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ASYMPTOTIC BEHAVIOR OF A CERTAIN FUNCTIONAL 
EQUATION VIA LIMITING EQUATIONS 

G. KARAKOSTAS, loannina 

(Received September 21, 1984) 

1. INTRODUCTION 

The main aim of this work is to deal with the asymptotic character of the bounded 
solutions of the scalar functional equation with delays 

(1.1) x{t) = F{t, x{a^{t% ..., x(a,(f)), [ a{t - s) g{s, x{s)) as), t^O 

which is a more general version of the Volterra integral equation 

(1.2) x{t) = f(t) + a{t - s) h{x{s)) ds, t ^0. 
Jo 

Studying the convergence of bounded solutions of (1.2), Londen (1974) showed 
that if/ is continuous and /(^) -^/o as ^ -> +oo, /z is continuous, a e L^([0, +oo)) 
and nonincreasing, then any bounded solution x of (1.2) is slowly varying in the 
usual sense, i.e., for each r > 0, 

Hm I sup x[s) - inf x(s)\ = 0 , 
t^ + oot^s^t + r t^s^t + r 

and it approximates, as the time increases, the set of the asymptotic equihbrium 
states of (1.2), i.e., the set {^eR: i = fo -\- h{C) ̂ o a{s)ds}. By this resuh he 
improved some results of Miller-Sell (1970), Londen (1973), Levin-Shea (1972) 
etc. Later on, such a behavior of the bounded solutions has been discussed for (1.1) 
with one delay (i.e. к = 1) by Karakostas (1981) for the scalar case and (1982) for 
the n-dimensional case. A common point in these works is that the function g(t, x), 
r ^ 0, XER, converges as t -^ +oo, to a function h[x) and that ( l . l ) behaves 
asymptotically like (1.2). 

Before describing what is going to be examined in this paper we present the fol­
lowing example: 

Example . Consider the Volterra integral equation 

(1.3) x{t) = Icos^t + e"^'~%(5, x{s)) as, t > 0 
0 
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where 

g(t^ x) = -2 + 5x - 4x cos ^ + sin ^ , ^ > 0 , xe R . 
2 4^t 2 

Observe that neither g(t, x) nor 2 cos ^/t converge as t -> +oo, but they are slowly 
varying functions. Furthermore, the (unique) solution of (1.3) x(t) = 1 + cos {ф\^), 
^ ^ 0 is slowly varying. 

This example (and many others) motivates us to look for slowly varying solutions 
of (1.1) in case where F'\t, z^, 22, . . . , Zj^, y) and g(t, z) do not necessarily converge 
as f --> +00. In particular, we show that if these functions are slowly varying then 
all bounded solutions of (1.1) are so. Also we are able to prespecify the set which 
contains all limiting points of all such solutions. These results improve (partially 
or totally) and extend related results of Miller and Sell (1970), Londen (1974), 
Karakostas (1982), Grippenberg (1978). 

Moreover, another concept is introduced here: the concept of almost slowly 
varying functions. Then, the results described above still hold if we replace the 
phrase "slowly" by "almost slowly". 

It is, however, of interest that in our present analysis we use topological dynamics 
considerations applied to causal operator equations and especially the theory of 
limiting equations along solutions as is developed in [3]. 

2. THE MAIN RESULTS 

First we present our basic assumptions and then the main results. 
Assume that 
(i) F : [0, +Go) X R^'^^ -> R is continuous and uniformly continuous in the 

first variable and such that for each sequence (t„) in [0, +00) with t„-^ 00 there 
are a subsequence (г„,) and a function FQ: R -^ R such that 

