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ASYMPTOTIC BEHAVIOR AND TRAVELING WAVE SOLUTIONS 
FOR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 

KLAUS W. SCHAAF 

ABSTRACT. This paper is a generalization of the theory of the KPP and 
bistable nonlinear diffusion equations. It is shown that traveling wave so-
lutions exist for nonlinear parabolic functional differential equations (FDEs) 
which behave very much like the well-known solutions of the classical KPP 
and bistable equations. Among the techniques used are maximum principles, 
sub- and supersolutions, phase plane techniques for FDEs and perturbation of 
linear operators. 

1. Preliminaries. Since the classical paper by Kolmogorov et al. [24] there 
have been intensive studies on the asymptotic behavior of solutions to the Cauchy 
problem 
(1.1) 
(1.2) 

at'll - a~u = I(u), x E R, t > 0, 
o ::; u(x,O) = uo(x) ::; 1, x E R, 

with the general condition on 1 
(1.3) 1(0) = 1(1) = 0, 

Depending on the shape of I, the solutions of (1.1-3) show characteristic asymptotic 
behavior (see e.g. [10] for more details). 

1.1 KPP-equation. For 1 positive and convex on ]0, 1[ there is a critical positive 
value c depending only on 1'(0) > 0 with the following properties: 

(i) c* is minimal velocity [10], i.e. for all c ~ c* there are nontrivial traveling 
wave solutions 

(1.4) u(x, t) = <Pc (x + ct) 
with 

(1.5) 0< <Pc < 1, lim <Pc(s) = 1, 
8-+00 

lim <Pc(s) = OJ 
8~-OO 

for c < c*, there are only the trivial wave solutions <P == 0 and <P == 1. 
(ii) c* is asymptotic speed of propagation [24], i.e. for a solution of (1.1-3) with 

compact support of Uo we have 

(1.6) lim u(x ± ct, t) = {01 
t-+oo 

(iii) c* can be calculated as 

for 0 ::; Icl < c*, 
for Icl > c*. 

(1.7) c* = inf{c > Ol~c has a real zero} 
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588 K. W. SCHAAF 

where 

(1.8) ~c(>') = >.2 - c>. + /,(0) 

is the characteristic equation of the linearization of the "traveling wave equation" 

(1.9) 

around zero. 
(iv) The traveling waves of 1.1.1 are highly unstable and are stable only in spaces 

with appropriate weighted norms. 
More information on this type of equation can be found e.g. in [2-3, 5, 15, 

19, 27, 34]. The situation looks somewhat different if 1 changes sign (see e.g. [7, 
11-12, 20-21]. 

1.2 Huxley equation. If 1 admits an intermediate steady state 0 < a < 1 such 
that 

(1.10) I(a) = 0, I(s) { < 0 for 0 < s < a, 
> 0 for a < s < 1, 

then there is a unique c E R such that there exists a nontrivial traveling wave 
!P = !Pc with the asymptotic behavior (1.5). !P is stable with respect to perturbations 
in BCO(R) n {O ~ u ~ I}. 

It turned out that a wide class of equations exhibit asymptotic behavior like the 
KPP equation described in 1.1-e.g. equations modeling epidemics or population 
dynamics, integral, integrodifferential or functional differential equations, e.g. [1, 
8-9, 23, 30-31, 33, 35]. The simplest equation (next to (1.1)) is the difference-
differential equation 

(1.11) 8 t u - 8;u = I(u(x, t), u(x, t - r)), 

where 1 satisfies the conditions 

(1.12) 1(0,0) = 1(1,1) = 0, 

thus allowing the steady state solution u == 0 and u == 1 of (1.11). Equation (1.11) 
with I(r, s) = s(l- r) was derived in [23] from a branching process; in this model, 
1 fulfills the additional properties 

(1.13) 821(r, s) ~ 0 for 0 ~ r, s ~ 1 
(1.14) I(r,s) > 0 for 0 < r,s < 1 

(quasimonotonicity) , 
(positivity). 

Difference-differential equations of type (1.11 - 13) are the main subject of this 
paper. In §2 we will show the existence of a minimal and asymptotic velocity in the 
sense of the KPP equation (1.1) and derive an instability criterion for the traveling 
waves. 

This part uses the theory of functional differential equations [16] and maximum 
principles for parabolic functional differential equations [26, 32] and can therefore 
be done for more general functionals; for the sake of simplicity I restrict myself to 
equations (1.11) with one fixed time lag. 

§3 treats the case where I(r, s) allows an intermediate equilibrium a between 
o and 1. In this case we shall prove the existence of a unique (up to translation) 
traveling front with a unique velocity C; this velocity is determined by the global 
behavior of the nonlinearity 1 and cannot be calculated explicitly. 
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TRAVELING WAVE SOLUTIONS FOR FDE'S 589 

§4 investigates the position of the spectrum of the linearization of (1.11) around 
the traveling wave €Pc (in an appropriate coordinate system) and represents a first 
step in the investigation of the stability of the traveling waves; the results of this 
part do not depend on the quasimonotonicity of the nonlinearity f. 

This paper contains the main results of the author's Ph.D. thesis "Asymptoti-
sches Verhalten und Wellenlosungen von semilinearen parabolischen Funktionaldif-
ferentialgleichungen", Heidelberg, 1983; I would like to thank Professor Willi Jager 
and my Heidelberg friends and colleagues for their helpful discussions, encourage-
ment and friendship. 

2. Positive nonlinearities. In this paper, we discuss the Cauchy problem 

(2.1) OtW - o~w = I(w(x, t), w(x, t - 7)), X E R, t > 0, 
(2.2) 0 :::; w(x, t) :::; 1, x E R, t :::; 0, 

where 7 is a fixed nonnegative number and I satisfies the following 
2.1 Hypotheses. 
(i) IE C 1,V(R2, R), 1(0,0) = 1(1,1) = O. 
(ii) 02/(r, s) ~ 0 for 0 :::; r, s :::; 1 (quasimonotonicity). 
(iii) I(r, s) ~ 0 for 0 :::; r, s :::; 1 and I(r, r) > 0 for 0 < r < 1 (positivity). 
(iv) 011(0,0) + 021(0,0) > O. 
One of the most important tools in this paragraph is the following 

2.2 PROPOSITION (MAXIMUM PRINCIPLE). Let I: R 2 -+ R be quasimonotone 
(see 2.1 (ii)) and unilormly Lipschitz continuous, e: R 2 -+ R continuous. Then the 
lalla wing holds: II u, v are bounded regular solutions (i. e. all necessary derivatives 
are defined lor t > 0) 01 
(2.3) OtU + cOxu - o~u :::; I(u(x, t), u(e(x, t), t - 7)) lor x E R, t > 0, 
(2.4) OtV + cOxv - oxv ~ I(v(x, t), v(e(x, t), t - 7)) 

with initial values 

(2.5) u:::; v on R x Rn, 
then 

(2.6) u:::; v on R x R+. 

II there is (x, t) with t > 0 and u(x, t) = v(x, t), then u and v are identical (strong 
maximum principle). 

The maximum principle holds under much weaker conditions [26, 32]; the de-
cisive conditions are quasimonotonicity, (unilateral) Lipschitz conditions for I and 
the fact that the functional I does not depend on the "future". As an immediate 
consequence of the maximum principle we find that every nontrivial solution u of 
(2.1-2) under the hypotheses 2.1 will satisfy 

(2.6') 0< u < 1 on R x R+. 

To study the propagation properties of solutions w to (2.1-2) we analyze the be-
havior of w(x ± ct, t), c E R, for t -+ +00, and because of the symmetry of (2.1) 
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we can restrict ourselves to s = x + ct with c ~ O. If w solves (2.1-2), then the 
function W(s, t) := w(s - ct, t) solves the transformed equation 

(2.7) OtW+cosW-o~W=/(W(s,t),W(S-CT,t-T)), sER, t>O, 
(2.8) W(s, t) = w(s - ct, t), t ~ O. 

Stationary solutions to (2.7) play an important role in the analysis of the asymptotic 
behavior of solutions to (2.1-2). We say 

2.3 DEFINITION. A function u E C2 (R, R) is called a wave solution (or traveling 
wave) with velocity c iff 
(2.9) u"(s) - cu'(s) + I(u(s), u(s - CT)) for all s E R 

and additionally 

(2.10) o ~ u ~ 1 on R. 

The constants 0 and 1 are called trivial wave solutions. 
To be able to apply Hale's theory [16) of functional differential equations (FDEs), 

we define for fixed T ~ 0 

(2.11) le(us) := I(u(s), u(s - CT)) 
as a function Ie: Cl := CO ([-T, 0), Rl) ---t R. T is a positive fixed number greater 
or equal to CT, and unless otherwise stated we will be able to take T = CT so that 
we may write Cn = Co ([-CT, 0), Rn). 

The following are the main results of this section. For T ~ 0 there is a c* (T) ~ 0 
such that 

1. c* is the minimal wave velocity, i.e. for C < c* there are only trivial waves, 
and for C > c* there are uniquely determined nontrivial wave solutions with distinct 
asymptotic behavior (Theorem 2.7); we will look at the stability of these solutions 
in 2.10, 2.11 and §4. 

2. c* is the asymptotic speed of propagation for initial values with compact 
support (Theorem 2.12). 

3. c* depends only on the time lag T and the behavior of I near 0 (Lemma 2.5). 
For technical reasons it is often useful to rewrite the FDE (2.9) as 

(2.12) u'(s) = v(s), v'(s) = cv(s) - le(us) 
or-near u = v = Q-as 

(2.13) z' (s) = L(zs) + g(zs), 
where z = (u, v)t is the transpose of (u, v), 

(2.14) L4>:= (~;~~~) _ 1~(O)(4>l) ) , 

and g E C l ,a(C2 ,R2 ) with 

(2.15) g(O) = g'(O) = O. 

