)
1
2

x
1
2J

− 1
2

(

1 − q

q
x; q2

)

and

sin(x; q2) =
Γq2(1

2 )

(1 + q−1)
1
2

x
1
2J 1

2

(

1 − q

q
x; q2

)

,

one can deduce easily the asymptotic behavior of the q-Cosine and the q-Sine Fourier
transforms.

Proposition 11. Let n be the smallest positive integer such that ℜ(λn)+ 1
2 > m, then for

x ∈ Rq,+, we have

1. If ℜ(λ0) > 0, then

∫ ∞

0
f(t) cos(xt; q2)dqt =

n−1
∑

k=0

Γq2(1
2 )

(1 + q−1)
1
2

qλk−
1
2 (1 + q)λk−

1
2

Γq2(λk

2 )

Γq2(1−λk

2 )

ak

xλk
+

+o(x−m+ 1
2 ). (6.5)

2. If ℜ(λ0) > −1, then

∫ ∞

0
f(t) sin(xt; q2)dqt =

n−1
∑

k=0

Γq2(1
2 )

(1 + q−1)
1
2

qλk+ 1
2 (1 + q)λk−

1
2
Γq2(λk+1

2 )

Γq2(2−λk

2 )

ak

xλk
+

+o(x−m+ 1
2 ). (6.6)
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Example 4. f(t) = e−t
q = [((1 − q)t; q)∞]−1, then f is a C∞ function on [0,+∞[ and for

all n ∈ N, Dn
q f = (−1)nf . Furthermore, f is q-integrable on [0,+∞[ and we have

f(t) ∼
∞
∑

n=0

(−1)n

[n]q!
tn as t→ 0.

So, for all m ∈ N, we have

• when α > −1,

∫ ∞

0
f(t)Jα(xt; q2)dqt =

m
∑

n=0

(−1)n(1 + q)(1 − q2)n

[n]q!

Γq2(1+n+α
2 )

Γq2(1−n+α
2 )

1

xn
+

+o(x−m−1).

• If we add 1 − q ∈ Rq,+,

∫ ∞

0
f(t) cos(xt; q2)dqt =

m
∑

n=0

Γq2(1
2 )

(1 + q−1)
1
2

(−1)nqn+ 1
2 (1 + q)n+ 1

2

[n]q!

Γq2(n+1
2 )

Γq2(−n
2 )

1

xn+1
+

+o(x−m− 3
2 )

and

∫ ∞

0
f(t) sin(xt; q2)dqt =

m
∑

n=0

Γq2(1
2 )

(1 + q−1)
1
2

(−1)nqn+ 3
2 (1 + q)n+ 1

2

[n]q!

Γq2(n+2
2 )

Γq2(1−n
2 )

1

xn+1
+

+o(x−m− 3
2 ).

Example 5. f(t) = (1 + t2)−1.
f is a C∞ function on [0,+∞[ and has the following asymptotic expansion near 0

f(t) ∼
∞
∑

n=0

(−1)nt2n as t→ 0.

Besides, by induction, we prove that for n ∈ N, Dn
q f is q-integrable on [1,+∞[. Then for

all m ∈ N, we have

∫ ∞

0

cos(xt; q2)

1 + t2
dqt =

m
∑

n=0

Γq2(1
2)

(1 + q−1)
1
2

(−1)nq2n+ 1
2 (1 + q)2n+ 1

2
Γq2(2n+1

2 )

Γq2(−n)

1

x2n+1

+ o(x−2m− 3
2 )

= o(x−2m− 3
2 ).

Acknowledgments. The authors thank the referee for many helpful suggestions and con-
structive criticism. He pointed us a reference of the book about quantum calculus and we
would like to note that our approach in this paper is very similar to the classical picture
developed in [17].
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