F{t^ + t, zi, Z2,..., ẑ ., y) -^ Fo{y) as m -> + 00 , 

uniformly for all [t, z^, Z2,.. . , ẑ t, x) in bounded subsets of [0, +00) x R^'^^. 
(ii) For each i = 1,2, ...,/c the delay oc/j) is continuous and stays near to t, 

i.e. the function t — â (̂ ) is bounded. 
(iii) g:(0, +co^ X R -^ R is continuous and uniformly continuous in the first 

variable and such that for each sequence (t„) in (0, +00) with t„-^ +00 there 
are a subsequence [t^ and a function g^: R -> R such that 

g{tm + t^y)-^ 9o{y) as m -^ + 00 , 

uniformly for all (t, y) in bounded subsets of [0, +co) x R. 
(iv) The kernel a is in L^([0, +00)). 
R e m a r k 2.1. It is not hard to see that the convergence of F and g in (i), (iii) 

respectively could be expressed in other words as: F(', z^, ..., z,^, y) and g{% y) are 
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slowly varying functions uniformly for (z|, Z2,. . . , Z;., y) and y in bounded subsets 
of Я*̂ ^̂  and IR, respectively. Moreover, the hmiting functions FQ and QQ are con­
tinuous functions. This follows from the almost uniform convergence on bounded 
sets. 

R e m a r k 2.2. On the other hand, by the classical Ascoli's theorem, (i) and (iii) 
imply that F(t, z^, ..., z,^, y) and g{ty y) are uniformly continuous and bounded 
functions on sets of the form (0, + 00) x Pfand V, respectively, where W ^ R^'^^ 
and V ^ R are bounded sets. 

In the sequel we shall denote by L{F) and L{g) the sets of all functions of the form FQ 
and QQ, respectively (appearing in (i), (iii)) for all sequences (̂ „). 

Theorem A. Assume that (i) —(iv) hold and in addition to (iv) assume that a is 
nonincreasing on [0, + 00). If for each FQ G L{F) and gQ e Üg) the set {̂  e R\ ^ = 
= [gQ о FQ) {C} lo ci{s) ds} is connected, then each bounded continuous solution x 
0/(1.1) is slowly varying and satisfies 

(2.1) [hm mfx(t\ hm sup x{t)] ^ В , 
t-* + (X) t-^ + CO 

where В = {rj E R: rj — Fo(6fo(^) J? ^i^) ^^)^ ^0 ^ L[F) and gQ G L{g)]. 

Two significant implications of Theorem A are the following: 

Corollary 1. Under the conditions of Theorem A, if the set В consists of isolated 
points then any bounded continuous solution x(t), t ^ 0 of (1.1) converges as 
t -^ +00 to a point of B. 

This follows by the continuity of the solution, since in this case the set of all limit 
points of x{t) (as f -» + 00) is a continuum of R. 

Corollary 2. Under the conditions of Theorem A, // the set В is empty then there 
exist no bounded solutions o / ( l . l ) . 

Before presenting other results concerning (1.1) we introduce the following 
notion: 

Definition. We shall say that a function x: [0, + 00) -> M is almost slowly varying 
if for each sequence {t„) in [0, +00) with „̂ -> +00 there exists a subsequence (tj^^) 
such that for each r > 0, 

hm sup lim \x{t^ + t + s^) — x(r^ + t + 52)] = 0 . 
f^ + 00 0^si,S2U'' m-^ CO 

It is not hard to see that if x is slowly varying function then it is almost slowly 
varying. The inverse is not true; indeed, the function 

fsin t, t G [2'"7ü + 7u/2 , (2 "̂ + 1) TT + тс/2) , m = О, 1, 2, ... 
[ 1 , otherwise 

is almost slowly varying but not slowly varying. 
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Assume now the following: 
(v) F: [0, +00) X R^'^^ -> IR is continuous and uniformly continuous in the first 

variable and for each sequence (t^) with f„ -> сю there exist a subsequence (t^) 
and a function F: [0, + 00) x R -^ R such that 

F(t^ + t, Zi, ..., z^, y) -> F(t, y) as m -^ + 00 , 

uniformly for all (t, z^, ..., Zj^, y) in bounded subsets of [0, +00) x R^'^^; 
(vi) g:[0, -j-co) X R -^ R is continuous and uniformly continuous in the first 

variable and such that for each sequence (t„) with f„ -^ + 00 there exist a sub­
sequence (t^) and a function g: R x R -> R such that 

Q{hn + t,y)-^ g{t, y) as m -> + 00 , 

uniformly for all (t, y) in bounded subsets of R x R. 
We shall denote by 0(F) and 0{g) the sets of all functions of the form F and g, 

respectively. Observe here that if F satisfies (i) (which is stronger than (v)) then 
0(F) = L{F). Similarly for g. 