The position of the spectrum of the infinitesimal generator A of the semigroup 
generated by the linearized equation 

(2.16) z'(s) = L(zs) 
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on CO ([ -cr, OJ, R 2) is crucial for the existence of wave solutions and for the asymp-
totic speed for solutions of (2.1). A: D(A) C C2 --+ C2 is defined by 

(2.17) A4>( 0) = { 4>' (0) 
L(4)) 

for - cr :::; 0 < 0, 
for 0 = 0. 

We have the following 

2.4 LEMMA [16, pp. 168 and 177J. A has a pure point spectrum O"(A), and ). 
is a spectral value of A iff ~c().) = ° with 
(2.18) ~c().) =).2 - c). + a + (3e->'CT 

with a = od(O, 0) ~ 0, (3 = 02f(0, 0) ~ 0. 

The algebraic multiplicity of the eigenvalue). is equal to the multiplicity of the 
zero). of ~c. O"(A) is bounded to the right, and for every I-" E R there are at most 
finitely many). E O"(A) with real parts greater than 1-". 

The following properties of the characteristic function ~c (and of O"(A)) are 
needed. 

2.5 LEMMA. (i) ~c is analytic on C and convex on R; the number 
(2.19) c* := inf{c > 01 there is s E R with ~c(s) < O} is positive, and 
(a) ~c is positive on R for c < c*. 
(b) For c > c* there are exactly two real zeros ° < ). - (c) < ). + (c) < c. 
(c) For c = c* there is precisely one double zero).* E JO,c*[ on R. 
(ii) c* is a smoothly decreasing function of a, (3 and r respectively. 
(iii) For c > c .. , ). - (c) decreases differentiably with c, and), - (c) --+ ° for c --+ 00. 
(iv) For c ~ c*, every nonreal zero of ~c has real part smaller than). - (c) (resp. 

).*(c*)). 
(v) If (3 > ° then c*(r) and ).*(r) strictly decrease differentiably with r, and we 

have 
c .. (0) = 2..;a+lJ, 

).*(0) = ..;a+lJ, 
c*(oo) = 2.,fo, 

d 
drc*(O) = -2{3Va+{3 < 0, 

:r).*(O) =0, 
).*(00) = .,fo. 

The verification of these properties involves more or less elementary calculations 
and is therefore omitted. 

From the properties of O"(A) in Lemma 2.4 we can describe the asymptotic be-
havior of solutions z to the FDE (2.13) with z( -00) = 0: Let ° be a hyperbolic 
critical point of A, i.e. there are no spectral points of A on the imaginary axis. Let 
A be the part of O"(A) in the complex right half plane C+; A is finite and may consist 
of eigenvalues )'t, .. ·,).k with algebraic multiplicities mi = m().i). Let m = E mi 
and let (;2 = CO([-cr,OJ,R2) be the natural domain of Land g. Let U C (;2 be 
the generalized eigenspace to A, i.e. U is spanned by the functions 

(2.20) 4>ii(O) = "YiiOi-1e>.·8, 1 :::; i:::; k, 1:::; j:::; mi, 

with suitable "Yii E R2 [16, pp. 175-177J. Let 1[' be a projection of (;2 on U as in 
[16, p. 186J and y a solution of the linearized equation (2.16) with y( -00) = 0, 
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let Y(s) E R m be the coefficient vector of ys = 7r(Ys) E U with respect to the 
basis {4>ij}. Then there is a matrix B E R(m,m) with a(G) = A (with the resp. 
multiplicities) such that 

(2.21) Y'(s) = BY(s). 

A function cp: R ---- R m has exact order (J.l, r), (J.l real, r E No) for s ---- -00 iff 

(2.22) 0< liminf s-re-/LSlcp(s)1 
8-+-00 

::; limsups-re-/L(s)lcp(s)1 < 00; 
8-+-00 

obviously every solution Y(s) of (2.21) has an exact order (J.l, r) with J.l = Re().) 
for some). E A and 0 ::; r < m().), and for every such pair (J.l, r) there is a solution 
Y of (2.21) with this given exact order. Since Y(s) is the coefficient vector of ys, 
the same results hold for solutions y of (2.16). These notations and preliminaries 
are prerequisites for the following result. 

2.6 PROPOSITION. Let z be a solution of the nonlinear FDE (2.13) with z( -00) 
= O. Then there is a solution y of the linearized equation (2.16) with exact order 
(J.l, r) depending on z, such that 

(2.23) z(s) = y(s)(1 + 0(1)) for s ---- -00. 

On the other hand, for every solution y of (2.16) with exact order (J.l, r) there 
is a solution z of (2.13) fulfilling (2.23). If J.l = max{Re).l). E A} z is uniquely 
determined by y. 

PROOF. Let z(4)) denote the solution of (2.13) with initial value 4> E C2 • For 
small c > 0, the set 

Ue,g:= {4> E C2 1114>11 < c,z(4)) bounded on R-} 

is diffeomorphic to Un {114>1I < c} [16, Theorem 10.1.11]. Ue,g is tangential to U in 
0, i.e. 

(2.24) lim 11(1 - 7r)4>II/II7r4>11 = ° for 114>11---- 0, 4> E Ue,g; 

7r is again the projection of C2 onto U. 7r restricted to Ue,g is a diffeomorphism 
between Ue,g and Un {1I4>11 < c}. Furthermore there are positive constants M and 
I such that 

(2.25) IIzs(4))1I ::; Me"/s for s < 0, 4> E U. 

So for sufficiently small initial values 4> we may consider the ordinary differential 
equation 

(2.26) Z'(s) = BZ(s) + G(Z(s)), Z(-oo) = 0, 

instead of the FDE (2.13); Z(s) = Coeff(7r(zs)) E Rm, B is taken from (2.21), and 
G(Z(s)) behaves like g(zs). From (2.22) and (2.25) we get 

1. . flogIZ(s)1 
1m III = J.l ~ I > 0, 

s--+-oo s 
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and g and G are regular enough so that theorems [6, 13.4.3, 13.4.5) on the asymp-
totic behavior of ODEs give the desired results for Z(s) = Coeff(7r(zs)) and the solu-
tion Y(s) = Coeff(ys) of (2.21). The decomposition (y-z)s = (Ys-7r(zs))+(7r(zs)-
zs) and the tangency condition (2.24) complete the proof of the theorem. 0 

After these investigations on the asymptotic behavior of solutions to FDEs we 
prove the following theorem on the existence of solutions for the wave equation 

(2.9) u" - cu' + fe(us) = O. 

2.7 THEOREM. Let coO be given as in Lemma 2.5. c* is the minimal speed to 
equation (2.9), i.e. 

(i) there are only trivial wave solutions to (2.9) for 0 ~ c < coO, and 
(ii) for all c > coO there are nontrivial wave solutions U e of (2.9) with the following 

asymptotic behavior. There are positive constants K1(C), K2(C) such that 

(2.27) u~n)(s) = K 1>.-(c)neA-(e)S(1 + 0(1)) for s ---- -00, 
(2.28) (ue - l)(n)(s) = -K2J.l(c)n elL(e)s(1 + 0(1)) for s ~ +00 

for 0 ~ n ~ 3; >. - (c) is the smaller positive zero of .6.e, 

J.l(c) = ~(c - (c2 - 48d(1, 1))1/2) 
the negative zero of the linearization of (2.9) around the trivial solution u = 1. 

PROOF. (i) follows directly from Proposition 2.6 since there are only complex 
eigenvalues, i.e. oscillating solutions for s ~ -00 for c < c* . 

(ii) The existence of wave solutions and their asymptotic behavior for s ~ -00 
can be shown e.g. by the following Theorem 2.9 using the sub- and supersolutions 
already given by Atkinson and Reuter [4). Schumacher's proof of existence and 
uniqueness (up to translation) of wave solutions to certain integrodifferential equa-
tions [30, 31) can be carried over precisely to our case. The asymptotic behavior 
for s ~ +00 can be shown as in the "cubic" case in the next paragraph (Corollary 
3.15). 0 

Furthermore it is very elementary to show that every nontrivial wave solution u 
to (2.9) must be strictly monotone, take values strictly between 0 and 1 and take 
the limits u( -00) = 0, u( +00) = 1. 

In the following we show that c is also the asymptotic speed of propagation under 
equation (2.1) of initial values that have compact support or decay quickly enough. 
For this purpose we define 

2.8 DEFINITION. Let f satisfy Hypotheses 2.1, and let fe be given by 2.11. A 
bounded continuous function cp: R ~ R is called a subsolution (or supersolution 
respectively) to 

(2.9) 

iff there are twice continuously differentiable functions 'l/J1, ... , 'l/Jn: R ~ R with 
cp = max ('I/J 1 , ... , 'l/Jn) (or cp = min('l/J1,"" 'l/Jn)) and for every s E R, 1 ~ i ~ n, we 
have 

(2.29) 

The main tool for the subsequent investigations is the following theorem which can 
be found in [2) for parabolic equations without deviating arguments. 
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2.9 PROPOSITION. Let f satisfy Hypotheses 2.1, <p E BCO(R,R) be a subso-
lution (or supersolution, respectively) to (2.9), and 0 ~ <p ~ 1. 

Let v be a solution of the Cauchy problem 
(2.30) (Ot + COs - o~)v(s, t) = Fe (v)(s, t) for s E R, t > 0, 
(2.31) v(·, t) = <p for t ~ 0 

with 
(2.32) Fc(v)(s, t) := f(v(s, t), v(s - cr, t - r)). 
Then v(·, t) converges monotonically increasing (decreasing) towards the minimal 
(maxima~ wave solution q of (2.9) with q ~ <p (q ~ <p) on R, 0 ~ q ~ 1. 