Our next result on ( l . l ) states now as follows: 

Theorem B. Assume that (ii), (iv), (v), (vi) hold and, moreover, a is nonincreasing 
on [0, + 00). Assume also that each F e 0(F) satisfies (i) and each g e 0(g) satisfies 
(iii) (and so the sets L[F) and L{g) are nonempty). If each pair of functions FQ G 
eL(0(F)) and go e L(0(g)) satisfy the conditions of Theorem A, then any bounded 
and uniformly continuous solution x of (1.1) is almost slowly varying and satisfies 

(2.2) hm dist (x(t), C) = 0 

where C = {rjeR:rj = Fo(go(n) \o <^ Ц, F^ e L{0(F)), g^ e ЦО^д))}. 
The proofs of our results rely heavily on the theory of limiting equations which 

is found in Karakostas (1982), and will be given in Sections 4, 5 . 

3. SOME AUXILIARY RESULTS 

We state here some facts about shifting semi-flow and some auxiliary results 
needed for the proofs of the theorems. 

Let С denote the set of all continuous functions x: R'^ -^ R endowed with the 
topology of the uniform convergence on compact sets. This is a metrizable topology 
but we shall not use any metric. 

Let X 6 C; for any Г ^ 0 the symbol Xt(s) = x(t + s), s ^ 0, defines a new function 
Xf which also belongs to C. Then (t, x) -^ Xti R'^ x С -> С defines a semi-flow 
on С which is known as the shifting semi-flow, cf., e.g. [3]. It is easy to see that if x 
is a uniformly continuous and bounded function in С then the co-Hmit set œ(x) 
with respect to the shifting semi-flow is nonempty, compact, connected and positively 
invariant. These properties are obviously guaranteed by AscoH's Theorem and the 
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uniform continuity of the function x. In this case the co-limit set co{x) of x is invariant, 
in the sense that the (original) semi-flow restricted to the set œ{x) can be extended 
to a flow in such a way that the full orbit of any function y e co[x) hes in œ{x). If Q{y) 
is such a full orbit, then the function Q(y) (t), t e IR, say x*, which is called a full 
limiting function of x, satisfies x*(f) = lim x(tf^ + t) for a certain sequence [tf,} 
with t,^ -^ CO and uniformly for all t in compact sets. Notice that if j^ is a function 
on R to R, then for any t G R the symbol ŷ  will denote the function ^^(s), 5 ^ 0 . 

Another item we should notice is a characterization of a function as being slowly 
and almost slowly varying by the shifting semi-flow. This is given in the following 
lemma whose proof is evident. 

Lemma 3.1. Let x be a uniformly continuous and bounded function in С Then 
(a) X is slowly varying if and only if each x* e ш*(х) is a constant function. 
(b) x is almost slowly varying if and only if each x* G a;*(x) is a slowly varying 

function (and thus each xEœ(œ(x)) is a constant function). 

Now write (1.1) in the form 

(3.1) X == Tx 

where (Tx) (t) = F{t, x{(Xi(t)), ..., x{a,^{t)), Jo a{t - s) g{s, x{s)) ds), t ^ 0, xeC. 
Following Karakostas (1982) the translation of Г along x by т ^ 0 is the operator 
defined on С(х(т)) =:^'^' {cp e C: (p{0) = х{т)} by 

(Т,,,ф) (0 = X(T) - (Tx) (T) + {Tfi,^,(pl (t) , 

where (ßr,x9) (0 "^ ^(0 if ^ ^ '̂  ^^^ = Ç^{t — т) if Г > т. 
A limiting equation of (1.1) along a solution x is any equation of the form 

(3.2) и == Tu 

where T = lim T^^^^, for a sequence t„(-» + oo), where the convergence is such that 
Tx = lim 7)„,д;-х;„ whenever x„{0) = x(t„), and x„ converge to a certain function x 
in the topology of С We say then that (3.2) is generated by {t„). 

The more general theory on the structure of the translations and on the skew 
semi-flow generated by the translations of operators and the shifting semi-flow in­
volved are not needed here. 

Observing now that the translation of Г along a solution x by т is given by 

{Tr,x9) (t) = т(г + t, {fi,^,(p\ {a,{r + t)-xl..., {ii,,^(p\ (а,(т + t) - x) 

a{t - s) g[x + 5, xf^s)) as + a{t — s) д(т: + s, <?>(s)) ds 

and following a computational routine we can show the following 

Lemma3.2. Assume that(ii),(iv),(v), (vi) hold and, moreover, thatF(t, z^, ..., Zj^, y) 
and g{t,y) are bounded on sets of the form [0, +oo) x Ж and (0, +oo) x V, 
respectively, where W^R^+^andV^R are bounded. Then the limiting equation 
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o / ( l . l ) along a uniformly continuous and hounded solution x is of the form 

(3.3) y = FftA a{t - s) g{s, y(s)) dsY teR, 

where F e 0{F) and g e 0{g). 
Here let us recall the following result borrowed from Karakostas (1982). 

Lemma 3.3. Any limiting equation (of (3.1)) along a solution x is satisfied by 
at least one function 0/ш*(х). 

It is also convenient to adapt Proposition 6.3 of [3] in our situation as follows: 

Lemma 3.4. Let (f„) be a sequence such that t,^ -> 00. Assume also that the as­
sumptions of Lemma 3.2 hold. If x is a uniformly continuous and bounded solution 
0/(1.1), there is a subsequence (t^) of{t^ and a function x e co*(x) generated by [t^ 
which satisfies a limiting equation, say (3.3), of (1.1) along x generated by the 
sequence (f,„). 

4. PROOF OF THEOREM A 

Let x{t), ^ ^ 0 be a bounded solution of (1.1). Set 

y{t) = a{t - s) g{s, x{s)) ds , ^ ^ 0 

and observe that у is a uniformly continuous and bounded function. Then (1.1) 
and Remark 2.2 imply that also x is a uniformly continuous function. 

Let X* be a full limiting function of x. To show that x is slowly varying and satisfies 
(2.1) it is enough (by Lemma 3.1) to show that x* is a constant function, say x* = p^ 
where pe B. 

By Lemmas 3.2, 3.3, 3.4 we get that x* satisfies the equation 

(4.1) x*(r) = ^0 [ [' a{t - s) go{x%s)) dsY teR 

for some FQ e L[F) and go e L{g) (see the hnes before Theorem B). 
Set 

(4.2) z{t) = 1 a{t - s) go{x%s)) ds , teR 
J — 00 

and observe on the one hand that z is a full limiting function of у (i.e. z e co*(y)) 
and on the other hand that z satisfies 

(4.3) z{t) = 1 a{t - s) h{z{s)) ds , teR, 
J — 00 

where h = gQ о FQ, 
Our next step is to show that the set OC(ZQ) U OJ[ZQ) consists of constant functions. 
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Making some easy manipulations on (4.3) we obtain 

(4.4) G{t; z) - C(T; Z) = - j " [' [/t(z(s)) - liz{r))Y da{s - r) ds 
"̂  J T J - 0 0 

for all t, T, where 
fz (T) /»Z(T) I M 

G{t; z) = h{u) dw - - a{t - s) h\z{s)) ds . 
Jo 2 J _да 

Let V E <X[ZQ); then we can assume that v is defined on the whole IR and z(ti^ + t) -^ 
-> v[t), uniformly for t in compact sets, where (r̂ )̂ is a sequence such that t/̂  -> — oo. 
Hence G(r̂ ^ + f; D) -> G(t; v), uniformly for t in compact sets. Now by (4.4) we observe 
that the function G[';v) is a constant and thus by (4.4) again, we get 

П. [h{v{s)) - h{v[r))Y da{s - r) ds = 0 , t^T 

which implies that h(v(s)) = h{v[r)) for all s, r in R. Since v satisfies also (4.3) we 
conclude that Î; is a constant function. The same reasoning applies also to a)(zo) 
and so a(zo) u co(zo) contains only constant functions. 