The proof is given for the subsolutions; obviously the other case is analogous. It 
is performed in several steps: The crucial estimate is 

(2.33) v ~ <p for all t ~ o. 
The proof of (2.33) is rather technical: Setting w := <p - v we obviously have 

(2.34) w(·,t) ~ 0 for t ~ 0, -1 ~ w ~ 1 on R x R+. 

With w+ := max(w, O) and 

(2.35) IIw+llt:= sup{w+(s,r)ls E R, r ~ t}, 
"v ~ <p" is equivalent to "lIw+ lit ~ 0". Let T > 0 and 

(2.36) O"(s, t) := el-'t{£(1 + log(1 + 82)) + ')'(tH 

where I-' > 2 + c > 0 is a constant and ')' E C 1 ([0, Tj, R) an arbitrary function with 

(2.37) ')'(0) = Ilw+llo = 0, IIw+llt ~ ,),'(t)/K ~ 1 for 0 ~ t ~ T, 

K being a positive constant with 

(2.38) K > sup{lo1/(r, 8)1 + 102!(v, s)11 r, s E R}. 

In the following we show that 

(2.39) 0 ~ IIw+llt ~ el-'T ')'(t) for 0 ~ t ~ T, 

and from this follows (Hilfssatz 1 from [26, p. 164]) 

IIw+ lit = 0 for 0 ~ t ~ T; 

this is equivalent to the desired result (2.33). 
To prove (2.39), we claim that 

(2.40) W(8,t) < O"(s,t) for alls E R,O ~ t ~ T. 
Suppose (2.40) does not hold. Then there is a "first" point P := (so, to), 0 < to ~ T, 
with w(s, t) < O"(s, t) for s E R, t < to, and 

(2.41) w(P) = O"(P). 
It is elementary to prove that <p is continuously differentiable in so, the unilateral 
derivatives <p" (so+), <p" (80-) exist and fulfil 

(2.42) min(<p"(so+), <p"(80-)) ~ 0~(0" + v)(P). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRAVELING WAVE SOLUTIONS FOR FDE'S 

So the following relations are valid in P. 

(2.43) 
(2.44) 

and in particular 

(2.45) 

atw(p) ~ ata(P) = J..La(P) + eJLto"y'(to) > 0, 
asW(p) = asa(P) = 2ceJLtoso/(1 + s5), 

and from (2.42) one obtains 

(2.46) a~w(so±, to) $ a~a(P) = 2eJLtO (1 - s5)/(1 + S5)2 $ 2a(P). 

cp being a subsolution, we have 

(2.47) cp"(so±) - ccp'(so) ~ - fc(CPso)· 

595 

Combining inequalities (2.43)-(2.46), the choice (2.38) of K, (2.47), (2.41) and the 
quasimonotonicity of f, we obtain 

(2.48) (at - a~ + cas)a(P) $ (at - a~ + cas)w(so±, to) 
$ fc(CPso) - Fe (v)(P) 
= fc(CPso) - Fe (max(cp, v))(P) 

+ Fe (max(cp, v))(P) - Fc(v)(P) 
$ Kllw+ll t o· 

However, by direct estimation we obtain 

(2.49) (at - a~ + cas)a(P) ~ (at - a~)a(P) - clasw(p)1 
~ J..La(P) + eJLto,/'(to) - (2 + c)a(P) ~ ,/'(to); 

(2.48) and (2.49) together are a contradiction to (2.45), so (2.39) holds, and (2.33) 
is proved. To prove the uniform convergence of v(·, t) for t -+ 00, we note that 

(2.50) v(s, .) is monotonically increasing for all s E R and 
(2.51) The set {v(·, t)lt ~ 2} is equicontinuous. 

(2.50) and (2.51) can be proved as in [2]. 
With (2.50) and (2.51), the Arzela-Ascoli theorem yields monotonic locally uni-

form convergence of v(·, t) to a bounded coIitinuous function q with 0 $ cP $ q $ 1 
on R; one can verify (e.g. [13, pp. 8-13] that q is the minimal solution ~ cP of tll,e 
wave equation (2.9). 0 

We use this theorem to prove the following result. 

2. 10 THEOREM. Let c > c·. Then there is a wave solution Uc with the asymp-
totic behavior (2.27), and (2.27) is the only possible behavior of nontrivial wave 
solutions for s -+ -00. The wave solution U c is unstable in the following sense. 

(i) Let 0 $ 7p $ 1 be a supersolution of (2.9) with 7p(s) = 1 for all s ~ So E R, 
and with the asymptotic behavior 

(2.52) lim 7p(s)/uc (s) = o. 
8--+-00 

lfv is a solution to (2.30) with initial values v(·,t) $ 7p for t $ 0, then 

(2.53) lim v(·,t) = 0 uniformly on compact intervals. 
t-oo 
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(ii) Let 0 $ 1£ $ 1 be a supersolution of (2.9) with 
(2.54) lim cp(s)/uc(s) = 00. 

8-+-00-

If V is a solution to (2.30) with initial values 1£ $ v(·, t) $ 1, for t $ 0, then 
(2.55) lim v(·, t) = 1 uniformly on compact intervals. 

t--+oo 

PROOF. Using the supersolution ~(s) = min(1,exp(>.-(c)· s)) and the subsolu-
tion cp(s) = max(O, (1- M exp(€s))· exp(>.-(c)· s)) with c > 0, with M sufficiently 
large14], Theorem 2.9 delivers wave solutions with the asymptotic behavior (2.27). 
According to Theorem 2.7 and the properties of the characteristic equation .D.c 
(Lemma 2.5(i)), every nontrivial wave solution u exhibits the asymptotic behavior 
(2.27) or 

(2.56) (u(s),u'(s)) ~ e>'+(c)8(1, >.+(c)) for s ---- -00. 

Using phase plane arguments as in §3 it is easy to prove that every positive solution 
satisfying (2.56) will reach the value u = 1 in some points So E R with a positive 
slope u'(so), so it is no wave solution in the sense of Definition 2.3. 

This proves the instability criteria (i) and (ii) since the limiting traveling waves 
obtained by Theorem 2.9 must be the trivial solutions 0 and 1 due to conditions 
(2.52) resp. (2.54); the maximum principle completes the proof. 0 

2.11 REMARKS. Theorem 2.10 is an instability criterion for the wave solution 
Uc in the following sense. The solution cp(s) := min(uc(s),exp(>.(s - so))) with 
>. E ]>.-(c), >'-(c)[ is a supersolution to (2.9) with the asymptotic behavior (2.52). 
Choosing So appropriately, the norm of U c - cp may be arbitrarily small in every 
LP(R), 1 $ p $ 00, and yet we have the unstable behavior (2.53). So together with 
the "dual" property 2.1O(ii) we have the following necessary stability criterion: If a 
solution v of (2.30) with initial value va converges uniformly to the traveling wave 
U c for t ---- 00, then we have 

(2.57) 0 < lim inf vo(s, t) < lim sup _vo_(s_,_t) < 00. 
8 ..... -00 uc(s) - 8--+-00 uc(s) 
-r$;t$;O -r$;t$;O 

Stability of U c will be investigated somewhat closer in §4. For equations without 
delay, criterion 2.1O(i) can be found in [19]. One can show the continuous depen-
dence of the wave solutions on c and r in the sense of Theorem 3.16; the proof is 
omitted here. 

The following theorem shows that c* is also the asymptotic speed of propagation 
in the sense of Aronson-Weinberger: 

2.12 THEOREM. Let f satisfy conditions 2.1, and w be a solution to the original 
Cauchy problem (2.1-2) with continuous initial function 0 $ wo $ 1, suppwo 
compact in R x [-r,O], and waC 0) t=. O. Then for all x E R we have 
(2.58) lim w(x - ct, t) = 0 for Icl > c*, 

t--+oo 

(2.59) lim w(x - ct, t) = 1 for Icl < c·. 
t--+oo 

PROOF. In analogy to [2] it is enough to consider the case c ~ O. For c > c· we 
have wo(·,t) $ ~ for the supersolution ~(s) = min(1,exp(>.+(c)(s - so))) with an 
appropriate So E R, and (2.58) follows from Theorem 2.1O(i). 
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Now let 0 :5 c < C·. For c = 0, Kobayashi [23] shows 

(2.60) lim w(·, t) = 1 uniformly on compact intervals. 
t-+oo 

In 2.13 we construct a subsolution cp of (2.9) with compact support and 

(2.61) O:5CP:5c<l. 

Let v(s, t) := w(s + ct, t + to). Because of (2.60) there is a to such that v(·, t) ~ cP 
for -T :5 t :5 o. v satisfies the transformed equation (2.7). If Q is a solution to 
(2.7) with initial value cp, then by Theorem 2.9, Q(., t) converges monotonically to 1 
since there are no nontrivial wave solutions for c < c·, and the maximum principle 
proves (2.59) provided we know a suitable subsolution. 0 

2.13 Constructing a subsolution lor 0 < c < c·. Let c < c· be given. Because of 
hypotheses 2.1 on 1 and Lemma 2.5(ii) there is c > 0 and i = i(c) E ]0, 1[ with 

(2.62) i(ar + f3t) < I(r, t) for all 0 < r, t < c, 

and at the same time there is no real zero of 

Lic().) = ).2 - c). + i a + if3e-CTA , 

the characteristic function of 

(2.63) v"(s) - cv'(s) + ia(s) + if3V(S - CT) = o. 
Setting u(s) = v(s)e-C8 and w = u' + CU, then (2.63) is equivalent to 

(2.64) u'(s) = w(s) - cu(s), w'(s) = -pu(s) - Tlu(s - CT) 

with p = ia, Tl = if3e-CT • 

Choose an initial value (uo, a) E C2([-T, 0], R) X R+ with a > 0, uo(O) = 0, 
uo(O) = a, and u~(O) = -ca - TlUo( -CT). Then it is easy to show that there 
is Sl > 0 with u'(st} = 0 and S2 > Sl with U(S2) = 0, U > 0 on ]0, S2[. The 
8Olution v( s) = u( s )eC8 of (2.63) on [0, S2] has the same qualitative behavior. If we 
choose b small enough such that bv < c on [0, S2], then it is easy to verify that 
'P := max(O, bV) is a subsolution to (2.9) with the desired properties. 0 

3. Nonlinearities changing sign. If I admits an intermediate steady state, 
one cannot in general construct subsolutions (cf. e.g. [12]). Sometimes however it 
is possible to use phase arguments as in the case without time delay. First of all 
we list the hypotheses for I used in this paragraph. 

3.1 Hypotheses. Let the nonlinearity 1 satisfy the following hypotheses. 
(i) 1 E C1,,,([0, 1]2, R), 1(0,0) = 1(1,1) = 0, ihl(r, t) > 0 for 0 < r < 1 

(strict quasimonotonicity), 82/(r, t1) :5 821(r, t2) for 0 < r < 1, 0 < h < t2 < 1 
("convexity") . 

(ii) There is an intermediate zero a E ]0, 1[ with I(a, a) = 0, I(r, t) < 0 for 0 < r, 
t < a, I(r, t) > 0 for a < r, t < l. 

(iii) 8d(0,0) = -a < 0, 8d(l, 1) = -f3 < 0, 821(0,·) == o. 
3.2 REMARKS. (i) Holder continuity of the derivatives is only used for deter-

mining the asymptotic behavior of the traveling waves (Corollary 3.15); otherwise, 
1 has to be continuously differentiable only. 
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(ii) Let f satisfy 3.1, and set fo(r) := f(r,r). f can be extended to a function 
f E C l (R2,R) such that 

f(r t) = It (r) { > 0 for r < 0, t E R, 
, 0 < 0 for r > 1, t E R. 

(iii) An example for a nonlinearity satisfying 3.1 is given by 

f(r t) '= {r(1- r)(t - a) for 0 ~ r ~ 1, t E R, 
,. r(1 - r)(r - a) otherwise; 

with 0 < a < ~ and without time delay (7 = 0) this is the Huxley nonlinearity. 
Under Hypotheses 3.4, we are again interested in wave solutions to (2.1), i.e. 

stationary solutions to 

(3.1) OtW + COsW - o~W = f(W(s, t), W(s - C7, t - 7)). 

Simple differential inequalities and the maximum principle 2.2 yield the following 
stability result for the "trivial" constant wave solutions. 

3.3 LEMMA. (i) The steady state solutions W == 0 and W == 1 are stable in the 
following sense: 

(a) If 0 ~ W ~ 100 for s E R, -7 ~ t ~ 0, with 100 E ]0, a[, then W converges to 
o uniformly on R for t --+ 00. 

(b) If Wo ~ W ~ 1 for s E R, -7 ~ t ~ 0, with Wo E ]a,I[, then W converges to 
1 uniformly on R for t --+ 00. 

(ii) The intermediate steady state W == a is unstable. 
The wave solutions u, 0 ~ u ~ 1, to (2.1) satisfy the ordinary functional differ-

ential equation (FDE) 

(3.2) ii(s) - cit(s) + f(u(s),u(s - C7)) = 0, s E R, 

hence the equivalent system 

(3.3) it = v, v = cv - f(u, u(· - C7)). 

Furthermore, in this section we require the asymptotic boundary conditions 

(3.4) u(-oo) = v(-oo) = o. 
The main result of this section is the following (see Theorems 3.13 and 3.16). 

For every 7 ~ 0 there is exactly one c* (7) and one unique (up to translation) wave 
solution u of (3.3). c* and u satisfy 

- 0 < u < 1 on R, 
- u is strictly monotonically increasing, 
- u and c* depend continuously on 7, 

- sign C*(7) = sign!ol fo(r) dr. 
In this section we often compare solutions to (3.2) or (3.3) with solutions of the 
ordinary differential equation 

(3.5) 
or 
(3.6) 
(3.7) 

cp(s) - c¢(s) + fo(cp(s)) = 0, sER, 

¢='I/J, -¢=c'I/J-fo(cp) 
cp( -00) = 'I/J( -00) = o. 
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The linearizations of (3.3) and (3.6) around (0,0) have 

(3.8) ),(c) = c/2 + Jc2 /4 + a, a = -8t!(0,0) > 0, 

as their only eigenvalue in ct, and correspondingly 

(3.9) J.l(c) = c/2 - Jc2 /4 + (3, (3 = -8t!(1, 1) > 0, 

is the only eigenvalue in Co of the linearizations of (3.3) and (3.6) around (1,0). So 
candidates for wave solutions to (3.2) and (3.5) have the same asymptotic behavior 
for s - -00 [16, Chapter 10, and 6, Chapter 15]: 

3.4 LEMMA. Each of equations (3.3), (3.4) and (3.6), (3.7) have-up to transla-
tion-exactly one solution which is positive for sufficiently large negative s; these 
solutions satisfy 
(3.10) u(s) = v(s) = ),(c)u(s) + o(u(s)) for (3.3), (3.4) as s - -00 

and 
(3.11) cp(s) = 1jJ(s) = ),(c)cp(s) + o(cp(s)) for (3.6), (3.7) as s - -00. 

In the following we are only interested in positive solutions u and cp and follow 
them only as long as they are monotonically increasing. As long as <jJ ~ 0, we 
have for the trajectory w(rJ) := cp'(cp-l(rJ)) the graph equation in the (cp, <jJ)-phase 
space: 

(3.12) for rJ > O. 

(In this section I denotes the derivatives d/drJ.) 
For the solution of the graph equation (3.12) corresponding to the trajectory for 

(3.6-7), equations (3.7) and (3.11) give the initial values 

(3.13) W(O+) = 0, W' (0+) = ),(c). 

In the following investigations we make extensive use of the graph equation for 
trajectories of the FDE (3.3); for V(rJ) = v(u- 1 (rJ)) (rJ = u(s)) holds 

(3.14) V'(rJ) = c - l(rJ, rJCT )/V(rJ); 
rJCT is given implicitly by the relation 

r' dO' 1., V(O') =C·T. 
'1CT 

(3.15) 

Again, the asymptotic boundary conditions (3.4) and Lemma 3.4 provide 

(3.16) V(O+) = 0, V'(O+) = ),(c). 
Since rJCT cannot be given explicitly in terms of V and rJ, working with the graph 
equation (3.14) for V involves continuous "switching" between (3.14) and the origi-
nal FDE (3.2) or (3.3). So first of all we give some general properties of trajectories 
V(rJ) to (3.3) with V(O+) ~ 0 that will be frequently used in the following proofs. 

3.5 LEMMA. Let c ~ 0, 0 < a < 1, the intermediate zero of I. Then the 
following hold. 

(i) V(rJ) > 0 and V'(rJ) ~ c ~ 0 for 0 < rJ ~ a, 
(ii) V'(rJ) ~ c ~ 0 for rJ > 1. 
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(iii) If there is a r; > 0 with V(r;) = 0, then a < r; ~ 1. 
(iv) If this r; is smaller than 1, then r; is a local maximum of u, and 

V(17)/(17 - r;) -+ -00 for 17 i r;. 

The next two lemmas compare solutions of (3.3), (3.4) and (3.14), (3.15) as well 
as their trajectories belonging to different velocities c and c. Here u, v, and V 
denote solutions for c; U, v and V denote solutions for c. 

3.6 LEMMA. Let 0 < "10 < 1, V(T/o) ~ V(17o) > 0, V(T/) > V(17) > 0 for 
"I < 170 (as long as V(T/) is defined). Then the following holds. Ifu(O) = u(O) = 170, 
then u(t) < u(t) for all t < O. 

PROOF. If V(T/o) > V(T/o), the proof is elementary. If V(T/o) = V(17o), take 
17 < "10· Approximate u by ul"/(s) := u(s - m(T/)), and u by ul"/(s) := u(s - m(17)) 
such that ul"/(O) = ul"/(O) = "I. Since m(17) = fl"/I"/o da/V(a) (m correspondingly) and 
V(17) > V(T/) > 0 for 17 < 170, the result holds for ul"/ and ul"/. Approximation for 
"I i ij yields the weak inequality u ~ u for s < 0, but since an equality in some 
s < 0 would give a contradiction, the proof is completed. 0 . 

3.7 LEMMA. Let c > c ~ 0, V(O) = V(O) = O. Then the trajectories V and V 
do not intersect in the first quadrant, i. e. more precisely 

(i) V(17) > V(T/) ifV(T/) > O. 
(ii) If V(ij) = V (17) = 0 for values "I, ij E ]0,1[' then ij > "I. 
PROOF. (i) Because of ).(c) > ).(c) and Lemma 3.3 there is 170> 0 with V(17) > 

V(17) > 0 for 0 < 17 < "10. Suppose there is a first intersection in (170, ~o) with 
~o = V(17o) = V(T/o) > 0, then we have 

(3.17) 

Without restriction we can assume u(O) = u(O) = "10, v(O) = v(O) = ~o. Using the 
graph equation (3.14) and noting that c > c, ~o > o. (3.17) is equivalent to 

o < ~o(c - c) ~ /("10, u( -cr)) - /("10, u( -cr)). 
Since f is strictly quasimonotonic and u is strictly monotonically increasing on R - , 
we obtain 

u( -cr) > u( -cr) > u( -cr); 
this is a contradiction to Lemma 3.6. (ii) can be proved analogously to the second 
case in Lemma 3.6. 0 

The next two theorems give more detailed information about the shape of tra-
jectories V in phase space. The first is used to prove continuous dependence of the 
trajectories on the velocity c (Theorem 3.10). For c ~ 0 it compares the trajectories 
V(T/) of the FDE (3.3) with the trajectories w(T/) of the corresponding ODE (3.6). 
For c = 0, the FDE (3.3) degenerates to (3.6), so for c = 0 we have the classical 
phase plane portrait for the Huxley-equation whose behavior for increasing c is well 
known. 