We claim that a(zo) n co(zo) Ф 0. Indeed, the sets a(zo) and co(^o) ^re connected, 
compact and contain only constant functions. Thus we can write a.(zo) = [<?i, ^2] 
and (D[ZQ) = [̂ 7i, /72]» foï' some reals ^̂  g (J2 and r\^ S Vi-

Assume that ^2 < ^i- ^У our assumption we have Ä h{^) = ^ for all ^ e [^1, ^/2], 
where Ä = ^Q a(s) ds. 

Let p e((^2? ^i)- Since /z is continuous, we have a(/i(z)o) = /?(a(zo)) and therefore 
there is an 5̂  e ^ such that z^s^) = p and h{z{s)) < h[z[si)), s < s^. Our purpose is 
to show that 

(4.5) ^ = /1(^1) g /z(z(s)) for all s ^ 5̂  . 
Ä 

(recall that ^^ = hminf z(s)). 

Indeed, assume that (4.5) does not hold, so that there exists an 52 < 5̂  such that 

(4.6) /Z(Z(5)) < /l(z(5,)) , 5 < 5 , 

and 

(4.7) ^(^(^2)) < КФ)), s < 52 . 
From (4.3) and (4.6) we have 

z(5i) - a{0) h{z{si)) - I ' h{z{s)) da{s^ - s) > a(0) /1(2(51)) - a(0) h{z{si)) = 0 , 
J — 00 

namely, z is strictly increasing in a neighborhood of s^. This fact and (4.6) imply 
that z(5) < z[si), s < 5i. By using (4.7) and following the same procedure with S2 
we obtain z{s) ^ 2(52), 5 G [ 5 2 , 5 I ] . These two relations give z(52) < 2(5^) < 2(52), 
which is false. So, (4.5) is true. 
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Now, since l^ = Ä /z(C) for all ^ e [(^i, гуг] we have the contradiction 

^(si) = a(5x - s) /1(2^5)) ds = -
J-00 ^ ^ 

a(5i — s) z(s) d5 < 

1 
A 

a(si — 5) z(s^) ds = z[sj) 
J — 00 

So, there exists a (̂  e ^{^0) ^ ^(^'o) ^^^ sequences {т;̂ }, {tj^} such that TJ^ -^ —00, 
f̂̂  -> 00, 2(т̂ ^ _j-.) _> (̂^ z(ti. + *) -^ ^. Then we see that G(T,,; 2) and G(f/̂ ; z) converge 
to Ĵo Hi^) dw - (1/2) h\i) A. Thus, by (4.4) we obtain 

Г [/z(z(s)) - h{z{r))Y da{s - r) ds = 0 

which imphes that h{z(t)), t e R is constant. This in turn imphes by (4.3) that z is 
a constant function, say C? which satisfies С = ^ h{C)- Then the full limiting function 
X* of X, which by (4.1) is given by 

x* = Fo^C), 

is a constant function, say и G ^". Then, again by (4.1), we get 

и = FQ{A Qoiu)), 

i.e. и e B, and the proof is complete. 

5. PROOF OF TFÎEOREM В 

Let X be a uniformly continuous and bounded solution of (1.1). By Lemma 3.1 
it is enough to show that each x* e œ'^{x) is slowly varying. 

Indeed, let x* e ш*(х). Then by (3.4) and Lemmas 3.2, 3.3 we conclude that x* 
satisfies the limiting equation (3.3) for some F e 0(F) and g e 0(g). 

Now observe that each F satisfies (i) and each g satisfies (iii). Thus, Theorem A 
is apphcable to (3.3) since it can be written in the form 

a(t - s) g(s, y(s)) ds 
0 

y(t) = FJt, 

where Fj^(t, w) = F ItA a(t — s)g(s,x^(s))ds + w\. 
Therefore 

[hm inf x*(r), hm sup x*(?)] Ç ß^ , 
t-* + CO t-*- + аэ 

Where B, = {iER:i = Fo(go(i) J? a{s) ds), F« e L{F), g^ e L{g)}. Since B, e c , 
we get 

Hm dist (x*(r), C) = 0 , 
r-^ + 00 

which proves (2.2) because œ(cû(x)) Ç co(x). 
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