3.8 THEOREM. Let c, r > 0, (u, v) solution to (3.3-4), (cp, w) solution to (3.6-
7), V(17), W(T/) the corresponding trajectories with V(O+) = w(O+) = o. Then 

(i) V(T/) > W(n) for all "I> 0 as long as w(T/) ~ o. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRAVELING WAVE SOLUTIONS FOR FDE'S 601 

(ii) For all "I with V'(Tf) ~ 0, especially for "I E [O,aj holds 

(3.18) V(Tf) < \II(Tf) + cTp(n) with p(Tf):= 1071 82f(r, r) dr = 0(1"11). 

For the proof we need the following comparison lemma (adapted from [35, pp. 
64 and 72]): 

3.9 LEMMA (COMPARISON LEMMA). Let the functions \II, V, 81 , 82 , PI, P2 be 
in CO([O,T],R), 8i ~ 0, \II, V and Pi differentiable on jO,Tj. Assume that g,WI,W2 
are real-valued functions with domains of definition D(g), D(Wi) C R2. Let \II, V 
be solutions of 

{ \II'(t) = g(t, \II(t)) 
(3.19) _ 81 (t) :::; V'(t) _ g(t, V(t)) :::; 82(t) for 0 < t :::; T, 

and assume that the functions Pi satisfy the initial conditions 

(3.20) { 0 = PI (0) = V(O) - \II(O) = P2(0), 
-pi(O+) < 0 = V'(O+) - \II'(O+) < p~(O+) 

or 

(3.21) 

and the differential inequalities 

(3.22) 

the functions Wi stem from unilateral estimates for the nonlinearity g: 

(3.23) { g(t, v) - g(t, v - p) :::; w(t, p) for all (t, v - p) E D(g), 
g(t, v + p) - g(t, v) :::; W2(t, p) for all (t, v + p) E D(g). 

Then we have 

(3.24) -PI (t) < V(t) - \II(t) < P2(t) for all t E jO, Tj. 

PROOF OF 3.9. We only prove the second estimate of (3.24) (omitting the 
subscript 2); the other part is analogous. Because of (3.20) or (3.21), V - I}I < P 
for small t > O. Suppose to > 0 is the first point with V - \II = p. Then we can 
estimate in to: 

V' - \II' = V'(to) - g(to, V) + g(to, V) - g(to, V - p) 
:::; 8(to) + (to, p) < P'(to); 

this is a contradiction. 0 
PROOF OF 3.8. First of all, we apply Lemma 3.9, setting g(Tf,~) = c - fO(Tf)/~ 

to prove 

(3.25) 

For this we have to verify the second line of (3.19) with suitable Pi, 8i and Wi· 
As long as V(Tf) > 0 we may use the graph equation (3.14) and the monotonicity 
properties of u and f to obtain 
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As long as V' ~ 0, the mean value theorem gives (if T/ = u(O)) 

fo(T/) - f(T/, T/c.,.) = cru(~)82f(T/, u(~)) < crV(T/)82f(T/, T/) 
Moreover, for T/ between a and a and s"1 > s"2 > a we have 

g(T/,s"d - g(T/,s"2) = -fo(T/)(I/s"1 -1/s"2) ~ o. 

(-cr < ~ < c). 

So using T = a, 81 = wI = W2 = 0, 82(T/) = cr82f(T/,T/) in Lemma 3.9, we obtain 
(3.24) for all PI, P2 with PI (0) = P2 (0) = 0, p~ positive, p~ > 82 on ]0, a], and that 
proves (3.25). 

Now suppose that V(T/o) = \II(T/o) = s"o > a for some T/o E ]0,1[, and let u, cp be 
the corresponding solutions to V, \II with u(O) = cp(O) = T/o, u(O) = cp(O) = s"o. Since 
f is strictly quasimonotone we can verify sign(V' - \II')(T/o) = sign(u(O) - u( -cr)). 
Since u is strictly increasing on R-, we obtain V'(T/o) > \II'(T/o) in contradiction 
to (3.25). The assumption V(T/d = \II(T/l) + crp(T/d for some T/l E [0, 1[ with 
V'(T/d ~ a leads to a contradiction in a similar way, and the estimate p(T/) = O(IT/I) 
is obvious since f is continuously differentiable and 82 f(0, 0) = o. 0 

We use this theorem to prove 

3.10 THEOREM (CONTINUOUS DEPENDENCE OF TRAJECTORIES). The un-
stable manifold of the FDE (3.3)-(3.4) depends continuously on c in the following 
sense: Let Vc be the solution of the graph equation (3.14)-(3.16) to the velocity c, 
let c ~ a and Vc positive on ]0,17"]. Then Vc converges to Vc in Cl ([0, 17"]) for c ~ c. 

PROOF. Let r be positive, assume that c i c (the other case is analogous). For 
every c > a let U c be the solution of (3.2) with U c (0) = a, uc ( -00) = o. On [0, a] 
the equicontinuous monotonically increasing functions Vc converge monotonically 
to a continuous function V ~ Vc. Lemma 3.6 shows convergence of the correspond-
ing solutions U c to u which can be shown to satisfy the FDE (3.2) on ] - 00, 0]. 
Everything else follows from the continuous dependence of solutions of FDEs [16, 
p.41]. 0 

Before we show the existence of wave solutions, two lemmas discuss the possible 
behavior of solutions to (3.3)-(3.4) converging to the critical point (1, 0). 

3.11 LEMMA. If V is a solution of the graph equation (3.14)-(3.16) on ]0,1[ 
with 
(3.26) V(O) = V(I) = 0, V(T/) > a for 0< T/ < 1, 
then every corresponding solution (u, v) of the FDE (3.3) -(3.4) satisfies 
(3.27) a < u < 1, v > a on R. 

PROOF. Because of Remark 3.2(ii) we may assume that (u, v) satisfies the ODE 
(3.6) for u(s) E [0,1], so (3.26) immediately gives the weak inequality. Since 0,1, 
and u are stationary solutions of the parabolic equation (3.1), the strong maximum 
principle (Theorem 2.2) gives the result. 0 

3.12 LEMMA. Assume that u is a solution of the FDE (3.3) with 
(3.28) l-e<u<l, u' positive onR+, u(oo)=l. 
If we define for W E L?oc (R +) 
(3.29) w(w):= infb E Rlwe--r E L2(R+)} E Ru {±oo}, 
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then 
(i) w(u -1) = w(u) E {J.t(C) , -oo}, 
(ii) lims --+ oo u(s)j(u(s) - 1) = w(u - 1); 

J.l(c) is the negative eigenvalue of the linearization of (3.3) around (1,0) (see (3.9)). 

PROOF. Setting y = u - 1, Yr = y(. - CT), g(y,Yr) = -f(u,u(· - CT)) and 
go(y) = g(y, y), the FDE (3.3) can be written as 

(3.30) y = cy + g(y, Yr) 

with the conditions 

(3.31) -c < y < 0, Y > 0 and g(y, z) ~ (./ > 0 r 
fJ lor y,z ~ 00. 

y 

(i) The equality can be proved by multiple partial integration using (3.30)-(3.31); 
since y and iJ are bounded, you obtain 

(3.32) w(y) = w(y) = w(ij) < 0; 

the last inequality follows from [16, Chapter 10]. y is a special solution ofthe linear 
equation 

x(s) - c:i:(s) - a(s)x(s) - b(s)x(s - r) = 0 

with r = CT and the asymptotic behavior of the coefficients 

a(s) = go(y(s))jy(s) ~ (3 > 0 } for s ~ 00. 
b(s) = [g(y(s), y(s - r)) - go(y(s))]jy(s - r) ~ 0 

So we can apply Theorem 2 of [37] on the asymptotic behavior of linear FDEs with 
asymptotically constant coefficients and obtain 

max w(y(//)) E M with M = {Re >'1>.2 - c>. + (3 = O} U {-oo}; 
1/=0,1,2 

together with (3.32) this completes the proof of (i). 
To prove (ii) set x := yjy; x is negative, and we have to show x(s) ~ w(y) for 

s ~ 00. x satisfies the equation 

(3.33) ±(s) = cx - x2 + k(s) with k(s) = g(y(s)~r;; - r)) ~ (3 for s ~ 00 

and one can show that J.l(c) and -00 are the only possible limit points of x(s) for 
s ~ 00. Since lims --+ oo y(s)jy(s) = a E R implies that for every c > 0 there are 
positive numbers ME, SE such that 

M;l e(a-E)s :::; y(s) :::; MEe(a+E)S for s :?: SE 

we obtain x(s) ~ J.l(c) iff w(y) = J.l(c), and that proves (ii). 0 
The next theorem contains the main result of this paragraph. 

3.13 THEOREM (EXISTENCE OF WAVE SOLUTIONS). Assume T :?: 0 and the 
condition on f 

(3.34) 101 fo(r)dr:?: O. 
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v. v. w. l/J. ~ 

FIGURE 3.1 

Then there is exactly one wave speed c· ~ 0 such that (3.2) has a nontrivial 
strictly increasing wave solution with the asymptotic boundary values u· ( -00) = 0, 
u*(oo) = 1. Moreover c· = 0 iff the integral (3.34) vanishes. 

3.14 REMARK. If (3.34) does not hold, one can transform the original equation 
(2.1) into OtW -o;W = g{W, W(x, t-r)) with W = 1-w, g{r, s) = - l{l-r, l-s); 
g satisfies conditions 3.1 and (3.34) so that (3.34) is no real restriction. 

PROOF OF 3.13. If (3.34) vanishes there is a nontrivial wave solution of the 
ODE (3.5) with velocity 0; in this case, the ODE and FDE coincide, and Lemma 
3.7{i) proves the second part of the theorem. Since the case r = 0 is well known we 
can restrict ourselves to positive r and f 10 > O. 

To investigate the behavior of the trajectories Vc (17) we use the level sets (without 
the stationary points) 

F is the integral of 10 with F{O) = 0, ~o = F{a) < O. The level sets N. are exactly 
the trajectories of solutions to (3.3) or (3.6) for c = 0, i.e. every component of 
NI< corresponds (except for phase shift exactly) to one solution (cpk,1/Jk) of (3.3) 
or (3.6); ~ 2: 0 gives exactly the trajectories intersecting the ~-axis. For ~ ~ 0 we 
define N;t := NI< n {~ > O} and denote by Wk the solution of the graph equation 
(3.12) and (3.14) (for c = 0) in N;t; as usual, Vc is the solution of the graph equation 
(3.14)-(3.16) for the velocity c. Now the proof is done in several steps: 

Step 1. For positive c, Vc intersects a level set NK at most once, and in the point 
of intersection (17k, V(17k)) = (17k, Wk(17k)) holds 

(3.35) 

"=" holds iff 171< = 1. 
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PROOF OF 1. Let (u, v) be a solution of (3.3)-(3.4) corresponding to Ve. Then 
we have 

:s (~v2(s) + F(U(S))) = :S K(S) 

= cv2(s) + v(s) i:r v(s + J.l)82!(u(s), u(s + J.l)) dJ.l 

i.e. with increasing s (u(s), v(s)) "wanders" through "increasing" level sets. Esti-
mate (3.35) can be verified directly. 0 

The level set N. := Nj:(l) through the critical point (1,0) and the corresponding 
solution W. := WF(l) playa special role. We define 

(3.36) £:= inf{c > OlVe and N. intersect in ('Y/e, Ve('Y/e)) 
= ('Y/e, W.('Y/e)) with 0 < 'Y/e ~ I}; 

We will prove that this £ is the desired wave speed c·. Theorem 3.8 and the well-
known behavior of solutions to the ODE (3.6)-(3.7) ensure the £ is finite. 

Step 2. For every c ~ £ there is a positive c such that Ve ~ c on ['Y/e, 00[. 
PROOF OF 2. This statement follows directly from Step 1 and the shape of the 

level sets N; as shown in Figure 3.1. 0 
Step 3. £ is positive. 
PROOF OF 3. Step 2 shows that for c ~ £ ue(s) converges strictly monotonically 

to +00 for s -+ 00, and the continuous dependence of U e on c ensures that U e 
is monotonically increasing on R. Since uo(oo) = 0 (see Figure 3.1) we obtai~ 
£>0. 0 

Step 4. 'Y/e converges monotonically from below to 1 for c ! £. 
PROOF OF 4. The monotonic and continuous dependence of 'Y/e on c is obvious 

(for c ~ f). If 'Y/e < 1, we obtain V; ('Y/e) ~ c+ W~('Y/e) from Step 1 and the continuity 
Theorem 3.10. -On the other hand ~e get V~ ('Y/£) = \lI~ ('Y/£) or 'Y/£ = 1 from the 
definition (3.36) of £; because of Steps 3 and 1 we obtain necessarily 'Y/£ = 1. 

Step 5. V£(l) = 0 and V~(1) = J.l(c). 
PROOF OF 5. U e is monotonically increasing on R; u(oo) = 1 follows since 

Ve(1) ! 0 for c ! c and because of Lemma 3.5(iv). Ve(1) = -00 is impossible since 
Ve ~ W., so Lemma 3.12 gives Ve(1) = J.l(c). 

Step 6. £ is the unique wave speed c· . 
PROOF OF 6. We have to show that for every c < £ there is an 'Y/e E la, 1[ with 

Ve ('Y/e) = O. Suppose this is wrong; then there is a c < £ with lim7) T1 Ve ('Y/) = 0, and 
Lemma 3.12 gives lim7)T1 V;('Y/) E {J.l(c), -oo}. V;('Y/) -+ -00 gives a contradiction 
to 0 < Ve < W. and W.(l) = J.l(0) > -00, so we must have V;('Y/) -+ J.l(c) < 0 (see 
(3.9)). But this means that trajectories intersect in contradiction to Lemma 3.8, so 
Step 6 and the whole theorem are proved. 0 

3.15 COROLLARY. The wave solution U := u· from Theorem 3.13 shows the 
following asymptotic behavior: There are positive numbers K 1 , K2, and 8 with 

u(n)(s) = KIAn(C) . e>.(e)s(1 + O(e8s )) for s -+ -00, 
(u _1)(n)(s) = -K2J.l(n) (c) . eJ.t(e)s(1 + O(e-8s )) for s -+ 00, 

for 0 ~ n ~ 3. 
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PROOF. Because of (3.10) and Step 5 from the last proof there are positive 
constants Cll C2 with C1 ::; u(s - c)/u(s) ::; C2 for all s. Since f is in Cl,v we 
may therefore apply Theorem 4.5 in [6, Chapter 13J on the asymptotic behavior of 
solutions to nonautonomous ODEs to obtain the results. 0 

The last theorem of this section investigates the dependence of the wave speed 
and wave solution on the time lag: 

3.16 THEOREM. (i) Let 70 2: 0, and let Vr and (ur , vr ) be the wave solutz"on 
corresponding to 7 2: ° with ur(O) = a. Then for 7 ~ 70 C(7) converges to C(70), Vr 
uniformly on [0, 1 J to Vra , and (un vr ) uniformly on R to (ura , vra ). 

(ii) c depends monotonically decreasing on 7, especially 

(3.37) ° ::; c( 7) ::; c(O) for all 7 2: 0. 

PROOF. (3.37) follows at once from Theorem 3.8 and the fact that V;,r(O) 
>. (c) increases strictly monotonically in c. The proof of the rest of the theorem is 
somewhat similar to the proof of Theorem 3.10 except that monotonic convergence 
can no longer be used. 

(i) Because of (3.37) there is a sequence 7n ~ 70 such that Cn := C(7n ) converges 
to a Co E [0, c(O)j; let Vn, Un, Vn be the corresponding wave solutions to Cn. It is easy 
to see that the sets An := {V~(1])I1] 2: I} are bounded for every ° ::; 1] ::; a, and so 
the Arzela-Ascoli theorem ensures uniform convergence (possibly of a subsequence) 
of Vn to a continuous function Vo on [0, aj. Now let Un be the wave solution 
corresponding to Vn with un(O) = a, and define Uo by 

uo(a) = a, uo(s) = 1] with s = 1'1 v:~) ~ -00 for 1] ~ 0. 

By integral representation of Un we can show that Un ~ Uo uniformly on R, Uo 
satisfies the FDE (3.2) with 70 and co, uo(oo) = 1 and consequently Vn ~ Vo 
uniformly on [O,lj. 

(ii) If we assume 71 > 72 and c(7d > C(72), we get a first intersection of the 
trajectories in some 1] E jO, 1[ with VI > V2 on jO,1][. Using Lemma 3.6 and the 
graph equation (3.14) gives a contradiction to the necessary "intersection condition" 
V{(1]) ::; V~(1]). 0 

4. On the stability of traveling waves. In this paragraph we present a 
first step in the investigation of the stability of traveling waves constructed in the 
preceding paragraphs. These investigations only make sense in the transformed 
coordinate systems s = x + ct in which traveling waves are stationary points. We 
are only interested in the lz"nearized stability of wave solutions 'Pr of (2.1). The 
linearization of (2.1) around 'Pr is 
(4.1) Otv(s,t) = (Brv)(s,t) 
with 
(4.2) (Brv)(s, t) = o;v - COs V + ar(s)v(s, t) + br(s)v(s - C7, t -7) 
where the coefficients 

(4.3) ar(s) := oI/('Pr(s), 'Pr(s - CT)) ~ a±} for s ~ ±oo 
br(s) := o2f('Pr(s), 'Pr(s - CT)) ~ b± 
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approach their limits 

(4.4) a- := od(O, 0), a+:= od(1, 1), b-:= 02f(0, 0), b+:= 02f(1, 1) 

exponentially fast (see §§2 and 3). Let U(t) be the semigroup determined by (4.1) 
on BCo := BCo (R x [-T, 0], C) with fixed T > o. The infinitesimal generator AT 
of U(t) is given by the differential expression 

(4.5) (rt/J)(s (}).- {oot/J(s,{}) for {} < 0, 
, .- (BTt/J)(s,O) for {} = 0, 

and the domain D(AT) C BCo consisting of all sufficiently smooth functions with 
LTt/J E BCo; D(AT) depends genuinely on r. 

In this section we derive estimates for the spectrum a(AT) for small r > 0 with 
the result. For wave solutions CPT 

-from §2, a(AT) extends into the complex right half-plane C+ 
-from §3, a(AT) lies completely in C- except for a simple isolated eigenvalue 

o coming from the translation invariance of (3.1) against s -+ s + so. 
If we consider equation (4.1) in suitably weighted spaces BC~ .-

BC~(R x [-T, 0], C), then the spectrum a(A~) of the corresponding semigroup 
Uw(t) (given (4.1), but operating on BC~) lies in C-. 

So at least for small r > 0, AT has roughly the same spectral properties as in 
the well-known case without time delay. Although the results in this paragraph do 
not depend on the quasimonotonicity of f, I will only discuss the examples 

(4.6) f(u,uT) = u(1- u)(uT - a) (§3, "Huxley" nonlinearity), 
(4.7) f(u,uT) = uT(1- u) (§2, "KPP" nonlinearity). 

For (4.6) we will always assume c = c*, for (4.7) c > c* > O. In our discussion 
we have to treat the essential spectrum and the eigenvalues separately. We use the 
definition of essential spectrum given in [14] and denote the resolvent set, set of 
normal points, and essential spectrum of an operator L by p(L), p(L), and am(L) 
respectively. 

The following two lemmas are easy to prove and establish a connection between 
the spectrum of AT and the spectral properties of simpler operators: 

4.1 LEMMA. Let T{: D(TI) = BC2(R,C) c BCO(R,C) -+ BCO(R,C) be 
given by 

(4.8) T{ u(s) := u"(s) - cu'(s) + (aT(s) - A)U(S) + e->.rbT(s)u(s - cr). 

Then A is a regular point (normal point, in the essential spectrum) of AT iff 0 is a 
regular point (normal point, in the essential spectrum) of T{ . 

4.2 LEMMA. Let M{: D(M{) = BC2(R,C) x BC1 (R,C) c BCO(R,C2)-+ 
BCO(R, C2) be given by 

(4.9) MT U = U -v . () (I) >. v v' - cv + (aT - A)U + bTe->'Tu(· - cr) 

Then 0 has the same spectral properties for T{ and M{. Lemma 4.1 is a motivation 
for the following de/initiol .. 
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4.3 DEFINITION. Let X be a Banach space of functions u: R - en. For an 
operator Hr: D(Hr) eX- X of the form BT = BI + B2 with 

(4.10) 
(4.11) 

Br u(s) = a2T(s)u"(s) + alT(s)u'(s) + aoT(s)u(s), 
B2U(S) = bT(s)u(s - CTr), CT > 0, 

with bounded coefficients from R(n,n) which do not all vanish, define the operator 

( 4.12) 

and the operator-valued function 

( 4.13) 

REMARKS ON THE NOTATION. In cases where no misunderstanding is possible, 
I will often skip the index r and the arguments s and () and especially write c or CT for 
c(r), Co for c(O). For abbreviation, we will consistently use the following notation: 
The dependence of the time lag will be denoted by a superscript r or 0 with operators 
and functions, and by a subscript with (possibly variable) coefficients. In the case 
of functions, a subscript 0 denotes the restriction on the line () = 0. Furthermore 
we will write R>. for R()." B). For r = 0, R~ = (BO - ).,)-1) is the normal resolvent 
(which will always be denoted by (B _ ).,)-1). 

4.4 LEMMA. R>. is an analytic function of )., and satisfies 

(4.14) 

IfTT = T[ + T{ with T[u = u" - cu' + aTu, T{u = bTu(- - cr), then (see Lemma 
4.1) p(AT) is the region of holomorphy of R(·, TT), and p(AT) is the region of mero-
morphy of R(·, TT). 

We can now prove a theorem bounding the essential spectrum of AT; the proof 
roughly follows Henry's book [17, pp. 138-141]. 

4.5 THEOREM. Suppose X = BCO(R x [-T,O],C), AT: D(AT) eX- X is 
given by (4.5), (4.2) with coefficients aT(s), bT(s) converging to a±, b± for s - +00. 
Let 

( 4.15) 

Then Sf. and S"!... each consist of a curve which is symmetric about the real axis 
and asymptotically parabolt·c, i.e. )., = _y2 + O(lyi) for IYI- 00. Let P denote the 
union of the regions inside or on the curves Sf., S"!...; thus e \ P is the component 
of e \ (Sf. US"!...) containing a right half plane. Then the essential spectrum of AT 
is contained in P, and in particular includes Sf. U S"!... . 

The meaning of the curves S1 will be more obvious in the proof, and the signif-
icance for the examples (4.6)-(4.7) will be demonstrated in 4.9. 

For the proof of the theorem, we have to analyze the region of meromorphy of 
R()." TT) according to Lemmas 4.1 and 4.4. 

The following proposition reduces this problem to the solvability of a simpler 
equation. 
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4.6 PROPOSITION. Suppose X is a Banach space of functions u: R ---> e, 
T: D(T) c X ---> X a closed linear operator, B: D( B) c X ---> X a closed linear 
operator with D(T) C D(B), and B relatively compact with respect to T. 

Suppose further that Band T can be decomposed as in Definition 4.4 as T = 
Tl + T2, B = Bl + B2 (i.e. the shift terms are separated as T2 and B2). Let G 
be a region in e where R(·, T) is holomorphic. Then we have: If R(AO, T + B) is 
defined for one AO E G, then R(·, T + B) is meromorphic on all G. 

Since this proposition and its proof are only a slight modification of [14, p. 22) we 
are not going to prove it. The proposition is used to simplify the original problem 
arising from the variable coefficients in the following way: Let T* be the extension 
of TT to the maximal domain D(T*) C BC~(R, e) where BC:(R, en) denotes 
the space of en-valued functions u that coincide with a u+ E BCk(Rt, en) on 
R+ and with a u- E BCk(Ro, en) on R-. Because of O"ess(TT) C O"ess(T*) it 
is sufficient to give a bound for O"ess(T*). Now define T by D(T) = D(T*) and 
Tu := u ll - cu' + au + bu(. - cr) with coefficients a(s), b(s) = a±, b± for ±s > O. 

Since T - T* is relatively compact with respect to T and T* in BC~, Proposition 
4.7 says that it suffices to study the solvability in BC~ of the FDE 

T>.u := u ll - cu' + (a - A)U + bu(. - cr). 

To prove Theorem 4.5 we consider the system 

u' = v, v' = cv - (a - A)U - be->'Tu(. - cr) 

equivalent to T>.u = 0, or with z = (u, v)t, Zs E C = CO ([-cr, 0), e 2), 

(4.16) ZI(S) = L>.(s)zs 

with 

If we set 

( 4.17) 

L>.(s) := {L! for s > 0, 
L>. fors<O. 

then studying the solutions to (4.16) in BC~(R, e 2 ) is equivalent to studying the 
solvability in A-hz = 0 in BC~(R, e 2 ) or of T>.u = 0 in BC~(R, e). 

8 T is the set of A E e for which the infinitesimal generator Af of Lf (as a 
mapping from C to C) has an imaginary eigenvalue. Since Lt and L>. depend 
analytically on A, Theorem 4.5 follows immediately from the following 

4.7 LEMMA. Suppose the linear mappings Lt, L>.: C ---> e 2 depend analyti-
cally on A E e and that Af is the infinitesimal generator to Lf. Let 

8± := {A E C/Af has an imaginary eigenvalue}. 

Let M>. be given by (4.17) as a closed, densely defined operator in BC~(R,e2) 
with D(M>.) = Bc'~{R,e) x BC!(R,C). Then ifG is any open connected set in 
e \ (8+ U 8_), either 

(i) 0 E O"(M>.) for all A E G, or 
(ii) 0 E p(M>.) for all A E G. 
Also, 0 E O"ess(M>.) whenever A E 8+ U 8_. 
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This lemma completes the proof of Theorem 4.6: If G c C \ (S+ u S_) contains 
a right half plane, then G c p(T*) since sufficiently large>. E R + are regular values 
ofT*. 0 

To prove Lemma 4.7 we need a criterion when 0 is a regular point of if).. This 
is given by the following 

4.8 LEMMA. Let 0 be a hyperbolic critical point of L + and L - (i. e. there are 
no imaginary eigenvalues of A+ and A-), C := CO ([-CT, 0], C 2), p±: C ---> C 
projections to the eigenvalues of A± in C+ (P± are finite-dimensional according 
to [16, Chapter 7)), Q± := Id - p± the projections to the "stable" generalized 
eigenspaces of A±. Let L(s) = L+ for s > 0, L(s) = L- for s < O. Then the 
equation 
(4.18) Mz(s) = z'(s) - L(s)zs = f(s), s E R, 
is uniquely solvable for arbitrary fEB := BC~(R, C 2 ) iff C can be decomposed as 

(4.19) 

In this case the solution operator K: B ---> B, K (f) = z is continuous. 
PROOF OF 4.8. We have C = R(Q+) + R(P-) iff 

(4.20) 

and (4.19) is a direct composition iff the "=" sign holds in (4.20). In this proof, 
let the superscript * stand for + or -. According to [16, Theorem 9.1.1], (4.18) 
restricted to R* is solvable for all f E B* := BCO(R*, C2) iff 0 is a hyperbolic 
critical point of L *, and a special solution bounded on R * is given by the operators 
K* : B* ---> B* , 

(4.21) (K+ I)s = loS T+(s - h)(Q+ Xo)f(h) dh -100 T+(s - h)(P+ Xo)f(h) dh, 

(4.22) (K- I)s = [Soo T-(s - h)(Q-Xo)f(h) dh -1° T-(s - h)(P- Xo)f(h) dh; 

here s E R*, T*(t) denotes the semigroup generated by A*, Xo(O) = 0 for -CT ~ 

o < 0, Xo(O) = (~~), and (K* I)s = (K* I) I [s-C'T,s] E C (cf. [16, §9.1 and §7.6)). 
The general solution z*(·,¢,1) E B* of (4.18) on R* with initial or final val¥e 
Zo = ¢ E C has the form 

(4.23) 
z: = T+(s)(Q+¢) + (K+ I)s, 
z; = T-(s)(P-¢) + (K- I)s, 

The special case s = 0 shows at once 

(4.24) 

s 2: 0, 
s ~ o. 

i.e. the boundedness of z*(" ¢, I) on R* forces the relations 

p+¢= - 1000 T+(-h)(P+Xo)f(h)dh, 

Q-¢= [°00 T-(-h)(Q-Xo)f(h)dh. 
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Let z = z(¢) E CO(R) be the "combined" solution of (4.18) on R with ZIR' = zoO, 
and especially Zo = ¢. Z is bounded on R+ iff P+zo E R(Q+) + R(P-), and 
bounded on R- iff Q- Zo E R(P-) + R(Q+), so (4.20) is sufficient (and necessary, 
as is easily seen) for the solvability of (4.18) on R. Furthermore uniqueness holds 
iff R(Q+) n R(P-) = {O}, and the estimates used to show uniqueness also yield 
the desired estimate 

IIzsllc ~ const IlfllL'x'(R) for all s E R. 0 

PROOF OF 4.7. The projections Qr, P;- to Lr (defined as in Lemma 4.8) de-
pend analytically on >. in G. Analogously to [16, p. 173 and §7.3] we can define a bi-
linear form (., . h: C x C -+ C to L r such that P;- , Qr are orthogonal with respect 
to (., -).~; (., -).~ also depends analytically on >.. The condition C = R(Qt) ffi R(P;:) 
(necessary and sufficient for 0 E p(M>.J according to Lemma 4.9) is equivalent to 

( 4.25) 

and 

(4.26) 

dimR(Pt) = dimR(P;:) =: n(>') 

'IjJ(>.) := det(((ei(>.),et(>')hh~i,j~n(A») f:. 0; 

et (>.) are basis vectors of P;- (C) (cf. [16, Lemma 7.33] or the introduction to 
Proposition 2.6). Because of Gee \ (S+ U S_), n(>') is constant on G, and since 'IjJ 
is analytic we have either 'IjJ == 0 on G, or 'IjJ(>.) f:. 0 for all >. E G except for isolated 
zeroes of finite multiplicity corresponding to finite poles of (MA)-l; that shows the 
alternative (i) or (ii). The remaining part of the proof can be copied directly from 
Henry [17, p. 139]. 0 

4.9 EXAMPLES FOR THEOREM 4.5. To show the significance of Theorem 4.5 
we have to analyze the shape of the sets SJ:. Omitting the subscript ± we have 

ST = {Jl + iv E qF(Jl, v, T, y) = 0 for ayE R} 

with F: R4 -+ C given by 

(4.27) F(Jl, v, T, y) = _y2 + icy + be-T(Cy+v)e-TIl - Jl- iv. 

For T = 0, the set 
SO = {_v2 /c2 + a + b + ivlv E R} 

is parametrizable over v E R. For the Huxley nonlinearity 

(4.6) f(u, uT ) = u(1- u)(uT - a) 

we have a+ = a-I, a_ = -a, b+ = b_ = O. So ST does not depend on T, and for 
all T > 0 it holds that 

O"ess(AT) C {>' E qRe >. ~ max(a - 1, -a) < o}. 

For the KPP nonlinearity 

(4.7) 

we have a+ = -1, a_ = b+ = 0, b_ = 1. So >. = 1 is in the essential spectrum 
of A 0 , and by the implicit function theorem this instability is conserved for small 
T > O. 
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Introducing weighted norms (according to Sattinger's ideal [28, 29]) changes the 
stability properties. It is easy to carry over Henry's presentation [17, p. 141] to our 
situation to see that the essential spectrum can be shifted into the left half plane in 
the case of the KPP nonlinearity, but at the same time 0 ceases to be an eigenvalue 
since the eigenfunction cp' of TT (cp is the traveling wave solution from §2) is no 
longer bounded in the weighted norm. 

We still have to analyze the eigenvalues of the infinitesimal generator AT. In the 
following we will always assume that the essential spectrum of AT lies strictly in the 
complex left half plane, possibly by working in suitable weighted spaces. If this is 
the case and therefore zero is a regular value of AT, the argument is correspondingly 
simpler. 

At first we show that the operators AT depend continuously on T in a certain 
sense. Since the domains D(AT) genuinely depend on T we will show that AT 
converges to AO in the generalized sense (following Kato [22, p. 197 ff]). The 
following notations are essential for the following: 

4.10 DEFINITION. Let Z be a Banach space, M and N (nontrivial) closed 
subspaces of Z. We set 

(4.28) 
(4.29) 

8(M, N) := inf{8 > Oldist(uN) :s; 811ull for all u EM}, 
8(M, N) := max(8(M, N), 8(N, M)). 

8 is called the gap between M and N. For closed operators A, B on a Banach space 
X the gaphs G(A), G(B) are closed subspaces X x X, and the gap between A and 
B 8(A, B) is defined by 

(4.30) 8(A,B) = 8(G(A),G(B)), 8(A, B) = 8(G(A), G(B)). 

An converges to A in the generalized sense (for short: An ~ A) iff 8(A, An) ~ 0 
for n ~ 00. 

Since the spectrum in general is only upper half continuous with respect to 
generalized convergence, Theorem 4.6 and its consequences cannot be derived by 
the following method. Since, however, simple eigenvalues depend continuously on 
AT, we will first prove the following proposition used in later proofs: 

4.11 PROPOSITION. Assume that for T ~ 0 AT is the infinitesimal generator 
of the semigroups UT(t) given by (4.1) operating on BCo. Then for small T > 0, 
zero is either a regular value or an isolated algebraically simple eigenvalue of AT; 
zero is an eigenvalue of AT iff it is an eigenvalue of AO. 

PROOF. For T = 0 the situation is known (e.g. [28]). According to Lemma 4.2 
we have to study the bounded solutions of 

(4.30) 

The relative bound [22, p. 190] of the operator 

(TJ - T8)u = (co - cr)u' + (aT - ao)u + bT(u(· - CT) - u) + (bT - bo)u 

with respect to T8 vanishes for T ~ 0, so To ~ T8 [22, Theorem IV-2.14, p. 203], 
and the stability theorem [22, IV-§3.5, p. 213] gives the desired result. 

The next theorem shows that the infinitesimal generators depend continuously 
on T in the sense of Definition 4.11: 
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4.12 THEOREM. Let AT, l' ~ 0, be the infinitesimal generator of the semigroup 
UT(t) given by (4.1-5) and operating on BCo. Then AT ---+ AO for l' ---+ O. 

PROOF. Since the usual criteria for generalized convergence do not apply in our 
case, we have to go back to the definition. First we show that for all l' -+ 0 there 
is ZO(T) E G(AO) and ZT E G(AT) such that 

(4.31) 

If this holds, then we have at once limsuPT-+08(AO,AT) = 0, and the theorem is 
proved. 

So let zO = (UO, vO), ZT = (uT, vT) with vO = AOuo, vT = ATvT, and let Ilzoll = 
Iluoll + Ilvoll = 1. Then 

(4.32) ° ° ° { 8(}uo for () < 0, v = A u = 0" 0' ° Uo - couo + (ao + bo)uo for () = O. 

To satisfy (4.31) we set 

(4.33) 

and obtain 

(4.34) 

with 
HTw = w" - cTw' + aTw + bTw(· - CTT) 

and 
ST uO = (co - CT )ug' + (aT - ao)ug + bTuo(. - CTT, -1') - boug. 

It is easy to verify II ST uO II -+ 0 for l' -+ O. So if we manage to find hT such that 

(4.35) 

and 

(4.36) IlhTIl -+ 0 for l' -+ 0, 

then we have 

lIuT - uOIl + IIATuT - AOuoll = IlhT11 -+ 0 for l' -+ 0, 

i.e. (4.31) holds and the proof is finished. 
To find hT we first note that 0 is an isolated algebraically simple eigenvalue of 

HT with eigenspace NT = (cp~). (The proof is a simplification of Proof 4.11.) Since 
HT and the projection Id - 7fT of BCO(R, C) onto NT depend continuously on 1', 
HT o 7fT is bounded invertible, and one can show [22, p. 196] that the norm of HT o 7fT 

is uniformly bounded for small l' ~ O. So hT := _(HT 0 7fT )-1 (ST uO) satisfies all 
requirements, and the proof is complete. D 

So finally we can show that for small l' ~ 0 the spectrum of the infinitesimal 
generators AT has similar "stability properties" as for l' = O. 
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4.13 THEOREM. There are positive numbers 8 and 70 such that the following 
holds: Let UT (t) be the semigroup given by (4.1) operating on Beo (possibly with 
a suitable weighted norm). Then for 0 :::; 7 :::; 70 the spectrum of the infinitesimal 
generator AT of UT(t) lies (possibly except for a simple isolated eigenvalue zero) in 
the region {>. E ClRe.>. :::; -8}. 

PROOF. For 7 = 0 the spectrum even satisfies a cone condition: There are 80, 
c > 0 such that 

a(Ao) c {.>. E Cl7r/2 + c < 1 arg(.>. + 80 )1 < 7r} U {a}. 

Let 8 > O. Assume that the set r consists of the parts r 1 and r 2 with 

r 1 := {.>. E ClRe.>. = -8, dist(.>.,a(Ao)) ~ do} 

with do > 0 so large that r 1 consists of exactly two components. Let r 2 c p(AO) 
be a compact pathwise connected set in the left half plane C- connecting the two 
components of r 1. Since the spectrum is upper half continuous with respect to 
generalized convergence [22, Theorem IV-3.1, p. 208], Theorem 4.12 yields r 2 c 
p(AT) for 0 < 7 :::; 70 = 70(r2 ). It remains to show that for small 7 > 0 the set r 1 
belongs to p(AT). On r 1 the resolvent (To - .>.)-1 is uniformly bounded, and for 
the operator R(>., TT) we calculate formally 

R(>.,TT). [Id - Sr. (TO - >.)-1] = (TO _ >.)-1 

with sr = T[ - TP + e-ATT{ - T~ (cf. Definition 4.4). Sr· (TO - >.) -1 is a bounded 
operator whose norm vanishes uniformly for>. E r when 7 --+ O. So for small 7 the 
operator in brackets is invertible, i.e. R(·, TT) is defined as a holomorphic function 
on r 1, and because of Lemma 4.4 the proof is complete. 0 
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